1
|
da Silva TF, Glória RDA, de Sousa TJ, Americo MF, Freitas ADS, Viana MVC, de Jesus LCL, da Silva Prado LC, Daniel N, Ménard O, Cochet MF, Dupont D, Jardin J, Borges AD, Fernandes SOA, Cardoso VN, Brenig B, Ferreira E, Profeta R, Aburjaile FF, de Carvalho RDO, Langella P, Le Loir Y, Cherbuy C, Jan G, Azevedo V, Guédon É. Comprehensive probiogenomics analysis of the commensal Escherichia coli CEC15 as a potential probiotic strain. BMC Microbiol 2023; 23:364. [PMID: 38008714 PMCID: PMC10680302 DOI: 10.1186/s12866-023-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Jesus de Sousa
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinicius Canário Viana
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Nathalie Daniel
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Olivia Ménard
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Marie-Françoise Cochet
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Didier Dupont
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Julien Jardin
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Amanda Dias Borges
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg-August Universität Göttingen, Göttingen, Germany
| | - Enio Ferreira
- Department of general pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Figueira Aburjaile
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Veterinary school, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Yves Le Loir
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Claire Cherbuy
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Gwénaël Jan
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Éric Guédon
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France.
| |
Collapse
|
2
|
Rothstein AP, Jesser KJ, Feistel DJ, Konstantinidis KT, Trueba G, Levy K. Population genomics of diarrheagenic Escherichia coli uncovers high connectivity between urban and rural communities in Ecuador. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105476. [PMID: 37392822 PMCID: PMC10599324 DOI: 10.1016/j.meegid.2023.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Human movement may be an important driver of transmission dynamics for enteric pathogens but has largely been underappreciated except for international 'travelers' diarrhea or cholera. Phylodynamic methods, which combine genomic and epidemiological data, are used to examine rates and dynamics of disease matching underlying evolutionary history and biogeographic distributions, but these methods often are not applied to enteric bacterial pathogens. We used phylodynamics to explore the phylogeographic and evolutionary patterns of diarrheagenic E. coli in northern Ecuador to investigate the role of human travel in the geographic distribution of strains across the country. Using whole genome sequences of diarrheagenic E. coli isolates, we built a core genome phylogeny, reconstructed discrete ancestral states across urban and rural sites, and estimated migration rates between E. coli populations. We found minimal structuring based on site locations, urban vs. rural locality, pathotype, or clinical status. Ancestral states of phylogenomic nodes and tips were inferred to have 51% urban ancestry and 49% rural ancestry. Lack of structuring by location or pathotype E. coli isolates imply highly connected communities and extensive sharing of genomic characteristics across isolates. Using an approximate structured coalescent model, we estimated rates of migration among circulating isolates were 6.7 times larger for urban towards rural populations compared to rural towards urban populations. This suggests increased inferred migration rates of diarrheagenic E. coli from urban populations towards rural populations. Our results indicate that investments in water and sanitation prevention in urban areas could limit the spread of enteric bacterial pathogens among rural populations.
Collapse
Affiliation(s)
- Andrew P. Rothstein
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kelsey J. Jesser
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Dorian J. Feistel
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Maguire M, Ramachandran P, Tallent S, Mammel MK, Brown EW, Allard MW, Musser SM, González-Escalona N. Precision metagenomics sequencing for food safety: hybrid assembly of Shiga toxin-producing Escherichia coli in enriched agricultural water. Front Microbiol 2023; 14:1221668. [PMID: 37720160 PMCID: PMC10500926 DOI: 10.3389/fmicb.2023.1221668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
Culture-independent metagenomic sequencing of enriched agricultural water could expedite the detection and virulotyping of Shiga toxin-producing Escherichia coli (STEC). We previously determined the limits of a complete, closed metagenome-assembled genome (MAG) assembly and of a complete, fragmented MAG assembly for O157:H7 in enriched agricultural water using long reads (Oxford Nanopore Technologies, Oxford), which were 107 and 105 CFU/ml, respectively. However, the nanopore assemblies did not have enough accuracy to be used in Single Nucleotide Polymorphism (SNP) phylogenies and cannot be used for the precise identification of an outbreak STEC strain. The present study aimed to determine the limits of detection and assembly for STECs in enriched agricultural water by Illumina MiSeq sequencing technology alone, followed by establishing the limit of hybrid assembly with nanopore long-read sequencing using three different hybrid assemblers (SPAdes, Unicycler, and OPERA-MS). We also aimed to generate a genome with enough accuracy to be used in a SNP phylogeny. The classification of MiSeq and nanopore sequencing identified the same highly abundant species. Using the totality of the MiSeq output and a precision metagenomics approach in which the E. coli reads are binned before assembly, the limit of detection and assembly of STECs by MiSeq were determined to be 105 and 107 CFU/ml, respectively. While a complete, closed MAG could not be generated at any concentration, a complete, fragmented MAG was produced using the SPAdes assembler with an STEC concentration of at least 107 CFU/ml. At this concentration, hybrid assembled contigs aligned to the nanopore-assembled genome could be accurately placed in a neighbor-joining tree. The MiSeq limit of detection and assembly was less sensitive than nanopore sequencing, which was likely due to factors including the small starting material (50 vs. 1 μg) and the dilution of the library loaded on the cartridge. This pilot study demonstrates that MiSeq sequencing requires higher coverage in precision metagenomic samples; however, with sufficient concentration, STECs can be characterized and phylogeny can be accurately determined.
