1
|
Tattersall MC, Jarjour NN, Busse PJ. Systemic Inflammation in Asthma: What Are the Risks and Impacts Outside the Airway? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:849-862. [PMID: 38355013 PMCID: PMC11219096 DOI: 10.1016/j.jaip.2024.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Airway inflammation in asthma has been well recognized for several decades, with general agreement on its role in asthma pathogenesis, symptoms, propensity toward exacerbation, and decline in lung function. This has led to universal recommendation in asthma management guidelines to incorporate the use of inhaled corticosteroid as an anti-inflammatory therapy for all patients with persistent asthma symptoms. However, there has been limited attention paid to the presence and potential impact of systemic inflammation in asthma. Accumulating evidence from epidemiological observations and cohort studies points to a host of downstream organ dysfunction in asthma especially among patients with longstanding or more severe disease, frequent exacerbations, and underlying risk factors for organ dysfunction. Most studies to date have focused on cognitive impairment, depression/anxiety, metabolic syndrome, and cardiovascular abnormalities. In this review, we summarize some of the evidence demonstrating these abnormalities and highlight the proposed mechanisms and potential benefits of treatment in limiting these extrapulmonary abnormalities in patients with asthma. The goal of this commentary is to raise awareness of the importance of recognizing potential extrapulmonary conditions associated with systemic inflammation of asthma. This area of treatment of patients with asthma is a large unmet need.
Collapse
Affiliation(s)
- Matthew C Tattersall
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Paula J Busse
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
2
|
Dill-McFarland KA, Altman MC, Esnault S, Jarjour NN, Busse WW, Rosenkranz MA. Molecular pathways underlying lung-brain axis signaling in asthma: Relevance for psychopathology and neuroinflammation. J Allergy Clin Immunol 2024; 153:111-121. [PMID: 37730134 PMCID: PMC10841090 DOI: 10.1016/j.jaci.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Accumulating evidence indicates that asthma has systemic effects and affects brain function. Although airway inflammation is proposed to initiate afferent communications with the brain, the signaling pathways have not been established. OBJECTIVE We sought to identify the cellular and molecular pathways involved in afferent lung-brain communication during airway inflammation in asthma. METHODS In 23 adults with mild asthma, segmental bronchial provocation with allergen (SBP-Ag) was used to provoke airway inflammation and retrieve bronchoalveolar lavage fluid for targeted protein analysis and RNA sequencing to determine gene expression profiles. Neural responses to emotional cues in nodes of the salience network were assessed with functional magnetic resonance imaging at baseline and 48 hours after SBP-Ag. RESULTS Cell deconvolution and gene coexpression network analysis identified 11 cell-associated gene modules that changed in response to SBP-Ag. SBP-Ag increased bronchoalveolar lavage eosinophils and expression of an eosinophil-associated module enriched for genes related to TH17-type inflammation (eg, IL17A), as well as cell proliferation in lung and brain (eg, NOTCH1, VEGFA, and LIF). Increased expression of genes in this module, as well as several TH17-type inflammation-related proteins, was associated with an increase from baseline in salience network reactivity. CONCLUSIONS Our results identify a specific inflammatory pathway linking asthma-related airway inflammation and emotion-related neural function. Systemically, TH17-type inflammation has been implicated in both depression and neuroinflammation, with impacts on long-term brain health. Thus, our data emphasize that inflammation in the lung in asthma may have profound effects outside of the lung that may be targetable with novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wis; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
3
|
Hidden Comorbidities in Asthma: A Perspective for a Personalized Approach. J Clin Med 2023; 12:jcm12062294. [PMID: 36983294 PMCID: PMC10059265 DOI: 10.3390/jcm12062294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Bronchial asthma is the most frequent inflammatory non-communicable condition affecting the airways worldwide. It is commonly associated with concomitant conditions, which substantially contribute to its burden, whether they involve the lung or other districts. The present review aims at providing an overview of the recent acquisitions in terms of asthma concomitant systemic conditions, besides the commonly known respiratory comorbidities. The most recent research has highlighted a number of pathobiological interactions between asthma and other organs in the view of a shared immunological background underling different diseases. A bi-univocal relationship between asthma and common conditions, including cardiovascular, metabolic or neurodegenerative diseases, as well as rare disorders such as sickle cell disease, α1-Antitrypsin deficiency and immunologic conditions with hyper-eosinophilia, should be considered and explored, in terms of diagnostic work-up and long-term assessment of asthma patients. The relevance of that acquisition is of utmost importance in the management of asthma patients and paves the way to a new approach in the light of a personalized medicine perspective, besides targeted therapies.
