1
|
Zhang Y, Wang Z. The interplay of dopaminergic genotype and parent-child relationship in relation to intra-individual response time variability in preschoolers: A replication study. Dev Sci 2024; 27:e13561. [PMID: 39162657 DOI: 10.1111/desc.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Intra-individual response time variability (IIRTV) during cognitive performance is increasingly recognized as an important indicator of attentional control (AC) and related brain region function. However, what determinants contribute to preschoolers' IIRTV received little attention. The present study explored the interaction of dopaminergic polygenic composite score (DPCS) and the parent-child relationship in relation to preschoolers' IIRTV. In the initial sample, 452 preschoolers (M age = 5.17, SD = 0.92) participated in the study. The modified Flanker task was used to evaluate children's IIRTV and their parents were requested to complete the Parent-Child Relationship Scale to assess the parent-child relationship (closeness/conflict). DNA data were extracted from children's saliva samples, and a DPCS was created by the number of COMT, DAT1, and DRD2 alleles associated with lower dopamine levels. Results showed that DPCS significantly interacted with the parent-child closeness to impact preschoolers' IIRTV. Specifically, preschoolers with higher DPCS exhibited lower IIRTV under higher levels of the parent-child closeness, and greater IIRTV under lower levels of the parent-child closeness compared to those with lower DPCS, which supported the differential susceptibility theory (DST). A direct replication attempt with 280 preschoolers (M age = 4.80, SD = 0.86) was conducted to investigate whether the results were in accordance with our exploratory outcomes. The interactive effect of DPCS and the parent-child closeness on IIRTV was confirmed. Additionally, the significant interactive effect of DPCS and the parent-child conflict on IIRTV was found in the replication study. The findings indicate that preschoolers' IIRTV, as an indicator of AC and related brain region function, is influenced by the interactions of dopaminergic genotypes and the parent-child relationship. RESEARCH HIGHLIGHTS: We investigated the Gene × Environment mechanism to underline the intra-individual response time variability as an indicator of attentional control (AC) in Chinese preschoolers. Dopaminergic polygenic composite score (COMT, DAT1, and DRD2) interacted with the parent-child relationship to predict preschoolers' intra-individual reaction time variability. A direct replication attempt has been conducted, and the results were in accordance with our exploratory outcomes, which increased the credibility of the present findings. The findings highlight the importance of considering precursors, including polygenic and environmental factors, which contribute to the development of early cognitive performance such as AC.
Collapse
Affiliation(s)
- Yuewen Zhang
- School of Psychology, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Shaanxi Normal University, Xi'an, China
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Zhenhong Wang
- School of Psychology, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
2
|
Herzog N, Hartmann H, Janssen LK, Kanyamibwa A, Waltmann M, Kovacs P, Deserno L, Fallon S, Villringer A, Horstmann A. Working memory gating in obesity is moderated by striatal dopaminergic gene variants. eLife 2024; 13:RP93369. [PMID: 39431987 PMCID: PMC11493406 DOI: 10.7554/elife.93369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Everyday life requires an adaptive balance between distraction-resistant maintenance of information and the flexibility to update this information when needed. These opposing mechanisms are proposed to be balanced through a working memory gating mechanism. Prior research indicates that obesity may elevate the risk of working memory deficits, yet the underlying mechanisms remain elusive. Dopaminergic alterations have emerged as a potential mediator. However, current models suggest these alterations should only shift the balance in working memory tasks, not produce overall deficits. The empirical support for this notion is currently lacking, however. To address this gap, we pooled data from three studies (N = 320) where participants performed a working memory gating task. Higher BMI was associated with overall poorer working memory, irrespective of whether there was a need to maintain or update information. However, when participants, in addition to BMI level, were categorized based on certain putative dopamine-signaling characteristics (single-nucleotide polymorphisms [SNPs]; specifically, Taq1A and DARPP-32), distinct working memory gating effects emerged. These SNPs, primarily associated with striatal dopamine transmission, appear to be linked with differences in updating, specifically, among high-BMI individuals. Moreover, blood amino acid ratio, which indicates central dopamine synthesis capacity, combined with BMI shifted the balance between distractor-resistant maintenance and updating. These findings suggest that both dopamine-dependent and dopamine-independent cognitive effects exist in obesity. Understanding these effects is crucial if we aim to modify maladaptive cognitive profiles in individuals with obesity.
