1
|
Liu Y, Nie X, Ahmad A, Rimner A, Li G. Super-resolution reconstruction of time-resolved four-dimensional computed tomography (TR-4DCT) with multiple breathing cycles based on TR-4DMRI. Med Phys 2025; 52:504-517. [PMID: 39460999 DOI: 10.1002/mp.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Respiratory motion irregularities in lung cancer patients are common and can be severe during multi-fractional (∼20 mins/fraction) radiotherapy. However, the current clinical standard of motion management is to use a single-breath respiratory-correlated four-dimension computed tomography (RC-4DCT or 4DCT) to estimate tumor motion to delineate the internal tumor volume (ITV), covering the trajectory of tumor motion, as a treatment target. PURPOSE To develop a novel multi-breath time-resolved (TR) 4DCT using the super-resolution reconstruction framework with TR 4D magnetic resonance imaging (TR-4DMRI) as guidance for patient-specific breathing irregularity assessment, overcoming the shortcomings of RC-4DCT, including binning artifacts and single-breath limitations. METHODS Six lung cancer patients participated in the IRB-approved protocol study to receive multiple T1w MRI scans, besides an RC-4DCT scan on the simulation day, including 80 low-resolution (lowR: 5 × 5 × 5 mm3) free-breathing (FB) 3D cine MRFB images in 40 s (2 Hz) and a high-resolution (highR: 2 × 2 × 2 mm3) 3D breath-hold (BH) MRBH image for each patient. A CT (1 × 1 × 3 mm3) image was selected from 10-bin RC-4DCT with minimal binning artifacts and a close diaphragm match (<1 cm) to the MRBH image. A mutual-information-based Freeform deformable image registration (DIR) was used to register the CT and MRBH via the opposite directions (namely F1:C T Source → MR Target BH ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Source}}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{BH}}}$ and F2:C T Target ← MR Source BH ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Target}}}} \leftarrow {\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}}$ ) to establish CT-MR voxel correspondences. An intensity-based enhanced Demons DIR was then applied forMR Source BH → MR Target FB ${\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{FB}}}$ , in which the original MRBH was used in D1:C T Source → ( MR Source BH → MR Target FB ) Target ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Source}}}} \to {{({\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{FB}}})}_{{\mathrm{Target}}}}$ , while the deformed MRBH was used in D2:( C T Target ← MR Source BH ) Source → MR Target FB ${{( \text{C}{{\text{T}}_{\text{Target}}}\leftarrow \text{MR}_{\text{Source}}^{\text{BH}} )}_{\text{Source}}}\to \text{MR}_{\text{Target}}^{\text{FB}}$ . The deformation vector fields (DVFs) obtained from each DIR were composed to apply to the deformed CT (D1) and original CT (D2) to reconstruct TR-4DCT images. A digital 4D-XCAT phantom at the end of inhalation (EOI) and end of exhalation (EOE) with 2.5 cm diaphragmatic motion and three spherical targets (ϕ = 2, 3, 4 cm) were first tested to reconstruct TR-4DCT. For each of the six patients, TR-4DCT images at the EOI, middle (MID), and EOE were reconstructed with both D1 and D2 approaches. TR-4DCT image quality was evaluated with mean distance-to-agreement (MDA) at the diaphragm compared with MRFB, tumor volume ratio (TVR) referenced to MRBH, and tumor shape difference (DICE index) compared with the selected input CT. Additionally, differences in the tumor center of mass (|∆COMD1-D2|), together with TVR and DICE comparison, was assessed in the D1 and D2 reconstructed TR-4DCT images. RESULTS In the phantom, TR-4DCT quality is assessed by MDA = 2.0 ± 0.8 mm at the diaphragm, TVR = 0.8 ± 0.0 for all tumors, and DICE = 0.83 ± 0.01, 0.85 ± 0.02, 0.88 ± 0.01 for ϕ = 2, 3, 4 cm tumors, respectively. In six patients, the MDA in diaphragm match is -1.6 ± 3.1 mm (D1) and 1.0 ± 3.9 mm (D2) between the reconstructed TR-4DCT and lowR MRFB among 18 images (3 phases/patient). The tumor similarity is TVR = 1.2 ± 0.2 and DICE = 0.70 ± 0.07 for D1 and TVR = 1.4 ± 0.3 (D2) and DICE = 0.73 ± 0.07 for D2. The tumor position difference is |∆COMD1-D2| = 1.2 ± 0.8 mm between D1 and D2 reconstructions. CONCLUSION The feasibility of super-resolution reconstruction of multi-breathing-cycle TR-4DCT is demonstrated and image quality at the diaphragm and tumor is assessed in both the 4D-XCAT phantom and six lung cancer patients. The similarity of D1 and D2 reconstruction suggests consistent and reliable DIR results. Clinically, TR-4DCT has the potential for breathing irregularity assessment and dosimetry evaluation in radiotherapy.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xingyu Nie
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Asala Ahmad
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Webster A, Mundora Y, Clark CH, Hawkins MA. A systematic review of the impact of abdominal compression and breath-hold techniques on motion, inter-fraction set-up errors, and intra-fraction errors in patients with hepatobiliary and pancreatic malignancies. Radiother Oncol 2024; 201:110581. [PMID: 39395670 DOI: 10.1016/j.radonc.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND AND PURPOSE Reducing motion is vital when radiotherapy is used to treat patients with hepatobiliary (HPB) and pancreatic malignancies. Abdominal compression (AC) and breath-hold (BH) techniques aim to minimise respiratory motion, yet their adoption remains limited, and practices vary. This review examines the impact of AC and BH on motion, set-up errors, and patient tolerability in HPB and pancreatic patients. MATERIALS AND METHODS This systematic review, conducted using PRISMA and PICOS criteria, includes publications from January 2015 to February 2023. Eligible studies focused on AC and BH interventions in adults with HPB and pancreatic malignancies. Endpoints examined motion, set-up errors, intra-fraction errors, and patient tolerability. Due to study heterogeneity, Synthesis Without Meta-Analysis was used, and a 5 mm threshold assessed the impact of motion mitigation. RESULTS In forty studies, 14 explored AC and 26 BH, with 20 on HPB, 13 on pancreatic, and 7 on mixed cohorts. Six studied pre-treatment, 22 inter/intra-fraction errors, and 12 both. Six AC pre-treatment studies showed > 5 mm motion, and 4 BH and 2 AC studies reported > 5 mm inter-fraction errors. Compression studies commonly investigated the arch and belt, and DIBH was the predominant BH technique. No studies compared AC and BH. There was variation in the techniques, and several studies did not follow standardised error reporting. Patient experience and tolerability were under-reported. CONCLUSION The results indicate that AC effectively reduces motion, but its effectiveness may vary between patients. BH can immobilise motion; however, it can be inconsistent between fractions. The review underscores the need for larger, standardised studies and emphasizes the importance of considering the patient's perspective for tailored treatments.
Collapse
Affiliation(s)
- Amanda Webster
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Yemurai Mundora
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catharine H Clark
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; National Physical Laboratory, Teddington, UK
| | - Maria A Hawkins
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
3
|
van Goor IW, Raymakers L, Andel DS, Brosens LA, Kranenburg O, Leusen JH, Meijer GJ, Molenaar IQ, van Santvoort HC, de Vries JW, Wopereis AJ, Intven MP, Daamen LA. Radiation response assessment of organoids derived from patients with pancreatic cancer. Clin Transl Radiat Oncol 2024; 48:100829. [PMID: 39192878 PMCID: PMC11347840 DOI: 10.1016/j.ctro.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Background The effectiveness of radiotherapy for pancreatic cancer is debated. Patient-derived organoids (PDOs) already mimicked clinical radiation response in other cancer types, which could be valuable in pancreatic cancer as well. This study aimed to investigate whether PDOs can be used to model RT response in pancreatic cancer and to explore the presence of a dose-response correlation. Methods PDOs derived from two pancreatic cancer patients (HUB-08-B2-022A and HUB-08-B2-026B) were irradiated with doses ranging from 0 to 40 Gray. Viability assessments were conducted after seven and 10 days by measuring ATP-levels. Results were normalized, defining the viability at 0 Gray as 100 % and an absolute viability of 0 as 0 %. The relative area under the curve (rAUC) was calculated (0 = total sensitivity, 1 = total resistance). Results With a readout time of seven days, both HUB-08-B2-022A and HUB-08-B2-026B exhibited viability above 50 % at the highest dose of 12 Gy (rAUC of 0.79 and 0.69, respectively). With a readout time of 10 days, both PDOs showed a dose-response relation although HUB-08-B2-022A was more sensitive than HUB-08-B2-026B (rAUC of 0.37 and 0.51, respectively). Increasing the radiation dose to 40 Gy did not further affect viability, but the dose-response relation remained present (rAUC of 0.13 and 0.26, respectively). In the final experiment with a readout time of 10 days and a maximum dose of 14 Gy, the dose-response correlation was paramount in both PDOs (rAUC 0.28 and 0.45, respectively), with HUB-08-B2-022A being most sensitive. Conclusions In this setup, both pancreatic cancer PDOs showed an irradiation dose-response correlation. These preliminary findings suggest that pancreatic cancer PDOs are suitable for assessing radiation response in vitro. Further experiments are needed to eventually simulate treatment responses to personalized treatment strategies.
