1
|
Slawin C, Ajayi O, Mahalingam R. Association mapping unravels the genetic basis for drought related traits in different developmental stages of barley. Sci Rep 2024; 14:25121. [PMID: 39448604 PMCID: PMC11502909 DOI: 10.1038/s41598-024-73618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Drought stress significantly reduces crop yields at all stages of plant development. Barley, known for its abiotic-stress adaptation among cereals was used to examine the genetic basis of drought tolerance. A population of 164 spring barley lines was subjected to polyethylene glycol (PEG) induced drought stress during germination and seedling development. Six traits were measured, including germination percentage and rate, seedling length and weight, and root-to-shoot ratios. Seedling area, volume, and root and shoot diameter was acquired with a flatbed scanner. This population was also subjected to short-term drought during the heading stage in the greenhouse. Root and shoot weight and grain yield data were collected from well watered and droughted plants. Significant variation within traits were observed and several of them exhibited strong correlations with each other. In this population, two genotypes had 100% germination under PEG-induced drought and drought tolerance throughout the heading stage of plant development. A genome-wide association scan (GWAS) revealed 64 significant marker-trait associations across all seven barley chromosomes. Candidate genes related to abiotic stress and germination were identified within a 0.5Mbp interval around these SNPs. In silico analysis indicated a high frequency of differential expression of the candidate genes in response to stress. This study enabled identification of barley lines useful for drought tolerance breeding and pinpointed candidate genes for enhancing drought resiliency in barley.
Collapse
Affiliation(s)
- Connor Slawin
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Oyeyemi Ajayi
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
| | | |
Collapse
|
2
|
Karki M, Chu C, Anderson K, Nandety RS, Fiedler JD, Schachterle J, Bruggeman RS, Liu Z, Yang S. Genome-Wide Association Study of Host Resistance to Hessian Fly in Barley. PHYTOPATHOLOGY 2024; 114:752-759. [PMID: 37913750 DOI: 10.1094/phyto-06-23-0192-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Hessian fly (HF), Mayetiola destructor (Diptera: Cecidomyiidae), is one of the most devastating insect pests of cereals including wheat, barley, and rye. Although wheat is the preferred host for HF, this continuously evolving pest has been emerging as a threat to barley production. However, characterization and identification of genetic resistance to HF has not been conducted in barley. In the present study, we used a genome-wide association study (GWAS) to identify barley resistance loci to HF using a geographically diverse set of 234 barley accessions. The results showed that around 90% of barley lines were highly susceptible, indicating a significant vulnerability to HF in barley, and a total of 29 accessions were resistant, serving as potential resistance resources. GWAS with a mixed linear model revealed two marker-trait associations, both on chromosome 4H. The resistance loci and associated markers will facilitate barley improvement and development for breeders. In addition, our results are fundamental for genetic studies to understand the HF resistance mechanism in barley.
Collapse
Affiliation(s)
- Manila Karki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Chenggen Chu
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
| | - Kirk Anderson
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jeffrey Schachterle
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| |
Collapse
|
3
|
Nowak K, Wójcikowska B, Gajecka M, Elżbieciak A, Morończyk J, Wójcik AM, Żemła P, Citerne S, Kiwior-Wesołowska A, Zbieszczyk J, Gaj MD. The improvement of the in vitro plant regeneration in barley with the epigenetic modifier of histone acetylation, trichostatin A. J Appl Genet 2024; 65:13-30. [PMID: 37962803 PMCID: PMC10789698 DOI: 10.1007/s13353-023-00800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Genotype-limited plant regeneration is one of the main obstacles to the broader use of genetic transformation in barley breeding. Thus, developing new approaches that might improve responses of in vitro recalcitrant genotypes remains at the center of barley biotechnology. Here, we analyzed different barley genotypes, including "Golden Promise," a genotype commonly used in the genetic transformation, and four malting barley cultivars of poor regenerative potential. The expression of hormone-related transcription factor (TF) genes with documented roles in plant regeneration was analyzed in genotypes with various plant-regenerating capacities. The results indicated differential expression of auxin-related TF genes between the barley genotypes in both the explants and the derived cultures. In support of the role of auxin in barley regeneration, distinct differences in the accumulation of free and oxidized auxin were observed in explants and explant-derived callus cultures of barley genotypes. Following the assumption that modifying gene expression might improve plant regeneration in barley, we treated the barley explants with trichostatin A (TSA), which affects histone acetylation. The effects of TSA were genotype-dependent as TSA treatment improved plant regeneration in two barley cultivars. TSA-induced changes in plant regeneration were associated with the increased expression of auxin biosynthesis-involved TFs. The study demonstrated that explant treatment with chromatin modifiers such as TSA might provide a new and effective epigenetic approach to improving plant regeneration in recalcitrant barley genotypes.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland.