Collapse
Affiliation(s)
- Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- International Max Planck Research School NeuroComLeipzigGermany
| | - Hendrik Hartmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Collaborative Research Centre 1052, University of LeipzigLeipzigGermany
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Lieneke Katharina Janssen
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Institute of Psychology, Otto von Guericke University MagdeburgMagdeburgGermany
| | - Arsene Kanyamibwa
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Maria Waltmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Department of Child and Adolescent Psychiatry, University of WürzburgWürzburgGermany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical CenterLeipzigGermany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, University of WürzburgWürzburgGermany
- Department of Psychiatry and Psychotherapy, Technische Universität DresdenDresdenGermany
| | - Sean Fallon
- School of Psychology, University of PlymouthPlymouthUnited Kingdom
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Collaborative Research Centre 1052, University of LeipzigLeipzigGermany
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Noroozian M, Kormi-Nouri R, Nyberg L, Persson J. Hippocampal and motor regions contribute to memory benefits after enacted encoding: cross-sectional and longitudinal evidence. Cereb Cortex 2023; 33:3080-3097. [PMID: 35802485 DOI: 10.1093/cercor/bhac262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The neurobiological underpinnings of action-related episodic memory and how enactment contributes to efficient memory encoding are not well understood. We examine whether individual differences in level (n = 338) and 5-year change (n = 248) in the ability to benefit from motor involvement during memory encoding are related to gray matter (GM) volume, white matter (WM) integrity, and dopamine-regulating genes in a population-based cohort (age range = 25-80 years). A latent profile analysis identified 2 groups with similar performance on verbal encoding but with marked differences in the ability to benefit from motor involvement during memory encoding. Impaired ability to benefit from enactment was paired with smaller HC, parahippocampal, and putamen volume along with lower WM microstructure in the fornix. Individuals with reduced ability to benefit from encoding enactment over 5 years were characterized by reduced HC and motor cortex GM volume along with reduced WM microstructure in several WM tracts. Moreover, the proportion of catechol-O-methyltransferase-Val-carriers differed significantly between classes identified from the latent-profile analysis. These results provide converging evidence that individuals with low or declining ability to benefit from motor involvement during memory encoding are characterized by low and reduced GM volume in regions critical for memory and motor functions along with altered WM microstructure.
Collapse
Affiliation(s)
- Maryam Noroozian
- Department of Psychiatry, School of Medicine, South Kargar Str., Tehran 13185/1741, Iran
| | - Reza Kormi-Nouri
- School of Law, Psychology and Social Work, Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Radiology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Department of Integrative Medical Biology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
| | - Jonas Persson
- School of Law, Psychology and Social Work, Center for Lifespan Developmental Research (LEADER), Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
- Aging Research Center (ARC), Stockholm University and Karolinska Institute, Tomtebodavägen 18A, Solna 171 65, Sweden
| |
Collapse
|
4
|
Trempler I, Binder E, Reuter M, Plieger T, Standke I, Mecklenbrauck F, Meinert S, Forstner AJ, Nöthen MM, Rietschel M, Stürmer S, Dannlowski U, Tittgemeyer M, Lencer R, Fink GR, Schubotz RI. Effects of DRD2/ANKK1 and COMT Val158Met polymorphisms on stabilization against and adaptation to unexpected events. Cereb Cortex 2022; 32:5698-5715. [PMID: 35235645 DOI: 10.1093/cercor/bhac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
Genetic variations affecting dopaminergic neuromodulation such as the DRD2/ANKK1 and the COMT Val158Met polymorphisms contribute to goal-directed behavior that requires a balance between stabilization and updating of current states and behaviors. Dopamine is also thought to be relevant for encoding of surprise signals to sensory input and adaptive learning. A link between goal-directed behavior and learning from surprise is therefore plausible. In the present fMRI study, we investigated whether DRD2 and COMT polymorphisms are related to behavioral responses and neural signals in the caudate nucleus and dlPFC during updating or stabilizing internal models of predictable digit sequences. To-be-detected switches between sequences and to-be-ignored digit omissions within a sequence varied by information-theoretic quantities of surprise and entropy. We found that A1 noncarriers and Val-carriers showed a lower response threshold along with increased caudate and dlPFC activation to surprising switches compared with A1-carriers and Met-homozygotes, whose dlPFC activity increased with decreasing switch surprise. In contrast, there were overall smaller differences in behavioral and neural modulation by drift surprise. Our results suggest that the impact of dopamine-relevant polymorphisms in the flexibility-stability trade-off may result in part from the role of dopamine in encoding the weight afforded to events requiring updating or stabilization.