Collapse
|
4
|
Tattersall MC. Asthma as a Systemic Disease: Cardiovascular Effects Associated with Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:77-100. [PMID: 37464117 DOI: 10.1007/978-3-031-32259-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma and cardiovascular disease (CVD) pose significant public health burdens. Airway inflammation is central to asthma pathophysiology and systemic inflammation, which occurs in asthma, is central to CVD pathophysiology. Numerous robust epidemiological studies have demonstrated deleterious systemic cardiovascular effects associated with the asthma syndrome. The cardiovascular effects associated with asthma include arterial injury, atherosclerotic CVD events, atrial fibrillation, and hypertension. Asthma is a heterogeneous disease, however, and the risk of CVD is not homogeneous across the various clinical phenotypes and molecular endotypes, highlighting prior inconsistent associations of asthma and its subtypes with various forms of CVD. The mechanistic underpinnings of the increased CVD risk in asthma remain multifactorial and undefined. Collectively, this supports the need for a precision approach in the identification of individuals with asthma who remain at elevated risk of development of cardiovascular diseases to guide both diagnostic and preventive interventions to decrease CVD risk among individuals living with asthma.
Collapse
|
5
|
Tattersall MC, Dasiewicz AS, McClelland RL, Jarjour NN, Korcarz CE, Mitchell CC, Esnault S, Szklo M, Stein JH. Persistent Asthma Is Associated With Carotid Plaque in MESA. J Am Heart Assoc 2022; 11:e026644. [PMID: 36416156 PMCID: PMC9851438 DOI: 10.1161/jaha.122.026644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Background Asthma and atherosclerotic cardiovascular disease share an underlying inflammatory pathophysiology. We hypothesized that persistent asthma is associated with carotid plaque burden, a strong predictor of atherosclerotic cardiovascular disease events. Methods and Results The MESA (Multi-Ethnic Study of Atherosclerosis) enrolled adults free of known atherosclerotic cardiovascular disease at baseline. Subtype of asthma was determined at examination 1. Persistent asthma was defined as asthma requiring use of controller medications, and intermittent asthma was defined as asthma without controller medications. B-mode carotid ultrasound was performed to detect carotid plaques (total plaque score [TPS], range 0-12). Multivariable regression modeling with robust variances evaluated the association of asthma subtype and carotid plaque burden. The 5029 participants were a mean (SD) age of 61.6 (10.0) years (53% were women, 26% were Black individuals, 23% were Hispanic individuals, and 12% were Chinese individuals). Carotid plaque was present in 50.5% of participants without asthma (TPS, 1.29 [1.80]), 49.5% of participants with intermittent asthma (TPS, 1.25 [1.76]), and 67% of participants with persistent asthma (TPS, 2.08 [2.35]) (P≤0.003). Participants with persistent asthma had higher interleukin-6 (1.89 [1.61] pg/mL) than participants without asthma (1.52 [1.21] pg/mL; P=0.02). In fully adjusted models, persistent asthma was associated with carotid plaque presence (odds ratio, 1.83 [95% confidence interval, 1.21-2.76]; P<0.001) and TPS (β=0.66; P<0.01), without attenuation after adjustment for baseline interleukin-6 (P=0.02) or CRP (C-reactive protein) (P=0.01). Conclusions Participants with persistent asthma had higher carotid plaque burden and higher levels of inflammatory biomarkers, compared with participants without asthma. Adjustment for baseline inflammatory biomarkers did not attenuate the association between carotid plaque and asthma subtype, highlighting the increased atherosclerotic cardiovascular disease risk among those with persistent asthma may be multifactorial.