| | - Barbara Wójcikowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Anna Elżbieciak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Joanna Morończyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Anna M Wójcik
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Przemysław Żemła
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
- Toxicology Research Group, Łukasiewicz Research Network, Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Agnieszka Kiwior-Wesołowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Małgorzata D Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| |
Collapse
|
4
|
Soleimani B, Lehnert H, Trebing S, Habekuß A, Ordon F, Stahl A, Will T. Identification of Markers Associated with Wheat Dwarf Virus (WDV) Tolerance/Resistance in Barley ( Hordeum vulgare ssp. vulgare) Using Genome-Wide Association Studies. Viruses 2023; 15:1568. [PMID: 37515254 PMCID: PMC10385604 DOI: 10.3390/v15071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat dwarf virus (WDV) causes an important vector transmitted virus disease, which leads to significant yield losses in barley production. Due to the fact that, at the moment, no plant protection products are approved to combat the vector Psammotettix alienus, and this disease cannot be controlled by chemical means, the use of WDV-resistant or -tolerant genotypes is the most efficient method to control and reduce the negative effects of WDV on barley growth and production. In this study, a set of 480 barley genotypes were screened to identify genotypic differences in response to WDV, and five traits were assessed under infected and noninfected conditions. In total, 32 genotypes showed resistance or tolerance to WDV. Subsequently, phenotypic data of 191 out of 480 genotypes combined with 34,408 single-nucleotide polymorphisms (SNPs) were used for a genome-wide association study to identify quantitative trait loci (QTLs) and markers linked to resistance/tolerance to WDV. Genomic regions significantly associated with WDV resistance/tolerance in barley were identified on chromosomes 3H, 4H, 5H, and 7H for traits such as relative virus titer, relative performance of total grain weight, plant height, number of ears per plant, and thousand grain weight.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Sarah Trebing
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| |
Collapse
|
5
|
Zhang A, Zhao T, Hu X, Zhou Y, An Y, Pei H, Sun D, Sun G, Li C, Ren X. Identification of QTL underlying the main stem related traits in a doubled haploid barley population. FRONTIERS IN PLANT SCIENCE 2022; 13:1063988. [PMID: 36531346 PMCID: PMC9751491 DOI: 10.3389/fpls.2022.1063988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.
Collapse
Affiliation(s)
- Anyong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ting Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue An
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiyi Pei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
The Integration of Genome-Wide Association Study and Homology Analysis to Explore the Genomic Regions and Candidate Genes for Panicle-Related Traits in Foxtail Millet. Int J Mol Sci 2022; 23:ijms232314735. [PMID: 36499063 PMCID: PMC9741022 DOI: 10.3390/ijms232314735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Panicle traits are important factors affecting yield, and their improvement has long been a critical goal in foxtail millet breeding. In order to understand the genetic basis of panicle formation, a large-scale genome-wide association study (GWAS) was performed in this study for six panicle-related traits based on 706,646 high-polymorphism SNP loci in 407 accessions. As a result, 87 quantitative trait loci (QTL) regions with a physical distance of less than 100 kb were detected to be associated with these traits in three environments. Among them, 27 core regions were stably detected in at least two environments. Based on rice-foxtail millet homologous comparison, expression, and haplotype analysis, 27 high-confidence candidate genes in the QTL regions, such as Si3g11200 (OsDER1), Si1g27910 (OsMADS6), Si7g27560 (GS5), etc., affected panicle-related traits by involving multiple plant growth regulator pathways, a photoperiod response, as well as panicle and grain development. Most of these genes showed multiple effects on different panicle-related traits, such as Si3g11200 affecting all six traits. In summary, this study clarified a strategy based on the integration of GWAS, a homologous comparison, and haplotype analysis to discover the genomic regions and candidate genes for important traits in foxtail millet. The detected QTL regions and candidate genes could be further used for gene clone and marker-assisted selection in foxtail millet breeding.