Collapse
Affiliation(s)
- Iris W.J.M. van Goor
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Leon Raymakers
- Center for Translational Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daan S.H. Andel
- Department of Surgical Oncology, Lab of Translational Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lodewijk A.A. Brosens
- Department of Pathology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, Lab of Translational Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jeanette H.W. Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J. Meijer
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - I. Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Hjalmar C. van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - J.H. Wilfred de Vries
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Andre J.M. Wopereis
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Martijn P.W. Intven
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
| | - Lois A. Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht University, University Medical Center Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht, the Netherlands
- Imaging Division, University Medical Center Utrecht Cancer Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Kurokawa M, Tsuneda M, Abe K, Ikeda Y, Kanazawa A, Saito M, Kodate A, Harada R, Yokota H, Watanabe M, Uno T. A pilot study on interobserver variability in organ-at-risk contours in magnetic resonance imaging-guided online adaptive radiotherapy for pancreatic cancer. Front Oncol 2024; 14:1335623. [PMID: 38800394 PMCID: PMC11116709 DOI: 10.3389/fonc.2024.1335623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Differences in the contours created during magnetic resonance imaging-guided online adaptive radiotherapy (MRgOART) affect dose distribution. This study evaluated the interobserver error in delineating the organs at risk (OARs) in patients with pancreatic cancer treated with MRgOART. Moreover, we explored the effectiveness of drugs that could suppress peristalsis in restraining intra-fractional motion by evaluating OAR visualization in multiple patients. Methods This study enrolled three patients who underwent MRgOART for pancreatic cancer. The study cohort was classified into three conditions based on the MRI sequence and butylscopolamine administration (Buscopan): 1, T2 imaging without butylscopolamine administration; 2, T2 imaging with butylscopolamine administration; and 3, multi-contrast imaging with butylscopolamine administration. Four blinded observers visualized the OARs (stomach, duodenum, small intestine, and large intestine) on MR images acquired during the initial and final MRgOART sessions. The contour was delineated on a slice area of ±2 cm surrounding the planning target volume. The dice similarity coefficient (DSC) was used to evaluate the contour. Moreover, the OARs were visualized on both MR images acquired before and after the contour delineation process during MRgOART to evaluate whether peristalsis could be suppressed. The DSC was calculated for each OAR. Results Interobserver errors in the OARs (stomach, duodenum, small intestine, large intestine) for the three conditions were 0.636, 0.418, 0.676, and 0.806; 0.725, 0.635, 0.762, and 0.821; and 0.841, 0.677, 0.762, and 0.807, respectively. The DSC was higher in all conditions with butylscopolamine administration compared with those without it, except for the stomach in condition 2, as observed in the last session of MR image. The DSCs for OARs (stomach, duodenum, small intestine, large intestine) extracted before and after contouring were 0.86, 0.78, 0.88, and 0.87; 0.97, 0.94, 0.90, and 0.94; and 0.94, 0.86, 0.89, and 0.91 for conditions 1, 2, and 3, respectively. Conclusion Butylscopolamine effectively reduced interobserver error and intra-fractional motion during the MRgOART treatment.
Collapse
Affiliation(s)
- Marie Kurokawa
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Masato Tsuneda
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Kota Abe
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yohei Ikeda
- Department of Radiology, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Aki Kanazawa
- Department of Radiology, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Makoto Saito
- Department of Radiology, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Asuka Kodate
- Department of Radiology, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Rintaro Harada
- Department of Radiology, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Hajime Yokota
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Miho Watanabe
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
5
|
Wassenaar NPM, van Schelt AS, Schrauben EM, Kop MPM, Nio CY, Wilmink JW, Besselink MGH, van Laarhoven HWM, Stoker J, Nederveen AJ, Runge JH. MR Elastography of the Pancreas: Bowel Preparation and Repeatability Assessment in Pancreatic Cancer Patients and Healthy Controls. J Magn Reson Imaging 2024; 59:1582-1592. [PMID: 37485870 DOI: 10.1002/jmri.28918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) stromal viscoelasticity can be measured using MR elastography (MRE). Bowel preparation regimens could affect MRE quality and knowledge on repeatability is crucial for clinical implementation. PURPOSE To assess effects of four bowel preparation regimens on MRE quality and to evaluate repeatability and differentiate patients from healthy controls. STUDY TYPE Prospective. POPULATION 15 controls (41 ± 16 years; 47% female), 16 PDAC patients (one excluded, 66 ± 12 years; 40% female) with 15 age-/sex-matched controls (65 ± 11 years; 40% female). Final sample size was 25 controls and 15 PDAC. FIELD STRENGTH/SEQUENCE 3-T, spin-echo echo-planar-imaging, turbo spin-echo, and fast field echo gradient-echo. ASSESSMENT Four different regimens were used: fasting; scopolaminebutyl; drinking 0.5 L water; combination of 0.5 L water and scopolaminebutyl. MRE signal-to-noise ratio (SNR) was compared between all regimens. MRE repeatability (test-retest) and differences in shear wave speed (SWS) and phase angle (ϕ) were assessed in PDAC and controls. Regions-of-interest were defined for tumor, nontumorous (n = 8) tissue in PDAC, and whole pancreas in controls. Two radiologists delineated tumors twice for evaluation of intraobserver and interobserver variability. STATISTICAL TESTS Repeated measures analysis of variance, coefficients of variation (CoVs), Bland-Altman analysis, (un)paired t-test, Mann-Whitney U-test, and Wilcoxon signed-rank test. P-value<0.05 was considered statistically significant. RESULTS Preparation regimens did not significantly influence MRE-SNR. Therefore, the least burdensome preparation (fasting only) was continued. CoVs for tumor SWS were: intrasession (12.8%) and intersession (21.7%), and intraobserver (7.9%) and interobserver (10.3%) comparisons. For controls, CoVs were intrasession (4.6%) and intersession (6.4%). Average SWS for tumor, nontumor, and healthy tissue were: 1.74 ± 0.58, 1.38 ± 0.27, and 1.18 ± 0.16 m/sec (ϕ: 1.02 ± 0.17, 0.91 ± 0.07, and 0.85 ± 0.08 rad), respectively. Significant differences were found between all groups, except for ϕ between healthy-nontumor (P = 0.094). DATA CONCLUSION The proposed bowel preparation regimens may not influence MRE quality. MRE may be able to differentiate between healthy tissue-tumor and tumor-nontumor. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marnix P M Kop
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Yung Nio
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G H Besselink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Weng J, Bhupathiraju SHV, Samant T, Dresner A, Wu J, Samant SS. Convolutional LSTM model for cine image prediction of abdominal motion. Phys Med Biol 2024; 69:085024. [PMID: 38518378 DOI: 10.1088/1361-6560/ad3722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective.In this study, we tackle the challenge of latency in magnetic resonance linear accelerator (MR-Linac) systems, which compromises target coverage accuracy in gated real-time radiotherapy. Our focus is on enhancing motion prediction precision in abdominal organs to address this issue. We developed a convolutional long short-term memory (convLSTM) model, utilizing 2D cine magnetic resonance (cine-MR) imaging for this purpose.Approach.Our model, featuring a sequence-to-one architecture with six input frames and one output frame, employs structural similarity index measure (SSIM) as loss function. Data was gathered from 17 cine-MRI datasets using the Philips Ingenia MR-sim system and an Elekta Unity MR-Linac equivalent sequence, focusing on regions of interest (ROIs) like the stomach, liver, pancreas, and kidney. The datasets varied in duration from 1 to 10 min.Main results.The study comprised three main phases: hyperparameter optimization, individual training, and transfer learning with or without fine-tuning. Hyperparameters were initially optimized to construct the most effective model. Then, the model was individually applied to each dataset to predict images four frames ahead (1.24-3.28 s). We evaluated the model's performance using metrics such as SSIM, normalized mean square error, normalized correlation coefficient, and peak signal-to-noise ratio, specifically for ROIs with target motion. The average SSIM values achieved were 0.54, 0.64, 0.77, and 0.66 for the stomach, liver, kidney, and pancreas, respectively. In the transfer learning phase with fine-tuning, the model showed improved SSIM values of 0.69 for the liver and 0.78 for the kidney, compared to 0.64 and 0.37 without fine-tuning.Significance. The study's significant contribution is demonstrating the convLSTM model's ability to accurately predict motion for multiple abdominal organs using a Unity-equivalent MR sequence. This advancement is key in mitigating latency issues in MR-Linac radiotherapy, potentially improving the precision and effectiveness of real-time treatment for abdominal cancers.