Collapse
Affiliation(s)
- Ima Trempler
- Department of Psychology, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany
| | - Ellen Binder
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn D53111, Germany.,Laboratory of Neurogenetics, Center for Economics and Neuroscience, University of Bonn, Am Hofgarten 8, Bonn D53113, Germany
| | - Thomas Plieger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn D53111, Germany.,Laboratory of Neurogenetics, Center for Economics and Neuroscience, University of Bonn, Am Hofgarten 8, Bonn D53113, Germany
| | - Isabel Standke
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany
| | - Falko Mecklenbrauck
- Department of Psychology, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany.,Institute for Translational Neuroscience, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn D53127, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Wilhelm-Johnen-Str., Juelich D52428, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn D53127, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, Mannheim D68159, Germany
| | - Sophie Stürmer
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, Cologne D50931, Germany.,Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, Cologne D50931, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Muenster, Albert-Schweitzer-Str. 11, Muenster D48149, Germany.,Department of Psychiatry and Psychotherapy, University of Luebeck, Ratzeburger Allee 160, Luebeck, D23538, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany.,Institute of Neuroscience and Medicine (INM3), Research Centre Juelich, Wilhelm-Johnen-Str., Juelich D52428, Germany
| | - Ricarda I Schubotz
- Department of Psychology, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Fliednerstr. 21, Muenster D48149, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne D50937, Germany
| |
Collapse
|
5
|
Bagrowski B. Perspectives for the application of neurogenetic research in programming Neurorehabilitation. Mol Aspects Med 2022; 91:101149. [PMID: 36253186 DOI: 10.1016/j.mam.2022.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Certain genetic variants underlie the proper functioning of the nervous system. They affect the nervous system in all aspects - molecular, systemic, cognitive, computational and sensorimotor. The greatest changes in the nervous system take place in the process of its maturation in the period of psychomotor development, as well as during neurorehabilitation, the task of which is to rebuild damaged neuronal pathways, e.g. by facilitating movement or training cognitive functions. Certain genetic polymorphisms affect the effectiveness of the processes of reconstruction or restoration of neural structures, which is clearly reflected in the effects of neurorehabilitation. This review presents the perspectives for the application of neurogenetic research in programming neurorehabilitation by determining the relationship of as many as 16 different genetic polymorphisms with specific functions of importance in rehabilitation. Thanks to this broad view, it may be possible to predict the effectiveness of rehabilitation on the basis of genetic testing, which would significantly contribute to the development of personalized medicine and to the optimal management of medical services in healthcare systems.
Collapse
Affiliation(s)
- Bartosz Bagrowski
- Poznan University of Medical Sciences, Department of Mother and Child Health, Department of Practical Training in Obstetrics, Poland; Gynecology and Obstetrics Clinical Hospital of Poznan University of Medical Sciences, Rehabilitation Center for Children, Poland.
| |
Collapse
|
6
|
Zhou J, Li J, Zhao Q, Ou P, Zhao W. Working memory deficits in children with schizophrenia and its mechanism, susceptibility genes, and improvement: A literature review. Front Psychiatry 2022; 13:899344. [PMID: 35990059 PMCID: PMC9389215 DOI: 10.3389/fpsyt.2022.899344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The negative influence on the cognitive ability of schizophrenia is one of the issues widely discussed in recent years. Working memory deficits are thought to be a core cognitive symptom of schizophrenia and lead to poorer social functions and worse academic performance. Previous studies have confirmed that working memory deficits tend to appear in the prodromal phase of schizophrenia. Therefore, considering that children with schizophrenia have better brain plasticity, it is critical to explore the development of their working memory. Although the research in this field developed gradually in recent years, few researchers have summarized these findings. The current study aims to review the recent studies from both behavior and neuroimaging aspects to summarize the working memory deficits of children with schizophrenia and to discuss the pathogenic factors such as genetic susceptibility. In addition, this study put forward some practicable interventions to improve cognitive symptoms of schizophrenia from psychological and neural perspectives.