Collapse
Affiliation(s)
- Matthew C. Tattersall
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| | - Alison S. Dasiewicz
- Centre for Global Child HealthHospital for Sick ChildrenTorontoOntarioCanada
| | | | - Nizar N. Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineBaltimoreMD
| | - Claudia E. Korcarz
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| | - Carol C. Mitchell
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| | - Stephane Esnault
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineBaltimoreMD
| | - Moyses Szklo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - James H. Stein
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| |
Collapse
|
6
|
Mendy A, Mersha TB. Comorbidities in childhood-onset and adult-onset asthma. Ann Allergy Asthma Immunol 2022; 129:327-334. [PMID: 35595004 PMCID: PMC10265950 DOI: 10.1016/j.anai.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Age of asthma onset has emerged as an important determinant of asthma phenotypes; however, the comorbidities that predominate in either childhood- or adult-onset asthma are not known. OBJECTIVE To identify comorbidities associated with adult-onset asthma vs childhood-onset asthma and with age of asthma diagnosis. METHODS We analyzed data on 27,437 adult participants in the National Health and Nutrition Examination Surveys conducted from 2001 to 2018. Logistic regression adjusted for covariates was used to identify comorbidities associated with the asthma phenotypes and age of asthma diagnosis. RESULTS Approximately 12.6% of participants were ever diagnosed with asthma; the prevalence of childhood-onset (before 18 years old) and adult-onset (≥ 18 years old) current asthma was 2.7% and 5.5%, respectively. After adjustment for covariates including age, adult-onset asthma was associated with higher odds of obesity (odds ratio [OR], 1.46; 95% confidence interval [CI], 1.09-1.96), hypercholesterolemia (OR, 1.67; 95% CI, 1.08-2.56), borderline high serum triglycerides (OR, 1.78; 95% CI, 1.17-2.71), and osteoarthritis (OR, 1.52; 95% CI, 1.04-2.20) than was childhood-onset asthma. Older age of asthma diagnosis (per 5-year increase) was also associated with higher odds of diabetes (OR, 1.04; 95% CI, 1.00-1.07) and hypertension (OR, 1.05; 95% CI, 1.02-1.07), whereas younger age of asthma diagnosis was associated with higher odds of chronic obstructive pulmonary disease (OR, 1.12; 95% CI, 1.04-1.19). CONCLUSION Age- and covariates-adjusted prevalence of obesity, dyslipidemia, arthritis, diabetes, and hypertension is higher in adult-onset asthma than in childhood-onset asthma, and with older age of asthma diagnosis. Conversely, the prevalence of chronic obstructive pulmonary disease increases with younger age of asthma diagnosis.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
7
|
Nair AK, Van Hulle CA, Bendlin BB, Zetterberg H, Blennow K, Wild N, Kollmorgen G, Suridjan I, Busse WW, Rosenkranz MA. Asthma amplifies dementia risk: Evidence from CSF biomarkers and cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12315. [PMID: 35846157 PMCID: PMC9270636 DOI: 10.1002/trc2.12315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022]
Abstract
Introduction Evidence from epidemiology, neuroimaging, and animal models indicates that asthma adversely affects the brain, but the nature and extent of neuropathophysiological impact remain unclear. Methods We tested the hypothesis that asthma is a risk factor for dementia by comparing cognitive performance and cerebrospinal fluid biomarkers of glial activation/neuroinflammation, neurodegeneration, and Alzheimer's disease (AD) pathology in 60 participants with asthma to 315 non-asthma age-matched control participants (45-93 years), in a sample enriched for AD risk. Results Participants with severe asthma had higher neurogranin concentrations compared to controls and those with mild asthma. Positive relationships between cardiovascular risk and concentrations of neurogranin and α-synuclein were amplified in severe asthma. Severe asthma also amplified the deleterious associations that apolipoprotein E ε4 carrier status, cardiovascular risk, and phosphorylated tau181/amyloid beta42 have with rate of cognitive decline. Discussion Our data suggest that severe asthma is associated with synaptic degeneration and may compound risk for dementia posed by cardiovascular disease and genetic predisposition. Highlights Those with severe asthma showed evidence of higher dementia risk than controls evidenced by: higher levels of the synaptic degeneration biomarker neurogranin regardless of cognitive status, cardiovascular or genetic risk, and controlling for demographics.steeper increase in levels of synaptic degeneration biomarkers neurogranin and α-synuclein with increasing cardiovascular risk.accelerated cognitive decline with higher cardiovascular risk, genetic predisposition, or pathological tau.