Collapse
Affiliation(s)
- J Weng
- Department of Radiation Oncology, University of Florida, Gainesville, FL, United States of America
| | - S H V Bhupathiraju
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States of America
| | - T Samant
- Tera Insights, Gainesville, FL, United States of America
| | - A Dresner
- Philips Healthcare MR Oncology, Cleveland, OH, United States of America
| | - J Wu
- Department of Radiation Oncology, University of Florida, Gainesville, FL, United States of America
| | - S S Samant
- Department of Radiation Oncology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
7
|
Liu L, Shen L, Johansson A, Balter JM, Cao Y, Vitzthum L, Xing L. Volumetric MRI with sparse sampling for MR-guided 3D motion tracking via sparse prior-augmented implicit neural representation learning. Med Phys 2024; 51:2526-2537. [PMID: 38014764 PMCID: PMC10994763 DOI: 10.1002/mp.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Volumetric reconstruction of magnetic resonance imaging (MRI) from sparse samples is desirable for 3D motion tracking and promises to improve magnetic resonance (MR)-guided radiation treatment precision. Data-driven sparse MRI reconstruction, however, requires large-scale training datasets for prior learning, which is time-consuming and challenging to acquire in clinical settings. PURPOSE To investigate volumetric reconstruction of MRI from sparse samples of two orthogonal slices aided by sparse priors of two static 3D MRI through implicit neural representation (NeRP) learning, in support of 3D motion tracking during MR-guided radiotherapy. METHODS A multi-layer perceptron network was trained to parameterize the NeRP model of a patient-specific MRI dataset, where the network takes 4D data coordinates of voxel locations and motion states as inputs and outputs corresponding voxel intensities. By first training the network to learn the NeRP of two static 3D MRI with different breathing motion states, prior information of patient breathing motion was embedded into network weights through optimization. The prior information was then augmented from two motion states to 31 motion states by querying the optimized network at interpolated and extrapolated motion state coordinates. Starting from the prior-augmented NeRP model as an initialization point, we further trained the network to fit sparse samples of two orthogonal MRI slices and the final volumetric reconstruction was obtained by querying the trained network at 3D spatial locations. We evaluated the proposed method using 5-min volumetric MRI time series with 340 ms temporal resolution for seven abdominal patients with hepatocellular carcinoma, acquired using golden-angle radial MRI sequence and reconstructed through retrospective sorting. Two volumetric MRI with inhale and exhale states respectively were selected from the first 30 s of the time series for prior embedding and augmentation. The remaining 4.5-min time series was used for volumetric reconstruction evaluation, where we retrospectively subsampled each MRI to two orthogonal slices and compared model-reconstructed images to ground truth images in terms of image quality and the capability of supporting 3D target motion tracking. RESULTS Across the seven patients evaluated, the peak signal-to-noise-ratio between model-reconstructed and ground truth MR images was 38.02 ± 2.60 dB and the structure similarity index measure was 0.98 ± 0.01. Throughout the 4.5-min time period, gross tumor volume (GTV) motion estimated by deforming a reference state MRI to model-reconstructed and ground truth MRI showed good consistency. The 95-percentile Hausdorff distance between GTV contours was 2.41 ± 0.77 mm, which is less than the voxel dimension. The mean GTV centroid position difference between ground truth and model estimation was less than 1 mm in all three orthogonal directions. CONCLUSION A prior-augmented NeRP model has been developed to reconstruct volumetric MRI from sparse samples of orthogonal cine slices. Only one exhale and one inhale 3D MRI were needed to train the model to learn prior information of patient breathing motion for sparse image reconstruction. The proposed model has the potential of supporting 3D motion tracking during MR-guided radiotherapy for improved treatment precision and promises a major simplification of the workflow by eliminating the need for large-scale training datasets.
Collapse
Affiliation(s)
- Lianli Liu
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Liyue Shen
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| | - Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Immunology Genetics and pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucas Vitzthum
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| |
Collapse
|
8
|
Bleeker M, Hulshof MCCM, Bel A, Sonke JJ, van der Horst A. Stomach Motion and Deformation: Implications for Preoperative Gastric Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 118:543-553. [PMID: 37633498 DOI: 10.1016/j.ijrobp.2023.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE Selection and development of image guided strategies for preoperative gastric radiation therapy requires quantitative knowledge of the various sources of anatomic changes of the stomach. This study aims to investigate the magnitude of interfractional and intrafractional stomach motion and deformation using fiducial markers and 4-dimensional (4D) imaging. METHODS AND MATERIALS Fourteen patients who underwent preoperative gastric cancer radiation therapy received 2 to 6 fiducial markers distributed throughout the stomach (total of 54 markers) and additional imaging (ie, 1 planning 4D computed tomography [pCT], 20-25 pretreatment 4D cone beam [CB] CTs, 4-5 posttreatment 4D CBCTs). Marker coordinates on all end-exhale (EE) and end-inhale (EI) scans were obtained after a bony anatomy match. Interfractional marker displacements (ie, between EE pCT and all EE CBCTs) were evaluated for 5 anatomic regions (ie, cardia, small curvature, proximal and distal large curvature, and pylorus). Motion was defined as displacement of the center-of-mass of available markers (COMstomach), deformation as the average difference in marker-pair distances. Interfractional (ie, between EE pCT and all EE CBCTs), respiratory (between EE and EI pCT and CBCTs), and pre-post (pre- and posttreatment EE CBCTs) motion and deformation were quantified. RESULTS The interfractional marker displacement varied per anatomic region and direction, with systematic and random errors ranging from 1.6-8.8 mm and 2.2-8.2 mm, respectively. Respiratory motion varied per patient (median, 3-dimensional [3D] amplitude 5.2-20.0 mm) and day (interquartile range, 0.8-4.2 mm). Regarding COMstomach motion, respiratory motion was larger than interfractional motion (median, 10.9 vs 8.9 mm; P < .0001; Wilcoxon rank-sum), which was larger than pre-post motion (3.6 mm; P < .0001). Interfractional deformations (median, 5.8 mm) were significantly larger than pre-post deformations (2.6 mm; P < .0001), which were larger than respiratory deformation (1.8 mm; P < .0001). CONCLUSIONS The demonstrated sizable stomach motions and deformations during radiation therapy stress the need for generous nonuniform planning target volume margins for preoperative gastric cancer radiation therapy. These margins can be decreased by daily image guidance and adaptive radiation therapy.
Collapse
Affiliation(s)
- Margot Bleeker
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Maarten C C M Hulshof
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan Bel
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid van der Horst
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Daamen LA, Parikh PJ, Hall WA. The Use of MR-Guided Radiation Therapy for Pancreatic Cancer. Semin Radiat Oncol 2024; 34:23-35. [PMID: 38105090 DOI: 10.1016/j.semradonc.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The introduction of online adaptive magnetic resonance (MR)-guided radiation therapy (RT) has enabled safe treatment of pancreatic cancer with ablative doses. The aim of this review is to provide a comprehensive overview of the current literature on the use and clinical outcomes of MR-guided RT for treatment of pancreatic cancer. Relevant outcomes included toxicity, tumor response, survival and quality of life. The results of these studies support further investigation of the effectiveness of ablative MR-guided SBRT as a low-toxic, minimally-invasive therapy for localized pancreatic cancer in prospective clinical trials.
Collapse
Affiliation(s)
- Lois A Daamen
- Imaging & Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Parag J Parikh
- Department of Radiation Oncology, Henry Ford Medical Center, Henry Ford Health System, Detroit, MI
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
10
|
Fast MF, Cao M, Parikh P, Sonke JJ. Intrafraction Motion Management With MR-Guided Radiation Therapy. Semin Radiat Oncol 2024; 34:92-106. [PMID: 38105098 DOI: 10.1016/j.semradonc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
High quality radiation therapy requires highly accurate and precise dose delivery. MR-guided radiotherapy (MRgRT), integrating an MRI scanner with a linear accelerator, offers excellent quality images in the treatment room without subjecting patient to ionizing radiation. MRgRT therefore provides a powerful tool for intrafraction motion management. This paper summarizes different sources of intrafraction motion for different disease sites and describes the MR imaging techniques available to visualize and quantify intrafraction motion. It provides an overview of MR guided motion management strategies and of the current technical capabilities of the commercially available MRgRT systems. It describes how these motion management capabilities are currently being used in clinical studies, protocols and provides a future outlook.
Collapse
Affiliation(s)
- Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Parag Parikh
- Department of Radiation Oncology, Henry Ford Health - Cancer, Detroit, MI
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Stengl C, Panow K, Arbes E, Muñoz ID, Christensen JB, Neelsen C, Dinkel F, Weidner A, Runz A, Johnen W, Liermann J, Echner G, Vedelago J, Jäkel O. A phantom to simulate organ motion and its effect on dose distribution in carbon ion therapy for pancreatic cancer. Phys Med Biol 2023; 68:245013. [PMID: 37918022 DOI: 10.1088/1361-6560/ad0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Objective. Carbon ion radiotherapy is a promising radiation technique for malignancies like pancreatic cancer. However, organs' motion imposes challenges for achieving homogeneous dose delivery. In this study, an anthropomorphicPancreasPhantom forIon-beamTherapy (PPIeT) was developed to simulate breathing and gastrointestinal motion during radiotherapy.Approach. The developed phantom contains a pancreas, two kidneys, a duodenum, a spine and a spinal cord. The shell of the organs was 3D printed and filled with agarose-based mixtures. Hounsfield Units (HU) of PPIeTs' organs were measured by CT. The pancreas motion amplitude in cranial-caudal (CC) direction was evaluated from patients' 4D CT data. Motions within the obtained range were simulated and analyzed in PPIeT using MRI. Additionally, GI motion was mimicked by changing the volume of the duodenum and quantified by MRI. A patient-like treatment plan was calculated for carbon ions, and the phantom was irradiated in a static and moving condition. Dose measurements in the organs were performed using an ionization chamber and dosimetric films.Main results. PPIeT presented tissue equivalent HU and reproducible breathing-induced CC displacements of the pancreas between (3.98 ± 0.36) mm and a maximum of (18.19 ± 0.44) mm. The observed maximum change in distance of (14.28 ± 0.12) mm between pancreas and duodenum was consistent with findings in patients. Carbon ion irradiation revealed homogenous coverage of the virtual tumor at the pancreas in static condition with a 1% deviation from the treatment plan. Instead, the dose delivery during motion with the maximum amplitude yielded an underdosage of 21% at the target and an increased uncertainty by two orders of magnitude.Significance. A dedicated phantom was designed and developed for breathing motion assessment of dose deposition during carbon ion radiotherapy. PPIeT is a unique tool for dose verification in the pancreas and its organs at risk during end-to-end tests.