Collapse
|
7
|
Niu Y, Chen T, Zheng Z, Zhao C, Liu C, Jia J, Zhou M. A new major QTL for flag leaf thickness in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2022; 22:305. [PMID: 35751018 PMCID: PMC9229122 DOI: 10.1186/s12870-022-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Carbohydrate accumulation of photosynthetic organs, mainly leaves, are the primary sources of grain yield in cereals. The flag leaf plays a vital role in seed development, which is probably the most neglected morphological characteristic during traditional selection processes. RESULTS In this experiment, four flag leaf morphological traits and seven yield-related traits were investigated in a DH population derived from a cross between a wild barley and an Australian malting barley cultivar. Flag leaf thickness (FLT) showed significantly positive correlations with grain size. Four QTL, located on chromosomes 1H, 2H, 3H, and 5H, respectively, were identified for FLT. Among them, a major QTL was located on chromosome 3H with a LOD value of 18.4 and determined 32% of the phenotypic variation. This QTL showed close links but not pleiotropism to the previously reported semi-dwarf gene sdw1 from the cultivated barley. This QTL was not reported before and the thick leaf allele from the wild barley could provide a useful source for improving grain yield through breeding. CONCLUSIONS Our results also provided valuable evidence that source traits and sink traits in barley are tightly connected and suggest further improvement of barley yield potential with enhanced and balanced source and sink relationships by exploiting potentialities of the wild barley resources. Moreover, this study will provide a novel sight on understanding the evolution and development of leaf morphology in barley and improving barley production by rewilding for lost superior traits during plant evolution.
Collapse
Affiliation(s)
- Yanan Niu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Tianxiao Chen
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, 4067, St Lucia, QLD, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 4067, St Lucia, QLD, Australia
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia.
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China.
| |
Collapse
|
8
|
Bai Y, Zhao X, Yao X, Yao Y, An L, Li X, Wang Y, Gao X, Jia Y, Guan L, Li M, Wu K, Wang Z. Genome wide association study of plant height and tiller number in hulless barley. PLoS One 2021; 16:e0260723. [PMID: 34855842 PMCID: PMC8639095 DOI: 10.1371/journal.pone.0260723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum), also called naked barley, is a unique variety of cultivated barley. The genome-wide specific length amplified fragment sequencing (SLAF-seq) method is a rapid deep sequencing technology that is used for the selection and identification of genetic loci or markers. In this study, we collected 300 hulless barley accessions and used the SLAF-seq method to identify candidate genes involved in plant height (PH) and tiller number (TN). We obtained a total of 1407 M paired-end reads, and 228,227 SLAF tags were developed. After filtering using an integrity threshold of >0.8 and a minor allele frequency of >0.05, 14,504,892 single-nucleotide polymorphisms (SNP) loci were screened out. The remaining SNPs were used for the construction of a neighbour-joining phylogenetic tree, and the three subcluster members showed no obvious differentiation among regional varieties. We used a genome wide association study approach to identify 1006 and 113 SNPs associated with TN and PH, respectively. Based on best linear unbiased predictors (BLUP), 41 and 29 SNPs associated with TN and PH, respectively. Thus, several of genes, including Hd3a and CKX5, may be useful candidates for the future genetic breeding of hulless barley. Taken together, our results provide insight into the molecular mechanisms controlling barley architecture, which is important for breeding and yield.