Collapse
Affiliation(s)
- Jintao Zhou
- School of Psychology, Nanjing Normal University, Nanjing, China.,Department of Psychology, Fudan University, Shanghai, China
| | - Jingfangzhou Li
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Peixin Ou
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Smigielski L, Wotruba D, Treyer V, Rössler J, Papiol S, Falkai P, Grünblatt E, Walitza S, Rössler W. The Interplay Between Postsynaptic Striatal D2/3 Receptor Availability, Adversity Exposure and Odd Beliefs: A [11C]-Raclopride PET Study. Schizophr Bull 2021; 47:1495-1508. [PMID: 33876249 PMCID: PMC8379534 DOI: 10.1093/schbul/sbab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Between unaffected mental health and diagnosable psychiatric disorders, there is a vast continuum of functioning. The hypothesized link between striatal dopamine signaling and psychosis has guided a prolific body of research. However, it has been understudied in the context of multiple interacting factors, subclinical phenotypes, and pre-postsynaptic dynamics. METHOD This work investigated psychotic-like experiences and D2/3 dopamine postsynaptic receptor availability in the dorsal striatum, quantified by in vivo [11C]-raclopride positron emission tomography, in a sample of 24 healthy male individuals. Additional mediation and moderation effects with childhood trauma and key dopamine-regulating genes were examined. RESULTS An inverse relationship between nondisplaceable binding potential and subclinical symptoms was identified. D2/3 receptor availability in the left putamen fully mediated the association between traumatic childhood experiences and odd beliefs, that is, inclinations to see meaning in randomness and unfounded interpretations. Moreover, the effect of early adversity was moderated by a DRD2 functional variant (rs1076560). The results link environmental and neurobiological influences in the striatum to the origination of psychosis spectrum symptomology, consistent with the social defeat and diathesis-stress models. CONCLUSIONS Adversity exposure may affect the dopamine system as in association with biases in probabilistic reasoning, attributional style, and salience processing. The inverse relationship between D2/3 availability and symptomology may be explained by endogenous dopamine occupying the receptor, postsynaptic compensatory mechanisms, and/or altered receptor sensitivity. This may also reflect a cognitively stabilizing mechanism in non-help-seeking individuals. Future research should comprehensively characterize molecular parameters of dopamine neurotransmission along the psychosis spectrum and according to subtype profiling.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland,To whom correspondence should be addressed; Psychiatric University Hospital Zurich, Militärstrasse 8, 8004 Zurich, Switzerland; tel: +044-296-73-94, fax: +044-296-74-69, e-mail:
| | - Diana Wotruba
- Collegium Helveticum, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland,Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Julian Rössler
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany,Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Fedorenko OY, Paderina DZ, Loonen AJM, Pozhidaev IV, Boiko AS, Kornetova EG, Bokhan NA, Wilffert B, Ivanova SA. Association of ANKK1 polymorphism with antipsychotic-induced hyperprolactinemia. Hum Psychopharmacol 2020; 35:e2737. [PMID: 32383805 PMCID: PMC7507142 DOI: 10.1002/hup.2737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Schizophrenia is a severe highly heritable mental disorder. Genetic polymorphisms of dopaminergic pathways are related to pathogenesis of drug response. Hyperprolactinemia (HPRL), a common adverse effect of antipsychotics, is attributed to blockade of dopamine D2 receptors. Ankyrin Repeat and Kinase Domain containing 1 (ANKK1) gene is closely related to Dopamine Receptor D2 type (DRD2) gene functioning. We examined whether the functional polymorphism rs2734849 in the ANKK1 gene is associated with antipsychotic-induced HPRL. METHODS We recruited 446 patients with schizophrenia from among the Russian population of the Siberian region. The polymorphism rs2734849 in the ANKK1 gene was genotyped with The MassARRAY® Analyzer 4 by Agena Bioscience™, using the kit SEQUENOM Consumables iPLEXGold 384. Genotype and allele frequencies were compared between groups of schizophrenia patients with and without HPRL using the χ2 test. RESULTS A comparison between schizophrenia patients with and without HPRL revealed significantly higher frequency of the C allele of the polymorphic variant rs2734849 in the ANKK1 gene in patients with HPRL as compared to the patients without it (χ2 = 3.70; p = .05; odds ratio [OR] = 1.30 [0.99-1.69]). CONCLUSION The functional polymorphism rs2734849 in the ANKK1 gene was associated with HPRL in patients with schizophrenia.