Collapse
Affiliation(s)
- Christina Stengl
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg D-69120, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Kathrin Panow
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Eric Arbes
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department for Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, Heidelberg D-69120, Germany
| | - Iván D Muñoz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department for Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, Heidelberg D-69120, Germany
| | - Jeppe B Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Christian Neelsen
- Department of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department of Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin D-10117, Germany
| | - Fabian Dinkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Artur Weidner
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg D-69120, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Wibke Johnen
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jakob Liermann
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, Heidelberg D-69120, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Gernot Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - José Vedelago
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, Heidelberg D-69120, Germany
| |
Collapse
|
12
|
Liu H, Schaal D, Curry H, Clark R, Magliari A, Kupelian P, Khuntia D, Beriwal S. Review of cone beam computed tomography based online adaptive radiotherapy: current trend and future direction. Radiat Oncol 2023; 18:144. [PMID: 37660057 PMCID: PMC10475190 DOI: 10.1186/s13014-023-02340-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Adaptive radiotherapy (ART) was introduced in the late 1990s to improve the accuracy and efficiency of therapy and minimize radiation-induced toxicities. ART combines multiple tools for imaging, assessing the need for adaptation, treatment planning, quality assurance, and has been utilized to monitor inter- or intra-fraction anatomical variations of the target and organs-at-risk (OARs). Ethos™ (Varian Medical Systems, Palo Alto, CA), a cone beam computed tomography (CBCT) based radiotherapy treatment system that uses artificial intelligence (AI) and machine learning to perform ART, was introduced in 2020. Since then, numerous studies have been done to examine the potential benefits of Ethos™ CBCT-guided ART compared to non-adaptive radiotherapy. This review will explore the current trends of Ethos™, including improved CBCT image quality, a feasible clinical workflow, daily automated contouring and treatment planning, and motion management. Nevertheless, evidence of clinical improvements with the use of Ethos™ are limited and is currently under investigation via clinical trials.
Collapse
Affiliation(s)
- Hefei Liu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
- Varian Medical Systems Inc, Palo Alto, CA, USA
| | | | | | - Ryan Clark
- Varian Medical Systems Inc, Palo Alto, CA, USA
| | | | | | | | - Sushil Beriwal
- Varian Medical Systems Inc, Palo Alto, CA, USA.
- Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Subashi E, Segars P, Veeraraghavan H, Deasy J, Tyagi N. A model for gastrointestinal tract motility in a 4D imaging phantom of human anatomy. Med Phys 2023; 50:3066-3075. [PMID: 36808107 PMCID: PMC10561541 DOI: 10.1002/mp.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Gastrointestinal (GI) tract motility is one of the main sources for intra/inter-fraction variability and uncertainty in radiation therapy for abdominal targets. Models for GI motility can improve the assessment of delivered dose and contribute to the development, testing, and validation of deformable image registration (DIR) and dose-accumulation algorithms. PURPOSE To implement GI tract motion in the 4D extended cardiac-torso (XCAT) digital phantom of human anatomy. MATERIALS AND METHODS Motility modes that exhibit large amplitude changes in the diameter of the GI tract and may persist over timescales comparable to online adaptive planning and radiotherapy delivery were identified based on literature research. Search criteria included amplitude changes larger than planning risk volume expansions and durations of the order of tens of minutes. The following modes were identified: peristalsis, rhythmic segmentation, high amplitude propagating contractions (HAPCs), and tonic contractions. Peristalsis and rhythmic segmentations were modeled by traveling and standing sinusoidal waves. HAPCs and tonic contractions were modeled by traveling and stationary Gaussian waves. Wave dispersion in the temporal and spatial domain was implemented by linear, exponential, and inverse power law functions. Modeling functions were applied to the control points of the nonuniform rational B-spline surfaces defined in the reference XCAT library. GI motility was combined with the cardiac and respiratory motions available in the standard 4D-XCAT phantom. Default model parameters were estimated based on the analysis of cine MRI acquisitions in 10 patients treated in a 1.5T MR-linac. RESULTS We demonstrate the ability to generate realistic 4D multimodal images that simulate GI motility combined with respiratory and cardiac motion. All modes of motility, except tonic contractions, were observed in the analysis of our cine MRI acquisitions. Peristalsis was the most common. Default parameters estimated from cine MRI were used as initial values for simulation experiments. It is shown that in patients undergoing stereotactic body radiotherapy for abdominal targets, the effects of GI motility can be comparable or larger than the effects of respiratory motion. CONCLUSION The digital phantom provides realistic models to aid in medical imaging and radiation therapy research. The addition of GI motility will further contribute to the development, testing, and validation of DIR and dose accumulation algorithms for MR-guided radiotherapy.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Segars
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Sharma S, Ramadi KB, Poole NH, Srinivasan SS, Ishida K, Kuosmanen J, Jenkins J, Aghlmand F, Swift MB, Shapiro MG, Traverso G, Emami A. Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics. NATURE ELECTRONICS 2023; 6:242-256. [PMID: 37745833 PMCID: PMC10516531 DOI: 10.1038/s41928-023-00916-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2023] [Indexed: 09/26/2023]
Abstract
Localization and tracking of ingestible microdevices in the gastrointestinal (GI) tract is valuable for the diagnosis and treatment of GI disorders. Such systems require a large field-of-view of tracking, high spatiotemporal resolution, wirelessly operated microdevices and a non-obstructive field generator that is safe to use in practical settings. However, the capabilities of current systems remain limited. Here, we report three dimensional (3D) localization and tracking of wireless ingestible microdevices in the GI tract of large animals in real time and with millimetre-scale resolution. This is achieved by generating 3D magnetic field gradients in the GI field-of-view using high-efficiency planar electromagnetic coils that encode each spatial point with a distinct magnetic field magnitude. The field magnitude is measured and transmitted by the miniaturized, low-power and wireless microdevices to decode their location as they travel through the GI tract. This system could be useful for quantitative assessment of the GI transit-time, precision targeting of therapeutic interventions and minimally invasive procedures.
Collapse
Affiliation(s)
- Saransh Sharma
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
- These authors contributed equally: Saransh Sharma, Khalil B. Ramadi
| | - Khalil B. Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
- These authors contributed equally: Saransh Sharma, Khalil B. Ramadi
| | - Nikhil H. Poole
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shriya S. Srinivasan
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keiko Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fatemeh Aghlmand
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Margaret B. Swift
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G. Shapiro
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
- These authors jointly supervised this work: Mikhail G. Shapiro, Giovanni Traverso, Azita Emami
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- These authors jointly supervised this work: Mikhail G. Shapiro, Giovanni Traverso, Azita Emami
| | - Azita Emami
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
- These authors jointly supervised this work: Mikhail G. Shapiro, Giovanni Traverso, Azita Emami
| |
Collapse
|
15
|
Chen J, Bissonnette JP, Craig T, Munoz-Schuffenegger P, Tadic T, Dawson LA, Velec M. Liver SBRT dose accumulation to assess the impact of anatomic variations on normal tissue doses and toxicity in patients treated with concurrent sorafenib. Radiother Oncol 2023; 182:109588. [PMID: 36858203 DOI: 10.1016/j.radonc.2023.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND AND PURPOSE Unexpected liver volume reductions occurred during trials of liver SBRT and concurrent sorafenib. The aims were to accumulate liver SBRT doses to assess the impact of these anatomic variations on normal tissue dose parameters and toxicity. MATERIALS AND METHODS Thirty-two patients with hepatocellular carcinoma (HCC) or metastases treated on trials of liver SBRT (30-57 Gy, 6 fractions) and concurrent sorafenib were analyzed. SBRT doses were accumulated using biomechanical deformable registration of daily cone-beam CT. Dose deviations (accumulated-planned) for normal tissues were compared for patients with liver volume reductions > 100 cc versus stable volumes, and accumulated doses were reported for three patients with grade 3-5 luminal gastrointestinal toxicities. RESULTS Patients with reduced (N = 12) liver volumes had larger mean deviations of 0.4-1.3 Gy in normal tissues, versus -0.2-0.4 Gy for stable cases (N = 20), P > 0.05. Deviations > 5% of the prescribed dose occurred in both groups. Two HCC patients with toxicities to small and large bowel had liver volume reductions and deviations to the maximum dose of 4% (accumulated 36.9 Gy) and 3% (accumulated 33.4 Gy) to these organs respectively. Another HCC patient with a toxicity of unknown location plus tumor rupture, had stable liver volumes and deviations to luminal organs of -6% to 4.5% (accumulated < 30.5 Gy). CONCLUSION Liver volume reductions during SBRT and concurrent sorafenib were associated with larger increases in accumulated dose to normal tissues versus stable liver volumes. These dosimetric changes may have further contributed to toxicities in HCC patients who have higher baseline risks.