Collapse
Affiliation(s)
- Meghan Maguire
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Sandra Tallent
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Mark K. Mammel
- Office of Applied Research and Safety Assessment, Food and Drug Administration, College Park, MD, United States
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Marc W. Allard
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Steven M. Musser
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Narjol González-Escalona
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| |
Collapse
|
4
|
Sváb D, Falgenhauer L, Mag T, Chakraborty T, Tóth I. Genomic Diversity, Virulence Gene, and Prophage Arrays of Bovine and Human Shiga Toxigenic and Enteropathogenic Escherichia coli Strains Isolated in Hungary. Front Microbiol 2022; 13:896296. [PMID: 35865933 PMCID: PMC9294531 DOI: 10.3389/fmicb.2022.896296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli belonging to the enterohemorrhagic (EHEC), Shiga toxin-producing (STEC) and atypical enteropathogenic (aEPEC) pathotypes are significant foodborne zoonotic pathogens posing serious health risks, with healthy cattle as their main reservoir. A representative sampling of Hungarian cattle farms during 2017-2018 yielded a prevalence of 6.5 and 5.8% for STEC and aEPEC out of 309 samples. The draft genomes of twelve STEC (of them 9 EHEC) and four aEPEC of bovine origin were determined. For comparative purposes, we also included 3 EHEC and 2 aEPEC strains of human origin, as well four commensal isolates and one extraintestinal pathogenic E. coli (ExPEC) obtained from animals in a final set of 26 strains for a WGS-based analysis. Apart from key virulence genes, these isolates harbored several additional virulence genes with arrays characteristic for the site of isolation. The most frequent insertion site of Shiga toxin (stx) encoding prophages was yehV for the Stx1 prophage and wrbA and sbcB for Stx2. For O157:H7 strains, the locus of enterocyte effacement pathogenicity island was present at the selC site, with integration at pheV for other serotypes, and pheU in the case of O26:H11 strains. Several LEE-negative STEC and aEPEC as well as commensal isolates carried additional prophages, with an average of ten prophage regions per isolate. Comparative phylogenomic analysis showed no clear separation between bovine and human lineages among the isolates characterized in the current study. Similarities in virulence gene arrays and close phylogenetic relations of bovine and human isolates underline the zoonotic potential of bovine aEPEC and STEC and emphasize the need for frequent monitoring of these pathogens in livestock.
Collapse
Affiliation(s)
- Domonkos Sváb
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Tünde Mag
- National Public Health Center, Budapest, Hungary
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - István Tóth
- Veterinary Medical Research Institute, Budapest, Hungary
| |
Collapse
|
5
|
Madoroba E, Malokotsa KP, Ngwane C, Lebelo S, Magwedere K. Presence and Virulence Characteristics of Shiga Toxin Escherichia coli and Non-Shiga Toxin-Producing Escherichia coli O157 in Products from Animal Protein Supply Chain Enterprises in South Africa. Foodborne Pathog Dis 2022; 19:386-393. [PMID: 35512735 PMCID: PMC9245721 DOI: 10.1089/fpd.2021.0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Consumption of food that is contaminated with Shiga toxin-producing Escherichia coli (STEC) has been linked to serious foodborne disease outbreaks. Our aim was to provide a descriptive study on the presence and virulence factors of STEC and non-STEC O157 isolates recovered from 2017 diverse meat and meat product samples from all provinces of South Africa (n = 1758) and imported meat from South Africa's major ports of entry (n = 259). A cross-sectional study was undertaken to analyze raw intact meat, raw processed (nonintact) meat, and ready-to-eat (RTE) meat from cattle, game, sheep, pork, and poultry. Isolation was performed using International Organization for Standardization-based microbiological techniques, while detection and characterization were performed using real-time PCR (RT-PCR) and conventional PCR targeting the stx1, stx2, eae, and ehxA genes. A total of 28 of 1758 (1.59%; confidence interval [CI] 1.1-2) samples from the domestic market tested positive (n = 10 Escherichia coli O157:H7; n = 14 Escherichia coli O157: non-H7; and n = 4 non-O157 STEC), while 4/259 (1.54%; CI 0.4-4) samples from ports of entry tested positive for Escherichia coli O157:H7 based on RT-PCR. On average, diverse samples from domestic meat and meat products from cattle showed the highest number of positive samples (22/1758; 1.3%; CI 0.8-2). RT-PCR detected more positive samples (n = 32) compared with culture (n = 17). Sixteen different virulence factor combinations were observed. Our findings demonstrate a relatively low presence of diverse STEC strains along the meat value chain. To our knowledge, this is the first extensive report in South Africa to analyze STEC and non-STEC O157 from local and imported samples from many animal species. This is important as it reveals virulence factors in STEC strains circulating in meat and meat products in South Africa, which contribute to the risk of infection.