Collapse
Affiliation(s)
- Olga Yu. Fedorenko
- Mental Health Research InstituteTomsk National Research Medical Center of Russian Academy of SciencesTomskRussia,Division for Control and Diagnostics, School of Non‐Destructive Testing and SecurityNational Research Tomsk Polytechnic UniversityTomskRussia
| | - Diana Z. Paderina
- Mental Health Research InstituteTomsk National Research Medical Center of Russian Academy of SciencesTomskRussia,Department of Cytology and Genetics, National Research Tomsk State UniversityTomskRussia
| | - Anton J. M. Loonen
- PharmacoTherapy, ‐Epidemiology and ‐Economics, Groningen Research Institute of PharmacyUniversity of GroningenGroningenThe Netherlands,Policy Office for Quality and Innovation of Care (BZI), GGZ Westelijk Noord‐BrabantHalsterenThe Netherlands
| | - Ivan V. Pozhidaev
- Mental Health Research InstituteTomsk National Research Medical Center of Russian Academy of SciencesTomskRussia,Department of Cytology and Genetics, National Research Tomsk State UniversityTomskRussia
| | - Anastasiia S. Boiko
- Mental Health Research InstituteTomsk National Research Medical Center of Russian Academy of SciencesTomskRussia
| | - Elena G. Kornetova
- Mental Health Research InstituteTomsk National Research Medical Center of Russian Academy of SciencesTomskRussia,Hospital, Siberian State Medical UniversityTomskRussia
| | - Nikolay A. Bokhan
- Mental Health Research InstituteTomsk National Research Medical Center of Russian Academy of SciencesTomskRussia,Department of Psychotherapy and Psychological Counseling, National Research Tomsk State UniversityTomskRussia,Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical UniversityTomskRussia
| | - Bob Wilffert
- PharmacoTherapy, ‐Epidemiology and ‐Economics, Groningen Research Institute of PharmacyUniversity of GroningenGroningenThe Netherlands,Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research InstituteTomsk National Research Medical Center of Russian Academy of SciencesTomskRussia,Division for Control and Diagnostics, School of Non‐Destructive Testing and SecurityNational Research Tomsk Polytechnic UniversityTomskRussia,Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical UniversityTomskRussia
| |
Collapse
|
9
|
Nedic Erjavec G, Svob Strac D, Tudor L, Konjevod M, Sagud M, Pivac N. Genetic Markers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:53-93. [PMID: 31705490 DOI: 10.1007/978-981-32-9721-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric disorders such as addiction (substance use and addictive disorders), depression, eating disorders, schizophrenia, and post-traumatic stress disorder (PTSD) are severe, complex, multifactorial mental disorders that carry a high social impact, enormous public health costs, and various comorbidities as well as premature morbidity. Their neurobiological foundation is still not clear. Therefore, it is difficult to uncover new set of genes and possible genetic markers of these disorders since the understanding of the molecular imbalance leading to these disorders is not complete. The integrative approach is needed which will combine genomics and epigenomics; evaluate epigenetic influence on genes and their influence on neuropeptides, neurotransmitters, and hormones; examine gene × gene and gene × environment interplay; and identify abnormalities contributing to development of these disorders. Therefore, novel genetic approaches based on systems biology focused on improvement of the identification of the biological underpinnings might offer genetic markers of addiction, depression, eating disorders, schizophrenia, and PTSD. These markers might be used for early prediction, detection of the risk to develop these disorders, novel subtypes of the diseases and tailored, personalized approach to therapy.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marina Sagud
- School of Medicine, University of Zagreb, Salata 2, HR-10000, Zagreb, Croatia
- Department of Psychiatry, University Hospital Centre Zagreb, Kispaticeva 12, HR-10000, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|