Collapse
Affiliation(s)
- Jasmine Chen
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Canada
| | - Jean-Pierre Bissonnette
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Radiation Oncology, University of Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Techna Insitute, University Health Network, Toronto, Canada
| | - Tim Craig
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Pablo Munoz-Schuffenegger
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Radiation Oncology, University of Toronto, Canada
| | - Michael Velec
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Radiation Oncology, University of Toronto, Canada; Techna Insitute, University Health Network, Toronto, Canada.
| |
Collapse
|
16
|
Evaluation of short-term gastrointestinal motion and its impact on dosimetric parameters in stereotactic body radiation therapy for pancreatic cancer. Clin Transl Radiat Oncol 2023; 39:100576. [PMID: 36686564 PMCID: PMC9852488 DOI: 10.1016/j.ctro.2023.100576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Background The aim of this study is to quantify the short-term motion of the gastrointestinal tract (GI-tract) and its impact on dosimetric parameters in stereotactic body radiation therapy (SBRT) for pancreatic cancer. Methods The analyzed patients were eleven pancreatic cancer patients treated with SBRT or proton beam therapy. To ensure a fair analysis, the simulation SBRT plan was generated on the planning CT in all patients with the dose prescription of 40 Gy in 5 fractions. The GI-tract motion (stomach, duodenum, small and large intestine) was evaluated using three CT images scanned at spontaneous expiration. After fiducial-based rigid image registration, the contours in each CT image were generated and transferred to the planning CT, then the organ motion was evaluated. Planning at risk volumes (PRV) of each GI-tract were generated by adding 5 mm margins, and the volume receiving at least 33 Gy (V33) < 0.5 cm3 was evaluated as the dose constraint. Results The median interval between the first and last CT scans was 736 s (interquartile range, IQR:624-986). To compensate for the GI-tract motion based on the planning CT, the necessary median margin was 8.0 mm (IQR: 8.0-10.0) for the duodenum and 14.0 mm (12.0-16.0) for the small intestine. Compared to the planned V33 with the worst case, the median V33 in the PRV of the duodenum significantly increased from 0.20 cm3 (IQR: 0.02-0.26) to 0.33 cm3 (0.10-0.59) at Wilcoxon signed-rank test (p = 0.031). Conclusion The short-term motions of the GI-tract lead to high dose differences.
Collapse
Key Words
- 4DCT, four-dimensional computed tomography,
- CTV, clinical target volume
- FFF, flattening filter-free
- GI-tract, gastrointestinal tract
- GTV, gross tumor volume
- Gastrointestinal tract
- IQR, interquartile range
- Intra-fractional motion
- MV, mega-voltage
- PRV, planning at risk volume
- PTV, planning target volume
- Pancreatic cancer
- ROI, region of interest
- SBRT
- SBRT, stereotactic body radiation therapy
- SD, standard deviation
- Short-term organ motion
- VMAT, volumetric modulated arc therapy
Collapse
|
17
|
Driever T, Hulshof MCCM, Bel A, Sonke JJ, van der Horst A. Quantifying intrafractional gastric motion using auto-segmentation on MRI: Deformation and respiratory-induced displacement compared. J Appl Clin Med Phys 2022; 24:e13864. [PMID: 36565168 PMCID: PMC10113698 DOI: 10.1002/acm2.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE For accurate pre-operative gastric radiotherapy, intrafractional changes must be taken into account. The aim of this study is to quantify local gastric deformations and compare these deformations with respiratory-induced displacement. MATERIALS AND METHODS Coronal 2D MRI scans (15-16 min; 120 repetitions of 25-27 interleaved slices) were obtained for 18 healthy volunteers. A deep-learning network was used to auto-segment the stomach. To separate out respiratory-induced displacements, auto-segmentations were rigidly shifted in superior-inferior (SI) direction to align the centre of mass (CoM) within every slice. From these shifted auto-segmentations, 3D iso-probability surfaces (isosurfaces) were established: a reference surface for POcc = 0.50 and 50 other isosurfaces (from POcc = 0.01 to 0.99), with POcc indicating the probability of occupation by the stomach. For each point on the reference surface, distances to all isosurfaces were determined and a cumulative Gaussian was fitted to this probability-distance dataset to obtain a standard deviation (SDdeform ) expressing local deformation. For each volunteer, we determined median and 98th percentile of SDdeform over the reference surface and compared these with the respiratory-induced displacement SDresp , that is, the SD of all CoM shifts (paired Wilcoxon signed-rank, α = 0.05). RESULTS Larger deformations were mostly seen in the antrum and pyloric region. Median SDdeform (range, 2.0-2.9 mm) was smaller than SDresp (2.7-8.8 mm) for each volunteer (p < 0.00001); 98th percentile of SDdeform (3.2-7.3 mm) did not significantly differ from SDresp (p = 0.13). CONCLUSION Locally, gastric deformations can be large. Overall, however, these deformations are limited compared to respiratory-induced displacement. Therefore, unless respiratory motion is considerably reduced, the need to separately include these deformation uncertainties in the treatment margins may be limited.
Collapse
Affiliation(s)
- Theo Driever
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten C C M Hulshof
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan Bel
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid van der Horst
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
van Goor IWJM, Daamen LA, Besselink MG, Bruynzeel AME, Busch OR, Cirkel GA, Groot Koerkamp B, Haj Mohammed N, Heerkens HD, van Laarhoven HWM, Meijer GJ, Nuyttens J, van Santvoort HC, van Tienhoven G, Verkooijen HM, Wilmink JW, Molenaar IQ, Intven MPW. A nationwide randomized controlled trial on additional treatment for isolated local pancreatic cancer recurrence using stereotactic body radiation therapy (ARCADE). Trials 2022; 23:913. [PMID: 36307892 PMCID: PMC9617359 DOI: 10.1186/s13063-022-06829-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Disease recurrence is the main cause of mortality after resection of pancreatic ductal adenocarcinoma (PDAC). In 20-30% of resected patients, isolated local PDAC recurrence occurs. Retrospective studies have suggested that stereotactic body radiation therapy (SBRT) might lead to improved local control in these patients, potentially having a beneficial effect on both survival and quality of life. The "nationwide randomized controlled trial on additional treatment for isolated local pancreatic cancer recurrence using stereotactic body radiation therapy" (ARCADE) will investigate the value of SBRT in addition to standard of care in patients with isolated local PDAC recurrence compared to standard of care alone, regarding both survival and quality of life outcomes. METHODS The ARCADE trial is nested within a prospective cohort (Dutch Pancreatic Cancer Project; PACAP) according to the 'Trials within Cohorts' design. All PACAP participants with isolated local PDAC recurrence after primary resection who provided informed consent for being randomized in future studies are eligible. Patients will be randomized for local therapy (5 fractions of 8 Gy SBRT) in addition to standard of care or standard of care alone. In total, 174 patients will be included. The main study endpoint is survival after recurrence. The most important secondary endpoint is quality of life. DISCUSSION It is hypothesized that additional SBRT, compared to standard of care alone, improves survival and quality of life in patients with isolated local recurrence after PDAC resection. TRIAL REGISTRATION ClinicalTrials.gov registration NCT04881487 . Registered on May 11, 2021.
Collapse
Affiliation(s)
- I W J M van Goor
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands.
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands.
| | - L A Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M G Besselink
- Department of Surgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - A M E Bruynzeel
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Center, location Vrije Universiteit, Amsterdam, the Netherlands
| | - O R Busch
- Department of Surgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - G A Cirkel
- Department of Medical Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - B Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - N Haj Mohammed
- Department of Medical Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - H D Heerkens
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - H W M van Laarhoven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, location University of Amsterdam, Amsterdam, the Netherlands
| | - G J Meijer
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - J Nuyttens
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - H C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - G van Tienhoven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - H M Verkooijen
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J W Wilmink
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, location University of Amsterdam, Amsterdam, the Netherlands
| | - I Q Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands
| | - M P W Intven
- Department of Radiation Oncology, Regional Academic Cancer Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Liu L, Shen L, Johansson A, Balter JM, Cao Y, Chang D, Xing IL. Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning. Med Phys 2022; 49:6110-6119. [PMID: 35766221 PMCID: PMC10323755 DOI: 10.1002/mp.15822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop a geometry-informed deep learning framework for volumetric MRI with sub-second acquisition time in support of 3D motion tracking, which is highly desirable for improved radiotherapy precision but hindered by the long image acquisition time. METHODS A 2D-3D deep learning network with an explicitly defined geometry module that embeds geometric priors of the k-space encoding pattern was investigated, where a 2D generation network first augmented the sparsely sampled image dataset by generating new 2D representations of the underlying 3D subject. A geometry module then unfolded the 2D representations to the volumetric space. Finally, a 3D refinement network took the unfolded 3D data and outputted high-resolution volumetric images. Patient-specific models were trained for seven abdominal patients to reconstruct volumetric MRI from both orthogonal cine slices and sparse radial samples. To evaluate the robustness of the proposed method to longitudinal patient anatomy and position changes, we tested the trained model on separate datasets acquired more than one month later and evaluated 3D target motion tracking accuracy using the model-reconstructed images by deforming a reference MRI with gross tumor volume (GTV) contours to a 5-min time series of both ground truth and model-reconstructed volumetric images with a temporal resolution of 340 ms. RESULTS Across the seven patients evaluated, the median distances between model-predicted and ground truth GTV centroids in the superior-inferior direction were 0.4 ± 0.3 mm and 0.5 ± 0.4 mm for cine and radial acquisitions, respectively. The 95-percentile Hausdorff distances between model-predicted and ground truth GTV contours were 4.7 ± 1.1 mm and 3.2 ± 1.5 mm for cine and radial acquisitions, which are of the same scale as cross-plane image resolution. CONCLUSION Incorporating geometric priors into deep learning model enables volumetric imaging with high spatial and temporal resolution, which is particularly valuable for 3D motion tracking and has the potential of greatly improving MRI-guided radiotherapy precision.