Collapse
Affiliation(s)
- Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Keneiloe Portia Malokotsa
- Bacteriology Section, Agricultural Research Council–Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Cynthia Ngwane
- Agricultural Research Council—Biometry Unit, Onderstepoort, South Africa
| | - Sogolo Lebelo
- Agriculture and Life Sciences, University of South Africa, Florida, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| |
Collapse
|
6
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
7
|
Detection of virulence gene of Shiga toxin-producing Escherichia coli (STEC) strains from animals with diarrhoea and water samples in the North-West Province, South Africa. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Dias D, Costa S, Fonseca C, Baraúna R, Caetano T, Mendo S. Pathogenicity of Shiga toxin-producing Escherichia coli (STEC) from wildlife: Should we care? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152324. [PMID: 34915011 DOI: 10.1016/j.scitotenv.2021.152324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the most frequent bacterial agents associated with food-borne outbreaks in Europe. In humans, the infection can lead to life-threatening diseases. Domestic and wild animals can harbor STEC, and ruminants are the main STEC reservoirs, although asymptomatic. In the present study we have characterized STEC from wildlife (wild boar (n = 56), red deer (n = 101), red fox (n = 37) and otter (n = 92)). Cultivable STEC (n = 52) were isolated from 17% (n = 49) of the faecal samples. All the isolates were non-O157 STEC encoding stx1 (n = 2; 4%) and/or stx2 genes (n = 51; 98%). Only one strain (2%) isolated from red fox had an antibiotic resistant phenotype. However, when the normalized resistance interpretation of epidemiological cutoffs (NRI ECOFFs) were used, 23% (n = 12) of the strains were non-wildtype to at least one of the antibiotics tested. After analysis by pulsed-field gel electrophoresis (PFGE), 20 strains were selected for whole genome sequencing and belonged to the following serotypes: O27:H30 (n = 15), O146:H28 (n = 2), O146:H21 (n = 1), O178:H19 (n = 1), and O103:H2 (n = 1). In addition to stx, all strains encode several virulence factors such as toxins, adhesins, fimbriae and secretion systems, among others. All sequenced genomes carried several mobile genetic elements (MGEs), such as prophages and/or plasmids. The core genome and the phylogenetic analysis showed close evolutionary relationships between some of the STEC recovered from wildlife and strains of clinical origin, highlighting their pathogenic potential. Overall, our results show the zoonotic potential of STEC strains originating from wildlife, highlighting the importance of monitoring their genomic characteristics following a One Health perspective, in which the health of humans is related to the health of animals, and the environment.