Collapse
Affiliation(s)
- Yixiong Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Xiaohong Zhao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
- Good Agricultural Practices Research Center of Traditional, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Xiaohua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Youhua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Likun An
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Xin Li
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yatao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Man Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kunlun Wu
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
- * E-mail: (KW); (ZW)
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (KW); (ZW)
| |
Collapse
|
9
|
Borrego-Benjumea A, Carter A, Zhu M, Tucker JR, Zhou M, Badea A. Genome-Wide Association Study of Waterlogging Tolerance in Barley ( Hordeum vulgare L.) Under Controlled Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:711654. [PMID: 34512694 PMCID: PMC8427447 DOI: 10.3389/fpls.2021.711654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 06/01/2023]
Abstract
Waterlogging is one of the main abiotic stresses severely reducing barley grain yield. Barley breeding programs focusing on waterlogging tolerance require an understanding of genetic loci and alleles in the current germplasm. In this study, 247 worldwide spring barley genotypes grown under controlled field conditions were genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant phenotypic variation in each trait, including biomass, spikes per plant, grains per plant, kernel weight per plant, plant height and chlorophyll content, was observed. A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for waterlogging tolerance was conducted. Population structure analysis divided the population into three subgroups. A mixed linkage model using both population structure and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing 51 significant waterlogging-tolerance-associated markers for waterlogging tolerance response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and eight potential candidate genes mediating responses to abiotic stresses were located at QTL associated with waterlogging tolerance. To our awareness, this is the first GWAS for waterlogging tolerance in a worldwide barley collection under controlled field conditions. The marker-trait associations could be used in the marker-assisted selection of waterlogging tolerance and will facilitate barley breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Min Zhu
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| |
Collapse
|
10
|
Li M, Geng L, Xie S, Wu D, Ye L, Zhang G. Genome-Wide Association Study on Total Starch, Amylose and Amylopectin in Barley Grain Reveals Novel Putative Alleles. Int J Mol Sci 2021; 22:ijms22020553. [PMID: 33430526 PMCID: PMC7828029 DOI: 10.3390/ijms22020553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
The content and composition of starch in cereal grains are closely related to yield. Few studies have been done on the identification of the genes or loci associated with these traits in barley. This study was conducted to identify the genes or loci controlling starch traits in barley grains, including total starch (TS), amylose (AC) and amylopectin (AP) contents. A large genotypic variation was found in all examined starch traits. GWAS analysis detected 13, 2, 10 QTLs for TS, AC and AP, respectively, and 5 of them were commonly shared by AP and TS content. qTS-3.1, qAC-6.2 and qAP-5.1 may explain the largest variation of TS, AC and AP, respectively. Four putative candidate genes, i.e., HORVU6Hr1G087920, HORVU5Hr1G011230, HORVU5Hr1G011270 and HORVU5Hr1G011280, showed the high expression in the developing barley grains when starch accumulates rapidly. The examined 100 barley accessions could be divided into two groups based on the polymorphism of the marker S5H_29297679, with 93 accessions having allele GG and seven accessions having AA. Moreover, significantly positive correlation was found between the number of favorable alleles of the identified QTLs and TS, AC, AP content. In conclusion, the identified loci or genes in this study could be useful for genetic improvement of grains starch in barley.
Collapse
Affiliation(s)
- Mengdi Li
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - La Geng
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Dezhi Wu
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Lingzhen Ye
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
11
|
Moursi YS, Thabet SG, Amro A, Dawood MFA, Baenziger PS, Sallam A. Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9111425. [PMID: 33114292 PMCID: PMC7690857 DOI: 10.3390/plants9111425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Drought induces several challenges for plant development, growth, and production. These challenges become more severe, in particular, in arid and semiarid countries like Egypt. In terms of production, barley ranks fourth after wheat, maize, and rice. Seed germination and seedling stages are critical stages for plant establishment and growth. In the current study, 60 diverse barley genotypes were tested for drought tolerance using two different treatments: control (0-PEG) and drought (20%-PEG). Twenty-two traits were estimated for seed germination and seedling parameters. All traits were reduced under drought stress, and a significant variation was found among genotypes under control and stress conditions. The broad-sense heritability estimates were very high under both control and drought for all traits. It ranged from 0.63 to 0.97 under the control condition and from 0.89 to 0.97 under drought, respectively. These high heritabilities suggested that genetic improvement of drought tolerance in barley at both stages is feasible. The principal component analysis revealed that root-related parameters account for the largest portion of phenotypic variation in this collection. The single-marker analysis (SMA) resulted in 71 quantitative trait loci (QTLs) distributed across the seven chromosomes of barley. Thirty-three QTLs were detected for root-length-related traits. Many hotspots of QTLs were detected for various traits. Interestingly, some markers controlled many traits in a pleiotropic manner; thus, they can be used to control multiple traits at a time. Some QTLs were constitutive, i.e., they are mapped under control and drought, and targeting these QTLs makes the selection for drought tolerance a single-step process. The results of gene annotation analysis revealed very potential candidate genes that can be targeted to select for drought tolerance.