Collapse
Affiliation(s)
- Lianli Liu
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Liyue Shen
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| | - Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Immunology Genetics and pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - James M. Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Chang
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - I Lei Xing
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| |
Collapse
|
20
|
Ahunbay E, Parchur AK, Paulson E, Chen X, Omari E, Li XA. Development and implementation of an automatic air delineation technique for MRI-guided adaptive radiation therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7b65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Auto-delineation of air regions on daily MRI for MR-guided online adaptive radiotherapy (MRgOART) of abdominal tumors is challenging since the air packets occur randomly and their MR intensities can be similar to some other tissue types. This work reports a new method to auto-delineate air regions on MRI. Approach. The proposed method (named DIFF method) consists of (1) generating a combined volume V
comb
, which is a union of the air-containing organs on a reference MR image offline, (2) transferring V
comb
from the reference MR to a daily MR via DIR, (3) combining the transferred V
comb
with a region of high DIR inaccuracy, and (4) applying a threshold to the obtained final combined volume to generate the air volumes. The high DIR inaccuracy region was calculated from the absolute difference between the deformed daily and the reference images. This method was tested on 36 abdominal daily MRI sets acquired from 7 patients on a 1.5 T MR-Linac. The performance of DIFF was compared with alternative auto-air generation methods that (1) does not account for DIR inaccuracies, and (2) uses rigid registration instead of DIR. Main results. The results show that the proposed DIFF method can be fully automated and can be executed within 25 s. The Dice similarity coefficient of manual and DIFF auto-generated air contours was >92% for all cases, while it was 90% for the alternative auto-delineation methods. Dosimetrically, the auto-generated air regions using DIFF resulted in practically identical DVHs as those generated by using manual air contours. Significance. The DIFF method is robust and accurate and can be implemented to automatically consider the inter- and intra- fractional air volume variations during MRgOART for abdominal tumors. The use of DIFF method improves dosimetric accuracy as compared to other methods, especially beneficial for the patients with large daily abdominal air volume variations.
Collapse
|
21
|
Daly M, McWilliam A, Radhakrishna G, Choudhury A, Eccles CL. Radiotherapy respiratory motion management in hepatobiliary and pancreatic malignancies: a systematic review of patient factors influencing effectiveness of motion reduction with abdominal compression. Acta Oncol 2022; 61:833-841. [PMID: 35611555 DOI: 10.1080/0284186x.2022.2073186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The effectiveness of abdominal compression for motion management in hepatobiliary-pancreatic (HPB) radiotherapy has not been systematically evaluated. METHODS & MATERIALS A systematic review was carried out using PubMed/Medline, Cochrane Library, Web of Science, and CINAHL databases up to 1 July 2021. No date restrictions were applied. Additional searches were carried out using the University of Manchester digital library, Google Scholar and of retrieved papers' reference lists. Studies conducted evaluating respiratory motion utilising imaging with and without abdominal compression in the same patients available in English were included. Studies conducted in healthy volunteers or majority non-HPB sites, not providing descriptive motion statistics or patient characteristics before and after compression in the same patients or published without peer-review were excluded. A narrative synthesis was employed by tabulating retrieved studies and organising chronologically by abdominal compression device type to help identify patterns in the evidence. RESULTS The inclusion criteria were met by 6 studies with a total of 152 patients. Designs were a mix of retrospective and prospective quantitative designs with chronological, non-randomised recruitment. Abdominal compression reduced craniocaudal respiratory motion in the majority of patients, although in four studies there were increases seen in at least one direction. The influence of patient comorbidities on effectiveness of compression, and/or comfort with compression was not evaluated in any study. CONCLUSION Abdominal compression may not be appropriate for all patients, and benefit should be weighed with potential increase in motion or discomfort in patients with small initial motion (<5 mm). Patient factors including male sex, and high body mass index (BMI) were found to impact the effectiveness of compression, however with limited evidence. High-quality studies are warranted to fully assess the clinical impact of abdominal compression on treatment outcomes and toxicity prospective in comparison to other motion management strategies.
Collapse
Affiliation(s)
- Mairead Daly
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHSFT, Manchester, United Kingdom
| | | | - Ananya Choudhury
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHSFT, Manchester, United Kingdom
| | - Cynthia L Eccles
- Division of Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHSFT, Manchester, United Kingdom
| |
Collapse
|
22
|
Gaudreault M, Siva S, Kron T, Hardcastle N. Assessing organ at risk position variation and its impact on delivered dose in kidney SABR. Radiat Oncol 2022; 17:112. [PMID: 35761291 PMCID: PMC9235197 DOI: 10.1186/s13014-022-02041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Delivered organs at risk (OARs) dose may vary from planned dose due to interfraction and intrafraction motion during kidney SABR treatment. Cases of bowel stricture requiring surgery post SABR treatment were reported in our institution. This study aims to provide strategies to reduce dose deposited to OARs during SABR treatment and mitigate risk of gastrointestinal toxicity.
Methods Small bowel (SB), large bowel (LB) and stomach (STO) were delineated on the last cone beam CT (CBCT) acquired before any dose had been delivered (PRE CBCT) and on the first CBCT acquired after any dose had been delivered (MID CBCT). OAR interfraction and intrafraction motion were estimated from the shortest distance between OAR and the internal target volume (ITV). Adaptive radiation therapy (ART) was used if dose limits were exceeded by projecting the planned dose on the anatomy of the day. Results In 36 patients, OARs were segmented on 76 PRE CBCTs and 30 MID CBCTs. Interfraction motion was larger than intrafraction motion in STO (p-value = 0.04) but was similar in SB (p-value = 0.8) and LB (p-value = 0.2). LB was inside the planned 100% isodose in all PRE CBCTs and MID CBCTs in the three patients that suffered from bowel stricture. SB D0.03cc was exceeded in 8 fractions (4 patients). LB D1.5cc was exceeded in 4 fractions (2 patients). Doses to OARs were lowered and limits were all met with ART on the anatomy of the day. Conclusions Interfraction motion was responsible for OARs overdosage. Dose limits were respected by using ART with the anatomy of the day. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02041-2.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
23
|
Mesci A, Wong RK. Current and future strategies for radiation therapy in gastric cancer. J Surg Oncol 2022; 125:1161-1175. [PMID: 35481918 DOI: 10.1002/jso.26880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/17/2023]
Abstract
Gastric cancers are heterogeneous. There are important differences between gastric and junctional tumors and a focus on evidence based on true gastric cancers is important to guide treatment decision and the design of innovative strategies. We present key evidence shaping the current use of radiotherapy, discuss technical radiotherapy considerations that are important to consider in multidisciplinary decision-making, and highlight selected research strategies including radiotherapeutic advances, theranostic approaches and key ongoing clinical trials to watch that will shape the role of radiotherapy in gastric cancers for the future.
Collapse
Affiliation(s)
- Aruz Mesci
- Department of Radiation Oncology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Ks Wong
- Department of Radiation Oncology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Omari EA, Zhang Y, Ahunbay E, Paulson E, Amjad A, Chen X, Liang Y, Li XA. Multi parametric magnetic resonance imaging for radiation treatment planning. Med Phys 2022; 49:2836-2845. [PMID: 35170769 DOI: 10.1002/mp.15534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/05/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, multi-parametric magnetic resonance imaging (MpMRI) has played a major role in radiation therapy treatment planning. The superior soft tissue contrast, functional or physiological imaging capabilities and the flexibility of site-specific image sequence development has placed MpMRI at the forefront. In this article, the present status of MpMRI for external beam radiation therapy planning is reviewed. Common MpMRI sequences, preprocessing and QA strategies are briefly discussed, and various image registration techniques and strategies are addressed. Image segmentation methods including automatic segmentation and deep learning techniques for organs at risk and target delineation are reviewed. Due to the advancement in MRI guided online adaptive radiotherapy, treatment planning considerations addressing MRI only planning are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eenas A Omari
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Zhang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Asma Amjad
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Liang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
25
|
Daamen LA, de Mol van Otterloo SR, van Goor IWJM, Eijkelenkamp H, Erickson BA, Hall WA, Heerkens HD, Meijer GJ, Molenaar IQ, van Santvoort HC, Verkooijen HM, Intven MPW. Online adaptive MR-guided stereotactic radiotherapy for unresectable malignancies in the upper abdomen using a 1.5T MR-linac. Acta Oncol 2022; 61:111-115. [PMID: 34879792 DOI: 10.1080/0284186x.2021.2012593] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Introduction of online adaptive MR-guided radiotherapy enables stereotactic body radiation therapy (SBRT) of upper abdominal tumors. This study aimed to evaluate the feasibility of MR-guided SBRT on a 1.5 T MR-linac in patients with unresectable upper abdominal malignancies. MATERIAL AND METHODS Patients treated at the UMC Utrecht (April 2019 to December 2020) were identified in the prospective 'Multi-OutcoMe EvaluatioN of radiation Therapy Using the MR-linac' (MOMENTUM) study. Feasibility of treatment was arbitrarily defined as an on-table time interval of ≤60 min for >75% of delivered fractions and completion of >95% of fractions as scheduled, reflecting patient tolerability. Acute treatment-related toxicity was assessed at 3 months of follow-up and graded according to the National Cancer Institute Common Terminology Criteria of Adverse Events version 5.0. RESULTS Twenty-five consecutive patients with a median follow-up time of 8 (range 4-23) months were treated with 35 Gray (n = 4) and 40 Gray (n = 21) in five fractions over 2 weeks. For all fractions, contours were adapted based on the daily anatomy and delivered within 47 min/fraction (range 30-74). In 98/117 fractions (84%), adapted treatment was completed within 1 h. All patients received the scheduled irradiation dose as planned. No acute grade 3 toxicity or higher was reported. Treatment resulted in pain alleviation in 11/13 patients. DISCUSSION Online adaptive MR-guided SBRT on a 1.5 T MR-linac is feasible and well-tolerated in patients with unresectable upper abdominal malignancies. Dose escalation studies, followed by comparative studies, are needed to determine the optimal radiation dose for irradiation of upper abdominal malignancies.