Collapse
Affiliation(s)
- Ajay Kumar Nair
- Center for Healthy MindsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Carol A. Van Hulle
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at The University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongPeople's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at The University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | | | | | | | - William W. Busse
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Melissa A. Rosenkranz
- Center for Healthy MindsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
8
|
Guo J, Zhang Y, Liu T, Levy BD, Libby P, Shi GP. Allergic asthma is a risk factor for human cardiovascular diseases. NATURE CARDIOVASCULAR RESEARCH 2022; 1:417-430. [PMID: 39195946 DOI: 10.1038/s44161-022-00067-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/08/2022] [Indexed: 08/29/2024]
Abstract
Asthma is an allergic airway disease in which type 2-mediated inflammation has a pathogenic role. Cardiovascular diseases (CVDs) are type 1-dominant inflammatory diseases in which type 2 cytokines often have a protective role. However, clinical studies demonstrate that allergic asthma and associated allergies are essential risk factors for CVD, including coronary heart diseases, aortic diseases, peripheral arterial diseases, pulmonary embolism, right ventricular dysfunction, atrial fibrillation, cardiac hypertrophy and even hypertension. Mast cells, eosinophils, inflammatory cytokines and immunoglobulin (Ig)E accumulate in asthmatic lungs and in the injured heart and vasculature of patients with CVD. Clinical studies show that many anti-asthmatic therapies affect the risk of CVD. As such, allergic asthma and CVD may share common pathogenic mechanisms. Preclinical investigations indicate that anti-asthmatic drugs have therapeutic potential in certain CVDs. In this Review, we discuss how asthma and allied allergic conditions may contribute to the prevalence, incidence and progression of CVD and vice versa.
Collapse
Affiliation(s)
- Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Rosenkranz MA, Dean DC, Bendlin BB, Jarjour NN, Esnault S, Zetterberg H, Heslegrave A, Evans MD, Davidson RJ, Busse WW. Neuroimaging and biomarker evidence of neurodegeneration in asthma. J Allergy Clin Immunol 2022; 149:589-598.e6. [PMID: 34536414 PMCID: PMC8821112 DOI: 10.1016/j.jaci.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epidemiologic studies have shown that Alzheimer's disease (AD) and related dementias (ADRD) are seen more frequently with asthma, especially with greater asthma severity or exacerbation frequency. OBJECTIVE To examine the changes in brain structure that may underlie this phenomenon, we examined diffusion-weighted magnetic resonance imaging (dMRI) and blood-based biomarkers of AD (phosphorylated tau 181, p-Tau181), neurodegeneration (neurofilament light chain, NfL), and glial activation (glial fibrillary acidic protein, GFAP). METHODS dMRI data were obtained in 111 individuals with asthma, ranging in disease severity from mild to severe, and 135 healthy controls. Regression analyses were used to test the relationships between asthma severity and neuroimaging measures, as well as AD pathology, neurodegeneration, and glial activation, indexed by plasma p-Tau181, NfL, and GFAP, respectively. Additional relationships were tested with cognitive function. RESULTS Asthma participants had widespread and large-magnitude differences in several dMRI metrics, which were indicative of neuroinflammation and neurodegeneration, and which were robustly associated with GFAP and, to a lesser extent, NfL. The AD biomarker p-Tau181 was only minimally associated with neuroimaging outcomes. Further, asthma severity was associated with deleterious changes in neuroimaging outcomes, which in turn were associated with slower processing speed, a test of cognitive performance. CONCLUSIONS Asthma, particularly when severe, is associated with characteristics of neuroinflammation and neurodegeneration, and may be a potential risk factor for neural injury and cognitive dysfunction. There is a need to determine how asthma may affect brain health and whether treatment directed toward characteristics of asthma associated with these risks can mitigate these effects.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc.