Collapse
Affiliation(s)
- Yasser S. Moursi
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Samar G. Thabet
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (Y.S.M.); (S.G.T.)
| | - Ahmed Amro
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - Mona F. A. Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut 71516, Egypt; (A.A.); (M.F.A.D.)
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Asyut 71526, Egypt
- Correspondence:
| |
Collapse
|
12
|
Karunarathne SD, Han Y, Zhang XQ, Zhou G, Hill CB, Chen K, Angessa T, Li C. Genome-Wide Association Study and Identification of Candidate Genes for Nitrogen Use Efficiency in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:571912. [PMID: 33013994 PMCID: PMC7500209 DOI: 10.3389/fpls.2020.571912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) fertilizer is largely responsible for barley grain yield potential and quality, yet excessive application leads to environmental pollution and high production costs. Therefore, efficient use of N is fundamental for sustainable agriculture. In the present study, we investigated the performance of 282 barley accessions through hydroponic screening using optimal and low NH4NO3 treatments. Low-N treatment led to an average shoot dry weight reduction of 50%, but there were significant genotypic differences among the accessions. Approximately 20% of the genotypes showed high (>75%) relative shoot dry weight under low-N treatment and were classified as low-N tolerant, whereas 20% were low-N sensitive (≤55%). Low-N tolerant accessions exhibited well-developed root systems with an average increase of 60% in relative root dry weight to facilitate more N absorption. A genome-wide association study (GWAS) identified 66 significant marker trait associations (MTAs) conferring high nitrogen use efficiency, four of which were stable across experiments. These four MTAs were located on chromosomes 1H(1), 3H(1), and 7H(2) and were associated with relative shoot length, relative shoot and root dry weight. Genes corresponding to the significant MTAs were retrieved as candidate genes, including members of the asparagine synthetase gene family, several transcription factor families, protein kinases, and nitrate transporters. Most importantly, the high-affinity nitrate transporter 2.7 (HvNRT2.7) was identified as a promising candidate on 7H for root and shoot dry weight. The identified candidate genes provide new insights into our understanding of the molecular mechanisms driving nitrogen use efficiency in barley and represent potential targets for genetic improvement.
Collapse
Affiliation(s)
- Sakura D Karunarathne
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Camilla B Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Kefei Chen
- SAGI West, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Tefera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Li Z, Lhundrup N, Guo G, Dol K, Chen P, Gao L, Chemi W, Zhang J, Wang J, Nyema T, Dawa D, Li H. Characterization of Genetic Diversity and Genome-Wide Association Mapping of Three Agronomic Traits in Qingke Barley ( Hordeum Vulgare L.) in the Qinghai-Tibet Plateau. Front Genet 2020; 11:638. [PMID: 32719715 PMCID: PMC7351530 DOI: 10.3389/fgene.2020.00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Barley (Hordeum vulgare L.) is one of the most important cereal crops worldwide. In the Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called “qingke” in Chinese or “nas” in Tibetan, is produced mainly in Tibet. The complexity of the environment in the Qinghai-Tibet Plateau has provided unique opportunities for research on the breeding and adaptability of qingke barley. However, the genetic architecture of many important agronomic traits for qingke barley remains elusive. Heading date (HD), plant height (PH), and spike length (SL) are three prominent agronomic traits in barley. Here, we used genome-wide association (GWAS) mapping and GWAS with eigenvector decomposition (EigenGWAS) to detect quantitative trait loci (QTL) and selective signatures for HD, PH, and SL in a collection of 308 qingke barley accessions. The accessions were genotyped using a newly-developed, proprietary genotyping-by-sequencing (tGBS) technology, that yielded 14,970 high quality single nucleotide polymorphisms (SNPs). We found that the number of SNPs was higher in the varieties than in the landraces, which suggested that Tibetan varieties and varieties in the Tibetan area may have originated from different landraces in different areas. We have identified 62 QTLs associated with three important traits, and the observed phenotypic variation is well-explained by the identified QTLs. We mapped 114 known genes that include, but are not limited to, vernalization, and photoperiod genes. We found that 83.87% of the identified QTLs are located in the non-coding regulatory regions of annotated barley genes. Forty-eight of the QTLs are first reported here, 28 QTLs have pleotropic effects, and three QTL are located in the regions of the well-characterized genes HvVRN1, HvVRN3, and PpD-H2. EigenGWAS analysis revealed that multiple heading-date-related loci bear signatures of selection. Our results confirm that the barley panel used in this study is highly diverse, and showed a great promise for identifying the genetic basis of adaptive traits. This study should increase our understanding of complex traits in qingke barley, and should facilitate genome-assisted breeding for qingke barley improvement.