Collapse
Affiliation(s)
- Lois A. Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | | | - Iris W. J. M. van Goor
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Hidde Eijkelenkamp
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Beth A. Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hanne D. Heerkens
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Gert J. Meijer
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - I. Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Hjalmar C. van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Helena M. Verkooijen
- Division of Imaging, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Martijn P. W. Intven
- Department of Radiation Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Olberg S, Chun J, Su Choi B, Park I, Kim H, Kim T, Sung Kim J, Green O, Park JC. Abdominal synthetic CT reconstruction with intensity projection prior for MRI-only adaptive radiotherapy. Phys Med Biol 2021; 66. [PMID: 34530421 DOI: 10.1088/1361-6560/ac279e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Objective. Owing to the superior soft tissue contrast of MRI, MRI-guided adaptive radiotherapy (ART) is well-suited to managing interfractional changes in anatomy. An MRI-only workflow is desirable, but producing synthetic CT (sCT) data through paired data-driven deep learning (DL) for abdominal dose calculations remains a challenge due to the highly variable presence of intestinal gas. We present the preliminary dosimetric evaluation of our novel approach to sCT reconstruction that is well suited to handling intestinal gas in abdominal MRI-only ART.Approach. We utilize a paired data DL approach enabled by the intensity projection prior, in which well-matching training pairs are created by propagating air from MRI to corresponding CT scans. Evaluations focus on two classes: patients with (1) little involvement of intestinal gas, and (2) notable differences in intestinal gas presence between corresponding scans. Comparisons between sCT-based plans and CT-based clinical plans for both classes are made at the first treatment fraction to highlight the dosimetric impact of the variable presence of intestinal gas.Main results. Class 1 patients (n= 13) demonstrate differences in prescribed dose coverage of the PTV of 1.3 ± 2.1% between clinical plans and sCT-based plans. Mean DVH differences in all structures for Class 1 patients are found to be statistically insignificant. In Class 2 (n= 20), target coverage is 13.3 ± 11.0% higher in the clinical plans and mean DVH differences are found to be statistically significant.Significance. Significant deviations in calculated doses arising from the variable presence of intestinal gas in corresponding CT and MRI scans result in uncertainty in high-dose regions that may limit the effectiveness of adaptive dose escalation efforts. We have proposed a paired data-driven DL approach to sCT reconstruction for accurate dose calculations in abdominal ART enabled by the creation of a clinically unavailable training data set with well-matching representations of intestinal gas.
Collapse
Affiliation(s)
- Sven Olberg
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States of America
| | - Jaehee Chun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byong Su Choi
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.,Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inkyung Park
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.,Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, United States of America
| | - Taeho Kim
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, United States of America
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Olga Green
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, United States of America
| | - Justin C Park
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| |
Collapse
|
27
|
Liu L, Johansson A, Cao Y, Lawrence TS, Balter JM. Volumetric prediction of breathing and slow drifting motion in the abdomen using radial MRI and multi-temporal resolution modeling. Phys Med Biol 2021; 66. [PMID: 34412047 DOI: 10.1088/1361-6560/ac1f37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Abdominal organ motions introduce geometric uncertainties to radiotherapy. This study investigates a multi-temporal resolution 3D motion prediction scheme that accounts for both breathing and slow drifting motion in the abdomen in support of MRI-guided radiotherapy. Ten-minute MRI scans were acquired for 8 patients using a volumetric golden-angle stack-of-stars sequence. The first five-minutes was used for patient-specific motion modeling. Fast breathing motion was modeled from high temporal resolution radial k-space samples, which served as a navigator signal to sort k-space data into different bins for high spatial resolution reconstruction of breathing motion states. Slow drifting motion was modeled from a lower temporal resolution image time series which was reconstructed by sequentially combining a large number of breathing-corrected k-space samples. Principal components analysis (PCA) was performed on deformation fields between different motion states. Gaussian kernel regression and linear extrapolation were used to predict PCA coefficients of future motion states for breathing motion (340 ms ahead of acquisition) and slow drifting motion (8.5 s ahead of acquisition) respectively. k-space data from the remaining five-minutes was used to compare ground truth motions states obtained from retrospective reconstruction/deformation with predictions. Median distances between predicted and ground truth centroid positions of gross tumor volume (GTV) and organs at risk (OARs) were less than 1 mm on average. 95- percentile Hausdorff distances between predicted and ground truth GTV contours of various breathing motions states were 2 mm on average, which was smaller than the imaging resolution and 95-percentile Hausdorff distances between predicted and ground truth OAR contours of different slow drifting motion states were less than 0.2 mm. These results suggest that multi-temporal resolution motion models are capable of volumetric predictions of breathing and slow drifting motion with sufficient accuracy and temporal resolution for MRI-based tracking, and thus have potential for supporting MRI-guided abdominal radiotherapy.
Collapse
Affiliation(s)
- Lianli Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America.,Department of Radiation Oncology, Stanford University, Palo Alto, CA 94304, United States of America
| | - Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE 75185, United States of America.,Department of Surgical Sciences, Uppsala University, Uppsala, SE 75185, United States of America
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
28
|
Liu L, Johansson A, Cao Y, Kashani R, Lawrence TS, Balter JM. Modeling intra-fractional abdominal configuration changes using breathing motion-corrected radial MRI. Phys Med Biol 2021; 66. [PMID: 33725676 DOI: 10.1088/1361-6560/abef42] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Abdominal organ motions introduce geometric uncertainties to gastrointestinal radiotherapy. This study investigated slow drifting motion induced by changes of internal anatomic organ arrangements using a 3D radial MRI sequence with a scan length of 20 min. Breathing motion and cyclic GI motion were first removed through multi-temporal resolution image reconstruction. Slow drifting motion analysis was performed using an image time series consisting of 72 image volumes with a temporal sampling rate of 17 s. B-spline deformable registration was performed to align image volumes of the time series to a reference volume. The resulting deformation fields were used for motion velocity evaluation and patient-specific motion model construction through principal component analysis (PCA). Geometric uncertainties introduced by slow drifting motion were assessed by Hausdorff distances between unions of organs at risk (OARs) at different motion states and reference OAR contours as well as probabilistic distributions of OARs predicted using the PCA model. Thirteen examinations from 11 patients were included in this study. The averaged motion velocities ranged from 0.8 to 1.9 mm min-1, 0.7 to 1.6 mm min-1, 0.6 to 2.0 mm min-1and 0.7 to 1.4 mm min-1for the small bowel, colon, duodenum and stomach respectively; the averaged Hausdorff distances were 5.6 mm, 5.3 mm, 5.1 mm and 4.6 mm. On average, a margin larger than 4.5 mm was needed to cover a space with OAR occupancy probability higher than 55%. Temporal variations of geometric uncertainties were evaluated by comparing across four 5 min sub-scans extracted from the full scan. Standard deviations of Hausdorff distances across sub-scans were less than 1 mm for most examinations, indicating stability of relative margin estimates from separate time windows. These results suggested slow drifting motion of GI organs is significant and geometric uncertainties introduced by such motion should be accounted for during radiotherapy planning and delivery.
Collapse
Affiliation(s)
- Lianli Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America.,Department of Radiation Oncology, Stanford University, Palo Alto, CA 94304, United States of America
| | - Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE 75185, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, SE 75185, Sweden
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America.,Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States of America.,Department of biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Rojano Kashani
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
29
|
Zhang Y, Kashani R, Cao Y, Lawrence TS, Johansson A, Balter JM. A hierarchical model of abdominal configuration changes extracted from golden angle radial magnetic resonance imaging. Phys Med Biol 2021; 66:045018. [PMID: 33361579 PMCID: PMC7993537 DOI: 10.1088/1361-6560/abd66e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abdominal organs are subject to a variety of physiological forces that superimpose their effects to influence local motion and configuration. These forces not only include breathing, but can also arise from cyclic antral contractions and a range of slow configuration changes. To elucidate each individual motion pattern as well as their combined effects, a hierarchical motion model was built for characterization of these 3 motion modes (characterized as deformation maps between states) using golden angle radial MR signals. Breathing motions are characterized first. Antral contraction states are then reconstructed after breathing motion-induced deformation are corrected; slow configuration change states are further extracted from breathing motion-corrected image reconstructions. The hierarchical model is established based on these multimodal states, which can be either individually shown or combined to demonstrate any arbitrary composited motion patterns. The model was evaluated using 20 MR scans acquired from 9 subjects. Poor reproducibility of breathing motions both within as well as between scan sessions was observed, with an average intra-subject difference of 1.6 cycles min-1 for average breathing frequencies of 12.0 cycles min-1. Antral contraction frequency distributions were more stable than breathing, but also presented poor reproducibility between scans with an average difference of 0.3 cycles min-1 for average frequencies of 3.2 cycles min-1. The magnitudes of motions beyond breathing were found to be significant, with 14.4 and 33.8 mm maximal motions measured from antral contraction and slow configuration changes, respectively. Hierarchical motion models have potential in multiple applications in radiotherapy, including improving the accuracy of dose delivery estimation, providing guidance for margin creation, and supporting advanced decisions and strategies for immobilization, treatment monitoring and gating.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
| | - Rojano Kashani
- Department of Radiation Oncology, University of Michigan, United States of America
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
- Department of Radiology, University of Michigan, United States of America
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, United States of America
| | - Adam Johansson
- Department of Surgical Sciences, Uppsala University, Sweden
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
| |
Collapse
|
30
|
Lee M, Simeonov A, Stanescu T, Dawson LA, Brock KK, Velec M. MRI evaluation of normal tissue deformation and breathing motion under an abdominal compression device. J Appl Clin Med Phys 2021; 22:90-97. [PMID: 33449447 PMCID: PMC7882116 DOI: 10.1002/acm2.13165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/12/2022] Open
Abstract
Purpose Abdominal compression can minimize breathing motion in stereotactic radiotherapy, though it may impact the positioning of dose‐limiting normal tissues. This study quantified the reproducibility of abdominal normal tissues and respiratory motion with the use of an abdominal compression device using MR imaging. Methods Twenty healthy volunteers had repeat MR over 3 days under an abdominal compression plate device. Normal tissues were delineated on daily axial T2‐weighted MR and compared on days 2 and 3 relative to day 1, after adjusting for baseline shifts relative to bony anatomy. Inter‐fraction organ deformation was computed using deformable registration of axial T2 images. Deformation > 5 mm was assumed to be clinically relevant. Inter‐fraction respiratory amplitude changes and intra‐fraction baseline drifts during imaging were quantified on daily orthogonal cine‐MR (70 s each), and changes > 3 mm were assumed to be relevant. Results On axial MR, the mean inter‐fraction normal tissue deformation was > 5 mm for all organs (range 5.1–13.4 mm). Inter‐fraction compression device misplacements > 5 mm and changes in stomach volume > 50% occurred at a rate of 93% and 38%, respectively, in one or more directions and were associated with larger adjacent organ deformation, in particular for the duodenum. On cine‐MR, inter‐fraction amplitude changes > 3 mm on day 2 and 3 relative to day 1 occurred at a rate of < 12.5% (mean superior–inferior change was 1.6 mm). Intra‐fraction baseline drifts > 3 mm during any cine‐MR acquisition occurred at a rate of 23% (mean superior–inferior changes was 2.4 mm). Conclusions Respiratory motion under abdominal compression is reproducible in most subjects within 3 mm. However, inter‐fraction deformations greater than 5 mm in normal tissues were common and larger than inter‐ and intra‐fraction respiratory changes. Deformations were driven mostly by variable stomach contents and device positioning. The magnitude of this motion may impact normal tissue dosimetry during stereotactic radiotherapy.