Collapse
Affiliation(s)
- Diana Dias
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sávio Costa
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Fonseca
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Rafael Baraúna
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
| | - Tânia Caetano
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Zhang X, Payne M, Kaur S, Lan R. Improved Genomic Identification, Clustering, and Serotyping of Shiga Toxin-Producing Escherichia coli Using Cluster/Serotype-Specific Gene Markers. Front Cell Infect Microbiol 2022; 11:772574. [PMID: 35083165 PMCID: PMC8785982 DOI: 10.3389/fcimb.2021.772574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have more than 470 serotypes. The well-known STEC O157:H7 serotype is a leading cause of STEC infections in humans. However, the incidence of non-O157:H7 STEC serotypes associated with foodborne outbreaks and human infections has increased in recent years. Current detection and serotyping assays are focusing on O157 and top six (“Big six”) non-O157 STEC serogroups. In this study, we performed phylogenetic analysis of nearly 41,000 publicly available STEC genomes representing 460 different STEC serotypes and identified 19 major and 229 minor STEC clusters. STEC cluster-specific gene markers were then identified through comparative genomic analysis. We further identified serotype-specific gene markers for the top 10 most frequent non-O157:H7 STEC serotypes. The cluster or serotype specific gene markers had 99.54% accuracy and more than 97.25% specificity when tested using 38,534 STEC and 14,216 non-STEC E. coli genomes, respectively. In addition, we developed a freely available in silico serotyping pipeline named STECFinder that combined these robust gene markers with established E. coli serotype specific O and H antigen genes and stx genes for accurate identification, cluster determination and serotyping of STEC. STECFinder can assign 99.85% and 99.83% of 38,534 STEC isolates to STEC clusters using assembled genomes and Illumina reads respectively and can simultaneously predict stx subtypes and STEC serotypes. Using shotgun metagenomic sequencing reads of STEC spiked food samples from a published study, we demonstrated that STECFinder can detect the spiked STEC serotypes, accurately. The cluster/serotype-specific gene markers could also be adapted for culture independent typing, facilitating rapid STEC typing. STECFinder is available as an installable package (https://github.com/LanLab/STECFinder) and will be useful for in silico STEC cluster identification and serotyping using genome data.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Morita S, Sato S, Maruyama S, Nagasaka M, Murakami K, Inada K, Uchiumi M, Yokoyama E, Asakura H, Sugiyama H, Takai S, Maeda K, Kabeya H. Whole-genome sequence analysis of Shiga toxin-producing Escherichia coli O157 strains isolated from wild deer and boar in Japan. J Vet Med Sci 2021; 83:1860-1868. [PMID: 34629335 PMCID: PMC8762402 DOI: 10.1292/jvms.21-0454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevalence of Shiga toxin-producing Escherichia coli O157 (STEC O157) strains in wild deer and boar in Japan was investigated. STEC O157 strains were isolated from 1.9% (9/474) of the wild deer and 0.7% (3/426) of the wild boar examined. Pulsed-field gel electrophoresis (PFGE) analysis classified the wild deer and boar strains into four and three PFGE patterns, respectively. The PFGE pattern of one wild boar strain was similar to that of a cattle strain that had been isolated from a farm in the same area the wild boar was caught, suggesting that a STEC O157 strain may have been transmitted between wild boar and cattle. Clade analysis indicated that, although most of the strains were classified in clade 12, two strains were classified in clade 7. Whole-genome sequence (WGS) analysis indicated that all the strains carried mdfA, a drug resistance gene for macrolide antibiotics, and also pathogenicity-related genes similar to those in the Sakai strain. In conclusion, our study emphasized the importance of food hygiene in processing meat from Japanese wild animals for human consumption.
Collapse
Affiliation(s)
- Satoshi Morita
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Shingo Sato
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Mariko Nagasaka
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Kou Murakami
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Kazuya Inada
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Masako Uchiumi
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases
| | - Shinji Takai
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Disease
| | - Hidenori Kabeya
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| |
Collapse
|
11
|
Richter L, du Plessis EM, Duvenage S, Allam M, Ismail A, Korsten L. Whole Genome Sequencing of Extended-Spectrum- and AmpC- β-Lactamase-Positive Enterobacterales Isolated From Spinach Production in Gauteng Province, South Africa. Front Microbiol 2021; 12:734649. [PMID: 34659162 PMCID: PMC8517129 DOI: 10.3389/fmicb.2021.734649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase- (AmpC) producing Enterobacterales in irrigation water and associated irrigated fresh produce represents risks related to the environment, food safety, and public health. In South Africa, information about the presence of ESBL/AmpC-producing Enterobacterales from non-clinical sources is limited, particularly in the water-plant-food interface. This study aimed to characterize 19 selected MDR ESBL/AmpC-producing Escherichia coli (n=3), Klebsiella pneumoniae (n=5), Serratia fonticola (n=10), and Salmonella enterica (n=1) isolates from spinach and associated irrigation