| | - Douglas C Dean
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisc; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisc; Waisman Center, University of Wisconsin-Madison, Madison, Wisc
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, Madison, Wisc
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | | | - Michael D Evans
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minn
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc; Department of Psychology, University of Wisconsin-Madison, Madison, Wisc
| | - William W Busse
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| |
Collapse
|
10
|
Winder B, Kiechl SJ, Gruber NM, Bernar B, Gande N, Staudt A, Stock K, Hochmayr C, Geiger R, Griesmacher A, Anliker M, Kiechl S, Kiechl-Kohlendorfer U, Knoflach M. The association of allergic asthma and carotid intima-media thickness in adolescence: data of the prospective early vascular ageing (EVA)-Tyrol cohort study. BMC Cardiovasc Disord 2022; 22:11. [PMID: 35042472 PMCID: PMC8764773 DOI: 10.1186/s12872-021-02452-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that asthma is associated with atherosclerosis and cardiovascular disease. However, data in children and adolescents are scarce and conflicting. We aimed to assess the impact of asthma with and without an allergic component on the carotid intima-media thickness in a large pediatric population. METHODS The community-based early vascular ageing-Tyrol cohort study was performed between May 2015 and July 2018 in North, East (Austria) and South Tyrol (Italy) and recruited youngster aged 14 years and above. Medical examinations included anthropometric measurements, fasting blood analysis, measurement of the carotid intima-media thickness by high-resolution ultrasound, and a physician guided interview. RESULTS The mean age of the 1506 participants was 17.8 years (standard deviation 0.90). 851 (56.5%) participants were female. 22 subjects had a physician diagnosis of non-allergic asthma, 268 had inhalative allergies confirmed by a positive radio-allergo-sorbent-test and/or prick test, and 58 had allergic asthma. Compared to healthy controls, participants with non-allergic asthma (411.7 vs. 411.7 µm; p = 0.932) or inhalative allergy (420.0 vs. 411.7 µm; p = 0.118) did not have significantly higher carotid intima-media thickness (cIMT). However, participants with allergic asthma had significantly higher cIMT (430.8 vs. 411.7; p = 0.004) compared to those without and this association remained significant after multivariable adjustment for established cardiovascular risk factors. CONCLUSION Allergic asthma in the youth is associated with an increased carotid intima-media thickness. Physicians should therefore be aware of allergic asthma as a potential cardiovascular risk factor in children and adolescents. Trial Registration Number The EVA-Tyrol Study has been retrospectively registered at clinicaltrials.gov under NCT03929692 since April 29, 2019.