Collapse
Affiliation(s)
- Maureen Lee
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Anna Simeonov
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Teo Stanescu
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,TECHNA Institute, University Health Network, 100 College Street, Toronto, ON, M5G 1L5, Canada
| | - Laura A Dawson
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Velec
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,TECHNA Institute, University Health Network, 100 College Street, Toronto, ON, M5G 1L5, Canada
| |
Collapse
|
31
|
Liauw SL, Ni L, Wu T, Arif F, Cloutier D, Posner MC, Kozloff M, Kindler HL. A prospective trial of stereotactic body radiation therapy for unresectable pancreatic cancer testing ablative doses. J Gastrointest Oncol 2020; 11:1399-1407. [PMID: 33457009 DOI: 10.21037/jgo-20-187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background We explored the safety and efficacy of ablative doses of stereotactic body radiation therapy (SBRT) for unresectable pancreatic cancer. Methods This phase I/II trial included patients with unresectable pancreatic cancer previously treated with any number of cycles of induction chemotherapy. Patients were enrolled according to a 3+3 dose escalation design at 10, 12.5, and 15 Gy ×3, with subsequent patients at the maximally tolerated dose (MTD). Treatment was delivered to gross tumor delineated with MRI fusion using image-guidance to fiducial markers. Dose-limiting toxicity (DLT) was defined as grade 3+ toxicity within 30 days. Secondary endpoints included late gastrointestinal (GI) toxicity, freedom from local failure (FFLF), and survival. Results Fifteen patients received a median 10 cycles of chemotherapy. There were no DLTs, and the MTD was 15 Gy ×3. Thirty-day toxicity included grade 2 nausea (46%) and grade 2 diarrhea (7%). Median survival after SBRT was 12.8 months (23 months after diagnosis) and median relapse-free survival was 7 months. At 1-year, FFLF was 80%. Four patients had grade 3+ GI bleeding after 30 days (median 6 months). Grade 3+ GI bleeding was associated with tumor volume (P=0.01), heterogeneity of dose within the planning target volume (PTV) (V120, P=0.03), and duodenal dose (V26-30 Gy, P<0.2). Conclusions This aggressive SBRT regimen demonstrated limited 30-day morbidity, a moderate degree of local control, and a moderate risk for late GI bleeding. Further work is necessary to define the most appropriate hypofractionated radiation therapy (RT) regimen in the ablative dose range.
Collapse
Affiliation(s)
- Stanley L Liauw
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Lisa Ni
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Tianming Wu
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Fauzia Arif
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Denise Cloutier
- Department of Radiation Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Mitchell C Posner
- Department of Surgical Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Mark Kozloff
- Department of Medical Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Hedy L Kindler
- Department of Medical Oncology, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
32
|
Hu Q, Yu VY, Yang Y, Hu P, Sheng K, Lee PP, Kishan AU, Raldow AC, O'Connell DP, Woods KE, Cao M. Practical Safety Considerations for Integration of Magnetic Resonance Imaging in Radiation Therapy. Pract Radiat Oncol 2020; 10:443-453. [PMID: 32781246 DOI: 10.1016/j.prro.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
Interest in integrating magnetic resonance imaging (MRI) in radiation therapy (RT) practice has increased dramatically in recent years owing to its unique advantages such as excellent soft tissue contrast and capability of measuring biological properties. Continuous real-time imaging for intrafractional motion tracking without ionizing radiation serves as a particularly attractive feature for applications in RT. Despite its many advantages, the integration of MRI in RT workflows is not straightforward, with many unmet needs. MR safety remains one of the key challenges and concerns in the clinical implementation of MR simulators and MR-guided radiation therapy systems in radiation oncology. Most RT staff are not accustomed to working in an environment with a strong magnetic field. There are specific requirements in RT that are different from diagnostic applications. A large variety of implants and devices used in routine RT practice do not have clear MR safety labels. RT-specific imaging pulse sequences focusing on fast acquisition, high spatial integrity, and continuous, real-time acquisition require additional MR safety testing and evaluation. This article provides an overview of MR safety tailored toward RT staff, followed by discussions on specific requirements and challenges associated with MR safety in the RT environment. Strategies and techniques for developing an MR safety program specific to RT are presented and discussed.
Collapse
Affiliation(s)
- Qiongge Hu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Victoria Y Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yingli Yang
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Peng Hu
- Department of Radiology, University of California, Los Angeles, California
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Percy P Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Ann C Raldow
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Dylan P O'Connell
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Kaley E Woods
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California.
| |
Collapse
|
33
|
Keiper TD, Tai A, Chen X, Paulson E, Lathuilière F, Bériault S, Hébert F, Cooper DT, Lachaine M, Li XA. Feasibility of real‐time motion tracking using cine MRI during MR‐guided radiation therapy for abdominal targets. Med Phys 2020; 47:3554-3566. [DOI: 10.1002/mp.14230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Timothy D. Keiper
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | - An Tai
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | - Xinfeng Chen
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | - Eric Paulson
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| | | | | | - François Hébert
- Elekta 2050 Rue de Bleury Suite 200 Montréal QC H3A 2J5 Canada
| | - David T. Cooper
- Elekta 2050 Rue de Bleury Suite 200 Montréal QC H3A 2J5 Canada
| | - Martin Lachaine
- Elekta 2050 Rue de Bleury Suite 200 Montréal QC H3A 2J5 Canada
| | - X. Allen Li
- Department of Radiation Oncology Medical College of Wisconsin 8701 Watertown Plank Rd Milwaukee WI 53226 USA
| |
Collapse
|
34
|
Li G, Liu Y, Nie X. Respiratory-Correlated (RC) vs. Time-Resolved (TR) Four-Dimensional Magnetic Resonance Imaging (4DMRI) for Radiotherapy of Thoracic and Abdominal Cancer. Front Oncol 2019; 9:1024. [PMID: 31681573 PMCID: PMC6798178 DOI: 10.3389/fonc.2019.01024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
Recent technological and clinical advancements of both respiratory-correlated (RC) and time-resolved (TR) four-dimensional magnetic resonance imaging (4DMRI) techniques are reviewed in light of tumor/organ motion simulation, monitoring, and assessment in radiotherapy. For radiotherapy of thoracic and abdominal cancer, respiratory-induced tumor motion, and motion variation due to breathing irregularities are the major uncertainties in treatment. RC-4DMRI is developed to assess tumor motion for treatment planning, whereas TR-4DMRI is developed to assess both motion and motion variation for treatment planning, delivery and assessment. RC-4DMRI is reconstructed to provide one-breathing-cycle motion, similar to 4D computed tomography (4DCT), the current clinical standard, but with higher soft-tissue contrast, no ionizing radiation, and less binning artifacts due to the use of an internal respiratory surrogate. Recent studies have shown that its spatial resolution has reached or exceeded that of 4DCT and scanning time becomes clinically acceptable. TR-4DMRI is recently developed with an adequate spatiotemporal resolution to assess tumor motion and motion variations for treatment simulation, delivery and assessment. The super-resolution approach is most promising since it can image any organ/body motion, whereas RC-4D MRI are limited to resolve only respiration-induced motion and some TR-4DMRI approaches may more or less depend on RC-4DMRI. TR-4DMRI provides multi-breath motion data that are useful not only in MR-guided radiotherapy but also for building a patient-specific motion model to guide radiotherapy treatment using an non-MR-equipped linear accelerator. Based on 4DMRI motion data, motion-corrected dynamic contrast imaging and diffusion-weighted imaging have also been reported, aiming to facilitate tumor delineation for more accurate radiotherapy targeting. Both RC- and TR-4DMRI have been evaluated for potential clinical applications, such as delineation of tumor volumes, where sufficiently high spatial resolution and large field-of-view are required. The 4DMRI techniques are promising to play a role in motion assessment in radiotherapy treatment planning, delivery, assessment, and adaptation.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | |
Collapse
|
35
|
|