water samples from two commercial spinach production systems within South Africa, using whole genome sequencing (WGS). Antibiotic resistance genes potentially encoding resistance to eight different classes were present, with bla CTX-M-15 being the dominant ESBL encoding gene and bla ACT-types being the dominant AmpC encoding gene detected. A greater number of resistance genes across more antibiotic classes were seen in all the K. pneumoniae strains, compared to the other genera tested. From one farm, bla CTX-M-15-positive K. pneumoniae strains of the same sequence type 985 (ST 985) were present in spinach at harvest and retail samples after processing, suggesting successful persistence of these MDR strains. In addition, ESBL-producing K. pneumoniae ST15, an emerging high-risk clone causing nosocomical outbreaks worldwide, was isolated from irrigation water. Known resistance plasmid replicon types of Enterobacterales including IncFIB, IncFIA, IncFII, IncB/O, and IncHI1B were observed in all strains following analysis with PlasmidFinder. However, bla CTX-M-15 was the only β-lactamase resistance gene associated with plasmids (IncFII and IncFIB) in K. pneumoniae (n=4) strains. In one E. coli and five K. pneumoniae strains, integron In191 was observed. Relevant similarities to human pathogens were predicted with PathogenFinder for all 19 strains, with a confidence of 0.635-0.721 in S. fonticola, 0.852-0.931 in E. coli, 0.796-0.899 in K. pneumoniae, and 0.939 in the S. enterica strain. The presence of MDR ESBL/AmpC-producing E. coli, K. pneumoniae, S. fonticola, and S. enterica with similarities to human pathogens in the agricultural production systems reflects environmental and food contamination mediated by anthropogenic activities, contributing to the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Erika M. du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| |
Collapse
|
12
|
Clermont O, Condamine B, Dion S, Gordon DM, Denamur E. The E phylogroup of Escherichia coli is highly diverse and mimics the whole E. coli species population structure. Environ Microbiol 2021; 23:7139-7151. [PMID: 34431197 DOI: 10.1111/1462-2920.15742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
To get a global picture of the population structure of the Escherichia coli phylogroup E, encompassing the O157:H7 EHEC lineage, we analysed the whole genome of 144 strains isolated from various continents, hosts and lifestyles and representative of the phylogroup diversity. The strains possess 4331 to 5440 genes with a core genome of 2771 genes and a pangenome of 33 722 genes. The distribution of these genes among the strains shows an asymmetric U-shaped distribution. E phylogenetic strains have the largest genomes of the species, partly explained by the presence of mobile genetic elements. Sixty-eight lineages were delineated, some of them exhibiting extra-intestinal virulence genes and being virulent in the mouse sepsis model. Except for the EHEC lineages and the reference EPEC, EIEC and ETEC strains, very few strains possess intestinal virulence genes. Most of the strains were devoid of acquired resistance genes, but eight strains possessed extended-spectrum beta-lactamase genes. Human strains belong to specific lineages, some of them being virulent and antibiotic-resistant [sequence type complexes (STcs) 350 and 2064]. The E phylogroup mimics all the features of the species as a whole, a phenomenon already observed at the STc level, arguing for a fractal population structure of E. coli.
Collapse
Affiliation(s)
- Olivier Clermont
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
| | | | - Sara Dion
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
| | - David M Gordon
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| |
Collapse
|
13
|
Hu Y, Cui G, Fan Y, Liu Y, Zhou W, Huo S, Wu X, Song S, Cui X, Zhao L, Bai L, Cui S, He Z. Isolation and Characterization of Shiga Toxin-Producing Escherichia coli from Retail Beef Samples from Eight Provinces in China. Foodborne Pathog Dis 2021; 18:616-625. [PMID: 34403269 DOI: 10.1089/fpd.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
While Shiga toxin-producing Escherichia coli (STEC) is a major foodborne pathogen worldwide, data on the molecular and phylogenetic properties of STEC isolates from retail beef samples in China remain scant. Fresh retail beef samples (n = 1062) were collected from eight provinces, and STEC isolates were recovered and characterized. PCR data showed that more than 50% of the samples were stx positive, and 82 STEC isolates were recovered from 14.8% (79/535) stx-positive enriched broths. In contrast, all ciprofloxacin resistant isolates (n = 19) and 13 cefotaxime (CTX) resistant isolates were eae positive and belonged to three serotypes: O111:H8, O26:H11, or O157:H7. Point mutations in quinolone resistance-determining regions and plasmid-mediated quinolone resistance determinants were identified in 16 and 20 isolates, respectively. BlaCTX-M and a point mutation (C-42T) in ampC promoter were detected in 15 and 8 of the CTX resistant isolates, respectively. In addition, macrolide resistance gene mphA was identified in eight azithromycin resistant O111:H8 isolates and one O26:H11 isolate. Single nucleotide polymorphism analysis demonstrated that the O26 and O157 isolates had multiple origins, but the O111 isolates were closely related. Taken together, our data demonstrated that several sequence types associated with hemolytic uremic syndrome from the retail beef samples in China had developed into dangerous multidrug resistant pathogens. The resistant phenotype can facilitate their transmission among the farm animals and human beings when there is an antimicrobial selective pressure.