Collapse
Affiliation(s)
- Zhiyong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Namgyal Lhundrup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kar Dol
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Panpan Chen
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Liyun Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Wangmo Chemi
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tashi Nyema
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Dondrup Dawa
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
14
|
Thabet SG, Moursi YS, Karam MA, Börner A, Alqudah AM. Natural Variation Uncovers Candidate Genes for Barley Spikelet Number and Grain Yield under Drought Stress. Genes (Basel) 2020; 11:genes11050533. [PMID: 32403266 PMCID: PMC7290517 DOI: 10.3390/genes11050533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
Drought stress can occur at any growth stage and can affect crop productivity, which can result in large yield losses all over the world. In this respect, understanding the genetic architecture of agronomic traits under drought stress is essential for increasing crop yield potential and harvest. Barley is considered the most abiotic stress-tolerant cereal, particularly with respect to drought. In the present study, worldwide spring barley accessions were exposed to drought stress beginning from the early reproductive stage with 35% field capacity under field conditions. Drought stress had significantly reduced the agronomic and yield-related traits such as spike length, awn length, spikelet per spike, grains per spike and thousand kernel weight. To unravel the genetic factors underlying drought tolerance at the early reproductive stage, genome-wide association scan (GWAS) was performed using 121 spring barley accessions and a 9K single nucleotide polymorphisms (SNPs) chip. A total number of 101 significant SNPs, distributed over all seven barley chromosomes, were found to be highly associated with the studied traits, of which five genomic regions were associated with candidate genes at chromosomes 2 and 3. On chromosome 2H, the region between 6469300693-647258342 bp includes two candidate drought-specific genes (HORVU2Hr1G091030 and HORVU2Hr1G091170), which are highly associated with spikelet and final grain number per spike under drought stress conditions. Interestingly, the gene expression profile shows that the candidate genes were highly expressed in spikelet, grain, spike and leaf organs, demonstrating their pivotal role in drought tolerance. To the best of our knowledge, we reported the first detailed study that used GWAS with bioinformatic analyses to define the causative alleles and putative candidate genes underlying grain yield-related traits under field drought conditions in diverse barley germplasm. The identified alleles and candidate genes represent valuable resources for future functional characterization towards the enhancement of barley cultivars for drought tolerance.
Collapse
Affiliation(s)
- Samar G. Thabet
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (S.G.T.); (Y.S.M.); (M.A.K.)
| | - Yasser S. Moursi
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (S.G.T.); (Y.S.M.); (M.A.K.)
| | - Mohamed A. Karam
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt; (S.G.T.); (Y.S.M.); (M.A.K.)