Collapse
Affiliation(s)
- Bernhard Winder
- Department of Pediatrics II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, Innrain 66a, 6020, Innsbruck, Austria
| | - Sophia J Kiechl
- VASCage, Research Centre on Vascular Ageing and Stroke, Innrain 66a, 6020, Innsbruck, Austria
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Nadja M Gruber
- VASCage, Research Centre on Vascular Ageing and Stroke, Innrain 66a, 6020, Innsbruck, Austria
| | - Benoît Bernar
- Department of Pediatrics II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Nina Gande
- Department of Pediatrics II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anna Staudt
- Department of Pediatrics II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Katharina Stock
- Department of Pediatrics II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Department of Pediatrics III, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Christoph Hochmayr
- Department of Pediatrics II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ralf Geiger
- Department of Pediatrics III, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute of Clinical Chemistry and Laboratory Medicine (ZIMCL), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Markus Anliker
- Central Institute of Clinical Chemistry and Laboratory Medicine (ZIMCL), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefan Kiechl
- VASCage, Research Centre on Vascular Ageing and Stroke, Innrain 66a, 6020, Innsbruck, Austria
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | | | - Michael Knoflach
- VASCage, Research Centre on Vascular Ageing and Stroke, Innrain 66a, 6020, Innsbruck, Austria.
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Mitchell C, Korcarz CE, Zagzebski JA, Stein JH. Effects of ultrasound technology advances on measurement of carotid intima-media thickness: A review. Vasc Med 2020; 26:81-85. [PMID: 33203316 DOI: 10.1177/1358863x20969826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review, we describe how technological advances in ultrasound imaging related to transducer construction and image processing fundamentally alter generation of ultrasound images to produce better quality images with higher resolution. However, carotid intima-media thickness (IMT) measurements made from images acquired on modern ultrasound systems are not comparable to historical population nomograms that were used to determine wall thickness thresholds that inform atherosclerotic cardiovascular disease risk. Because it is nearly impossible to replicate instrumentation settings that were used to create the reference carotid IMT nomograms and to place an individual's carotid IMT value in or above a clinically relevant percentile, carotid IMT measurements have a very limited role in clinical medicine, but remain a useful research tool when instrumentation, presets, image acquisition, and measurements can be standardized. In addition to new validation studies, it would be useful for the ultrasound imaging community to reach a consensus regarding technical aspects of ultrasound imaging acquisition, processing, and display for blood vessels so standard presets and imaging approaches could reliably yield the same measurements.
Collapse
Affiliation(s)
- Carol Mitchell
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Claudia E Korcarz
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James A Zagzebski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - James H Stein
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
12
|
Aerts R, Dujardin S, Nemery B, Van Nieuwenhuyse A, Van Orshoven J, Aerts JM, Somers B, Hendrickx M, Bruffaerts N, Bauwelinck M, Casas L, Demoury C, Plusquin M, Nawrot TS. Residential green space and medication sales for childhood asthma: A longitudinal ecological study in Belgium. ENVIRONMENTAL RESEARCH 2020; 189:109914. [PMID: 32980008 DOI: 10.1016/j.envres.2020.109914] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Living in green environments has been associated with various health benefits, but the evidence for positive effects on respiratory health in children is ambiguous. OBJECTIVE To investigate if residential exposure to different types of green space is associated with childhood asthma prevalence in Belgium. METHODS Asthma prevalence was estimated from sales data of reimbursed medication for obstructive airway disease (OAD) prescribed to children between 2010 and 2014, aggregated at census tract level (n = 1872) by sex and age group (6-12 and 13-18 years). Generalized log-linear mixed effects models with repeated measures were used to estimate effects of relative covers of forest, grassland and garden in the census tract of the residence on OAD medication sales. Models were adjusted for air pollution (PM10), housing quality and administrative region. RESULTS Consistent associations between OAD medication sales and relative covers of grassland and garden were observed (unadjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, β = 0.15-0.17; garden, β = 0.13-0.17). The associations remained significant after adjusting for housing quality and chronic air pollution (adjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, β = 0.10-0.14; garden, β = 0.07-0.09). There was no association between OAD medication sales and forest cover. CONCLUSIONS Based on aggregated data, we found that living in close proximity to areas with high grass cover (grasslands, but also residential gardens) may negatively impact child respiratory health. Potential allergic and non-allergic mechanisms that underlie this association include elevated exposure to grass pollen and fungi and reduced exposure to environmental biodiversity. Reducing the dominance of grass in public and private green space might be beneficial to reduce the childhood asthma burden and may simultaneously improve the ecological value of urban green space.