Collapse
Affiliation(s)
- Ying Hu
- Department of Food Science, College of Food Science, Southwest University, Chongqing, China
| | - Guangqing Cui
- Department of Microbiology, Shanxi Provincial Institute for Food and Drug Control, Taiyuan, China
| | - Yiling Fan
- Department of Microbiology, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Yan Liu
- Department of Microbiology, Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
| | - Wei Zhou
- Department of Microbiology, Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Zhengzhou, China
| | - Shengnan Huo
- Department of Microbiology, Shandong Institute for Food and Drug Control, Jinan, China
| | - Xin Wu
- Department of Microbiology, Jiang Xi Institute for Food Control, Nanchang, China
| | - Sheng Song
- Department of Microbiology, Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - Xuewen Cui
- Department of Microbiology, Microbiological Inspection Center, Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Linna Zhao
- Department of Food Science, The National Institutes for Food and Drug Control, Beijing, China
| | - Li Bai
- Department of Microbiology, Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shenghui Cui
- Department of Food Science, The National Institutes for Food and Drug Control, Beijing, China
| | - Zhifei He
- Department of Food Science, College of Food Science, Southwest University, Chongqing, China.,Department of Microbiology, Chongqing Engineering Research Center of Regional Food, Chongqing, China
| |
Collapse
|
14
|
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E, Lincopan N. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals (Basel) 2021; 11:ani11071845. [PMID: 34206206 PMCID: PMC8300192 DOI: 10.3390/ani11071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that cause food-borne diseases in humans, where cattle and derived products play a key role as reservoirs and vehicles. We analyzed the genomic data of STEC strains circulating at the livestock-food-human interface in South America, extracting clinically and epidemiologically relevant information (serotypes, virulome, resistance genes, sequence types, and phylogenomics). This study included 130 STEC genomes obtained from cattle (n = 51), beef (n = 48), and human (n = 31) samples. The successful expansion of O157:H7 (ST11) and non-O157 (ST16, ST21, ST223, ST443, ST677, ST679, ST2388) clones is highlighted, suggesting common activities, such as multilateral trade and travel. Circulating STEC strains analyzed exhibit high genomic diversity and harbor several genetic determinants associated with severe illness in humans, highlighting the need to establish official surveillance of this pathogen that should be focused on detecting molecular determinants of virulence and clonal relatedness, in the whole beef production chain. Abstract Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens responsible for causing food-borne diseases in humans. While South America has the highest incidence of human STEC infections, information about the genomic characteristics of the circulating strains is scarce. The aim of this study was to analyze genomic data of STEC strains isolated in South America from cattle, beef, and humans; predicting the antibiotic resistome, serotypes, sequence types (STs), clonal complexes (CCs) and phylogenomic backgrounds. A total of 130 whole genome sequences of STEC strains were analyzed, where 39.2% were isolated from cattle, 36.9% from beef, and 23.8% from humans. The ST11 was the most predicted (20.8%) and included O-:H7 (10.8%) and O157:H7 (10%) serotypes. The successful expansion of non-O157 clones such as ST16/CC29-O111:H8 and ST21/CC29-O26:H11 is highlighted, suggesting multilateral trade and travel. Virulome analyses showed that the predominant stx subtype was stx2a (54.6%); most strains carried ehaA (96.2%), iha (91.5%) and lpfA (77.7%) genes. We present genomic data that can be used to support the surveillance of STEC strains circulating at the livestock-food-human interface in South America, in order to control the spread of critical clones “from farm to table”.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Correspondence:
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago 8370007, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Víctor Martínez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Danny Fuentes-Castillo
- Departamento de Patología, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil;
| | - Elder Sano
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| |
Collapse
|
15
|
Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, Hoffmann M, Pettengill JB, Prasad AB, Tillman GE, Tyson GH, Klimke W. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 2021; 11:12728. [PMID: 34135355 PMCID: PMC8208984 DOI: 10.1038/s41598-021-91456-0] [Citation(s) in RCA: 486] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant public health threat. With the rise of affordable whole genome sequencing, in silico approaches to assessing AMR gene content can be used to detect known resistance mechanisms and potentially identify novel mechanisms. To enable accurate assessment of AMR gene content, as part of a multi-agency collaboration, NCBI developed a comprehensive AMR gene database, the Bacterial Antimicrobial Resistance Reference Gene Database and the AMR gene detection tool AMRFinder. Here, we describe the expansion of the Reference Gene Database, now called the Reference Gene Catalog, to include putative acid, biocide, metal, stress resistance genes, in addition to virulence genes and species-specific point mutations. Genes and point mutations are classified by broad functions, as well as more detailed functions. As we have expanded both the functional repertoire of identified genes and functionality, NCBI released a new version of AMRFinder, known as AMRFinderPlus. This new tool allows users the option to utilize only the core set of AMR elements, or include stress response and virulence genes, too. AMRFinderPlus can detect acquired genes and point mutations in both protein and nucleotide sequence. In addition, the evidence used to identify the gene has been expanded to include whether nucleotide or protein sequence was used, its location in the contig, and presence of an internal stop codon. These database improvements and functional expansions will enable increased precision in identifying AMR genes, linking AMR genotypes and phenotypes, and determining possible relationships between AMR, virulence, and stress response.