| | - Andreas Börner
- Research Group Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland OT Gatersleben, Germany;
| | - Ahmad M. Alqudah
- Research Group Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Seeland OT Gatersleben, Germany;
- Correspondence: or
| |
Collapse
|
15
|
Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. J Adv Res 2020; 22:119-135. [PMID: 31956447 PMCID: PMC6961222 DOI: 10.1016/j.jare.2019.10.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a powerful method to identify genetic regions that co-segregate in the trait of interest within the research population. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of candidate genes. In this review, we describe the recently used approach for genetic analyses (linkage mapping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526- Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 68583-Lincoln, NE, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
16
|
Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci Rep 2020; 10:3347. [PMID: 32099054 PMCID: PMC7042356 DOI: 10.1038/s41598-020-60203-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K barley or 15 K wheat SNP-chip, and phenotyped in multiple years and locations. For GWAS, in spring barley, a QTL on chr. 4H associated with powdery mildew and ramularia resistance were found. There were several SNPs on chr. 4H showing genome-wide significance with yield traits. In winter wheat, GWAS identified two SNPs on chr. 6A, and one SNP on chr. 1B, significantly associated with quality trait moisture, as well as one SNP located on chr. 5B associated with starch content in the seeds. The significant SNPs identified by multiple trait GWAS were generally the same as those found in single trait GWAS. GWAS including genotype-location information in the model identified significant SNPs in each tested location, which were not found previously when including all locations in the GWAS. For GP, in spring barley, GP using the Bayesian Power Lasso model had higher accuracy than ridge regression BLUP in powdery mildew and yield traits, whereas the prediction accuracies were similar using Bayesian Power Lasso model and rrBLUP for yield traits in winter wheat.
Collapse
|
17
|
Mwando E, Han Y, Angessa TT, Zhou G, Hill CB, Zhang XQ, Li C. Genome-Wide Association Study of Salinity Tolerance During Germination in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:118. [PMID: 32153619 PMCID: PMC7047234 DOI: 10.3389/fpls.2020.00118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/27/2020] [Indexed: 05/21/2023]
Abstract
Barley seeds need to be able to germinate and establish seedlings in saline soils in Mediterranean-type climates. Despite being a major cereal crop, barley has few reported quantitative trait loci (QTL) and candidate genes underlying salt tolerance at the germination stage. Breeding programs targeting salinity tolerance at germination require an understanding of genetic loci and alleles in the current germplasm. In this study, we investigated seed-germination-related traits under control and salt stress conditions in 350 diverse barley accessions. A genome-wide association study, using ~24,000 genetic markers, was undertaken to detect marker-trait associations (MTA) and the underlying candidate genes for salinity tolerance during germination. We detected 19 loci containing 52 significant salt-tolerance-associated markers across all chromosomes, and 4 genes belonging to 4 family functions underlying the predicted MTAs. Our results provide new genetic resources and information to improve salt tolerance at germination in future barley varieties via genomic and marker-assisted selection and to open up avenues for further functional characterization of the identified candidate genes.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Cai K, Chen X, Han Z, Wu X, Zhang S, Li Q, Nazir MM, Zhang G, Zeng F. Screening of Worldwide Barley Collection for Drought Tolerance: The Assessment of Various Physiological Measures as the Selection Criteria. FRONTIERS IN PLANT SCIENCE 2020; 11:1159. [PMID: 32849716 PMCID: PMC7403471 DOI: 10.3389/fpls.2020.01159] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 05/21/2023]
Abstract
Drought is a devastating environmental constraint affecting the agronomic production of barley. To facilitate the breeding process, abundant germplasm resources and reliable evaluation systems to identify the true drought-tolerant barley genotypes are needed. In this study, 237 cultivated and 190 wild barley genotypes, originating from 28 countries, were screened for drought tolerance under the conditions of both water deficit and polyethylene glycol (PEG)-simulated drought at seedling stage. Drought stress significantly reduced the plant growth of all barley genotypes, but no significant difference in drought-induced reduction in the performance of barley seedlings was observed under these two drought conditions. Both cultivated and wild barley subspecies displayed considerable genotypic variability in drought tolerance, which underpinned the identification of 18 genotypes contrasting in drought tolerance. A comparative analysis of drought effects on biomass, water relation, photosynthesis, and osmotic adjustment was undertaken using these contrasting barley genotypes, in order to verify the reliability of the screening and to obtain the credible traits as screening criteria of drought tolerance in barley. As expected, the selected drought-tolerant genotypes showed much less reduction in shoot biomass than drought-sensitive ones under water deficit, which was significantly positively correlated with the results of large-scale screening, confirming the reliability of the screening for drought tolerance under two drought conditions in this study. Likewise, the traits of water relation, photosynthetic activity, and osmotic adjustment differed greatly between the contrasting genotypes under water deficit stress, and they were highly correlated to the growth of barley seedlings, suggesting the potential of them to be the selection criteria for drought tolerance. The analysis of the variable importance of these traits in drought tolerance indicated that sap osmolality and relative water content in the youngest fully-expanded leaf are the suitable selection criteria of screening for drought tolerance in barley at seedling stage.