Collapse
Affiliation(s)
- Raf Aerts
- Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium; Division Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium; Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium; Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Diepenbeek, Hasselt, Belgium; Mycology and Aerobiology, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium.
| | - Sebastien Dujardin
- Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium; Department of Geography, Institute of Life Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Benoit Nemery
- Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium
| | - An Van Nieuwenhuyse
- Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium; Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium
| | - Jos Van Orshoven
- Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium
| | - Jean-Marie Aerts
- Division Animal and Human Health Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ben Somers
- Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Celestijnenlaan 200E-2411, BE-3001, Leuven, Belgium
| | - Marijke Hendrickx
- Mycology and Aerobiology, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Nicolas Bruffaerts
- Mycology and Aerobiology, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Pleinlaan 5, BE-1050, Brussels, Belgium
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium; Epidemiology and Social Medicine, University of Antwerp, Universiteitsplein 1-R.232, BE-2610, Wilrijk, Antwerp, Belgium
| | - Claire Demoury
- Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Michelle Plusquin
- Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Diepenbeek, Hasselt, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Diepenbeek, Hasselt, Belgium; Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Herestraat 49-706, BE-3000, Leuven, Belgium
| |
Collapse
|
13
|
Chaddha A, Broytman O, Teodorescu M. Effects of allergic airway inflammation and chronic intermittent hypoxia on systemic blood pressure. Am J Physiol Regul Integr Comp Physiol 2020; 319:R566-R574. [PMID: 32903041 DOI: 10.1152/ajpregu.00325.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma and obstructive sleep apnea (OSA) are highly prevalent chronic conditions, and both are associated with systemic hypertension. Additionally, asthma and OSA reciprocally interact, mutually exacerbating each other. In this study, we tested the effect of allergen-induced lower airway inflammation and concurrent chronic intermittent hypoxia (CIH) on systemic blood pressure (BP), pulmonary function, and proinflammatory cytokines, in a rat model. Brown Norway rats were exposed to 43 days of normoxia (NORM) or CIH, concurrent with weekly house dust mite (HDM) challenges. BP was measured 1 day after the last HDM challenge. On day 44, pulmonary function was tested, and blood for Th-2 and Th-1 cytokine levels was collected. HDM significantly increased mean (P = 0.002), systolic (P = 0.003), and diastolic (P = 0.004) BP compared with saline-challenged controls. Higher mean BP significantly correlated to increased total respiratory system resistance (R2 = 0.266, P = 0.002), driven by an association with parenchymal tissue dampening (R2 = 0.166, P = 0.016). HDM relative to saline-challenged controls increased the expression of serum IL-6 (P = 0.008), but no relationships of systemic BP with IL-6 or any other cytokines were found. CIH did not alter the allergen-induced responses on BP, although it tended to increase the expression of serum IL-6 (P = 0.06) and monocyte chemoattractant protein-1 (MCP-1, P = 0.09), regardless of HDM challenge. Chronic allergen-induced airway inflammation results in systemic hypertension that is correlated to the degree of distal airway obstruction induced by the allergen. These effects do not appear to be explained by the associated systemic inflammation.
Collapse
Affiliation(s)
- Ashish Chaddha
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Oleg Broytman
- Department of Medicine, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Memorial Veterans Affairs Medical Center, Madison, Wisconsin
| | - Mihaela Teodorescu
- Department of Medicine, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Memorial Veterans Affairs Medical Center, Madison, Wisconsin
| |
Collapse
|