Collapse
Affiliation(s)
- Michael Feldgarden
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Julie Haendiges
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - James B Pettengill
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Arjun B Prasad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Glenn E Tillman
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Gregory H Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - William Klimke
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Projahn M, Lamparter MC, Ganas P, Goehler A, Lorenz-Wright SC, Maede D, Fruth A, Lang C, Schuh E. Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour. Int J Food Microbiol 2021; 347:109197. [PMID: 33895597 DOI: 10.1016/j.ijfoodmicro.2021.109197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe human illness, which are frequently linked to the consumption of contaminated beef or dairy products. However, recent outbreaks associated with contaminated flour and undercooked dough in the United States and Canada, highlight the potential of plant based food as transmission routes for STEC. In Germany STEC has been isolated from flour, but no cases of illness have been linked to flour. In this study, we characterized 123 STEC strains isolated from flour and flour products collected between 2015 and 2019 across Germany. In addition to determination of serotype and Shiga toxin subtype, whole genome sequencing (WGS) was used for isolates collected in 2018 to determine phylogenetic relationships, sequence type (ST), and virulence-associated genes (VAGs). We found a high diversity of serotypes including those frequently associated with human illness and outbreaks, such as O157:H7 (stx2c/d, eae), O145:H28 (stx2a, eae), O146:H28 (stx2b), and O103:H2 (stx1a, eae). Serotypes O187:H28 (ST200, stx2g) and O154:H31 (ST1892, stx1d) were most prevalent, but are rarely linked to human cases. However, WGS analysis revealed that these strains, as well as, O156:H25 (ST300, stx1a) harbour high numbers of VAGs, including eae, nleB and est1a/sta1. Although STEC-contaminated flour products have yet not been epidemiologically linked to human clinical cases in Germany, this study revealed that flour can serve as a vector for STEC strains with a high pathogenic potential. Further investigation is needed to determine the sources of STEC contamination in flour and flour products particularly in regards to these rare serotypes.
Collapse
Affiliation(s)
- Michaela Projahn
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Marina C Lamparter
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Petra Ganas
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - André Goehler
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Sandra C Lorenz-Wright
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Dietrich Maede
- Institute for Consumer Protection Saxony-Anhalt, Halle, Germany
| | - Angelika Fruth
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Christina Lang
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Elisabeth Schuh
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany.
| |
Collapse
|
17
|
Haendiges J, Jinneman K, Gonzalez-Escalona N. Choice of library preparation affects sequence quality, genome assembly, and precise in silico prediction of virulence genes in shiga toxin-producing Escherichia coli. PLoS One 2021; 16:e0242294. [PMID: 33761524 PMCID: PMC7990515 DOI: 10.1371/journal.pone.0242294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
Whole genome sequencing (WGS) provides essential public health information and is used worldwide for pathogen surveillance, epidemiology, and source tracking. Foodborne pathogens are often sequenced using rapid library preparation chemistries based on transposon technology; however, this method may miss random segments of genomes that can be important for accurate downstream analyses. As new technologies become available, it may become possible to achieve better overall coverage. Here we compare the sequence quality obtained using libraries prepared from the Nextera XT and Nextera DNA Prep (Illumina, San Diego, CA) chemistries for 31 Shiga toxin-producing Escherichia coli (STEC) O121:H19 strains, which had been isolated from flour during a 2016 outbreak. The Nextera DNA Prep gave superior performance metrics including sequence quality, assembly quality, uniformity of genome coverage, and virulence gene identification, among other metrics. Comprehensive detection of virulence genes is essential for making educated assessments of STECs virulence potential. The phylogenetic SNP analysis did not show any differences in the variants detected by either library preparation method which allows isolates prepared from either library method to be analysed together. Our comprehensive comparison of these chemistries should assist researchers wishing to improve their sequencing workflow for STECs and other genomic risk assessments.