Collapse
Affiliation(s)
- Kangfeng Cai
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xiaohui Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Zhigang Han
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xiaojian Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuo Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Qi Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | | | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- *Correspondence: Fanrong Zeng,
| |
Collapse
|
19
|
Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börner A. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. Int J Mol Sci 2019; 20:ijms20133137. [PMID: 31252573 DOI: 10.3390/ijms.20133137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 05/26/2023] Open
Abstract
Climate change is a major threat to most of the agricultural crops grown in tropical and sub-tropical areas globally. Drought stress is one of the consequences of climate change that has a negative impact on crop growth and yield. In the past, many simulation models were proposed to predict climate change and drought occurrences, and it is extremely important to improve essential crops to meet the challenges of drought stress which limits crop productivity and production. Wheat and barley are among the most common and widely used crops due to their economic and social values. Many parts of the world depend on these two crops for food and feed, and both crops are vulnerable to drought stress. Improving drought stress tolerance is a very challenging task for wheat and barley researchers and more research is needed to better understand this stress. The progress made in understanding drought tolerance is due to advances in three main research areas: physiology, breeding, and genetic research. The physiology research focused on the physiological and biochemical metabolic pathways that plants use when exposed to drought stress. New wheat and barley genotypes having a high degree of drought tolerance are produced through breeding by making crosses from promising drought-tolerant genotypes and selecting among their progeny. Also, identifying genes contributing to drought tolerance is very important. Previous studies showed that drought tolerance is a polygenic trait and genetic constitution will help to dissect the gene network(s) controlling drought tolerance. This review explores the recent advances in these three research areas to improve drought tolerance in wheat and barley.
Collapse
Affiliation(s)
- Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt.
| | - Ahmad M Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany.
| | - Mona F A Dawood
- Department of Botany & Microbiology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - P Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
| |
Collapse
|
20
|
Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Börner A. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. Int J Mol Sci 2019; 20:E3137. [PMID: 31252573 PMCID: PMC6651786 DOI: 10.3390/ijms20133137] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Climate change is a major threat to most of the agricultural crops grown in tropical and sub-tropical areas globally. Drought stress is one of the consequences of climate change that has a negative impact on crop growth and yield. In the past, many simulation models were proposed to predict climate change and drought occurrences, and it is extremely important to improve essential crops to meet the challenges of drought stress which limits crop productivity and production. Wheat and barley are among the most common and widely used crops due to their economic and social values. Many parts of the world depend on these two crops for food and feed, and both crops are vulnerable to drought stress. Improving drought stress tolerance is a very challenging task for wheat and barley researchers and more research is needed to better understand this stress. The progress made in understanding drought tolerance is due to advances in three main research areas: physiology, breeding, and genetic research. The physiology research focused on the physiological and biochemical metabolic pathways that plants use when exposed to drought stress. New wheat and barley genotypes having a high degree of drought tolerance are produced through breeding by making crosses from promising drought-tolerant genotypes and selecting among their progeny. Also, identifying genes contributing to drought tolerance is very important. Previous studies showed that drought tolerance is a polygenic trait and genetic constitution will help to dissect the gene network(s) controlling drought tolerance. This review explores the recent advances in these three research areas to improve drought tolerance in wheat and barley.
Collapse
Affiliation(s)
- Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt.
| | - Ahmad M Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany.
| | - Mona F A Dawood
- Department of Botany & Microbiology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - P Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
| |
Collapse
|
21
|
Zhang M, Fu MM, Qiu CW, Cao F, Chen ZH, Zhang G, Wu F. Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. Int J Mol Sci 2019; 20:E791. [PMID: 30759829 PMCID: PMC6387302 DOI: 10.3390/ijms20030791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H⁺K⁺-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai⁻Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.
Collapse
Affiliation(s)
- Mian Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China.
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Campus, University of Western Sydney, Penrith, NSW 2751, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|