Collapse
Affiliation(s)
- Julie Haendiges
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
- * E-mail: (JH); (NGE)
| | - Karen Jinneman
- Office of Regulatory Affairs, Food and Drug Administration, Bothell, Washington, United States of America
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
- * E-mail: (JH); (NGE)
| |
Collapse
|
18
|
Rubab M, Oh DH. Molecular Detection of Antibiotic Resistance Genes in Shiga Toxin-Producing E. coli Isolated from Different Sources. Antibiotics (Basel) 2021; 10:344. [PMID: 33804818 PMCID: PMC8063812 DOI: 10.3390/antibiotics10040344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen associated with human gastroenteritis outbreaks. Extensive use of antibiotics in agriculture selects resistant bacteria that may enter the food chain and potentially causes foodborne illnesses in humans that are less likely to respond to treatment with conventional antibiotics. Due to the importance of antibiotic resistance, this study aimed to investigate the combination of phenotypic and genotypic antibiotic resistance in STEC isolates belonging to serogroups O26, O45, O103, O104, O111, O121, O145, and O157 using disc diffusion and polymerase chain reaction (PCR), respectively. All strains were phenotypically resistant to at least one antibiotic, with 100% resistance to erythromycin, followed by gentamicin (98%), streptomycin (82%), kanamycin (76%), and ampicillin (72%). The distribution of antibiotic resistance genes (ARGs) in the STEC strains was ampC (47%), aadA1 (70%), ere(A) (88%), blaSHV (19%), blaCMY (27%), aac(3)-I (90%), and tet(A) (35%), respectively. The results suggest that most of the strains were multidrug-resistant (MDR) and the most often observed resistant pattern was of aadA1, ere(A), and aac(3)-I genes. These findings indicate the significance of monitoring the prevalence of MDR in both animals and humans around the globe. Hence, with a better understanding of antibiotic genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary.
Collapse
Affiliation(s)
- Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea;
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea;
| |
Collapse
|
19
|
Bogaerts B, Nouws S, Verhaegen B, Denayer S, Van Braekel J, Winand R, Fu Q, Crombé F, Piérard D, Marchal K, Roosens NHC, De Keersmaecker SCJ, Vanneste K. Validation strategy of a bioinformatics whole genome sequencing workflow for Shiga toxin-producing Escherichia coli using a reference collection extensively characterized with conventional methods. Microb Genom 2021; 7:mgen000531. [PMID: 33656437 PMCID: PMC8190621 DOI: 10.1099/mgen.0.000531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Whole genome sequencing (WGS) enables complete characterization of bacterial pathogenic isolates at single nucleotide resolution, making it the ultimate tool for routine surveillance and outbreak investigation. The lack of standardization, and the variation regarding bioinformatics workflows and parameters, however, complicates interoperability among (inter)national laboratories. We present a validation strategy applied to a bioinformatics workflow for Illumina data that performs complete characterization of Shiga toxin-producing Escherichia coli (STEC) isolates including antimicrobial resistance prediction, virulence gene detection, serotype prediction, plasmid replicon detection and sequence typing. The workflow supports three commonly used bioinformatics approaches for the detection of genes and alleles: alignment with blast+, kmer-based read mapping with KMA, and direct read mapping with SRST2. A collection of 131 STEC isolates collected from food and human sources, extensively characterized with conventional molecular methods, was used as a validation dataset. Using a validation strategy specifically adopted to WGS, we demonstrated high performance with repeatability, reproducibility, accuracy, precision, sensitivity and specificity above 95 % for the majority of all assays. The WGS workflow is publicly available as a 'push-button' pipeline at https://galaxy.sciensano.be. Our validation strategy and accompanying reference dataset consisting of both conventional and WGS data can be used for characterizing the performance of various bioinformatics workflows and assays, facilitating interoperability between laboratories with different WGS and bioinformatics set-ups.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stéphanie Nouws
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga toxin-producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga toxin-producing Escherichia coli (NRL STEC), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Julien Van Braekel
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Raf Winand
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Florence Crombé
- National Reference Center for Shiga toxin-producing Escherichia coli (NRC STEC), Brussels, Belgium
| | - Denis Piérard
- National Reference Center for Shiga toxin-producing Escherichia coli (NRC STEC), Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Genetics, University of Pretoria, Pretoria, South-Africa
| | | | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
20
|
Sánchez F, Fuenzalida V, Ramos R, Escobar B, Neira V, Borie C, Lapierre L, López P, Venegas L, Dettleff P, Johnson T, Fuentes-Castillo D, Lincopan N, Galarce N. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health 2021; 68:226-238. [PMID: 33619864 DOI: 10.1111/zph.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes severe illness in humans, often associated with foodborne outbreaks. Antimicrobial resistance among foodborne E. coli has increased over the last decades becoming a public health issue. In this study, the presence and features of STEC were investigated in samples of meat, seafood, vegetables and ready-to-eat street-vended food collected in Chile, using a genomic and microbiological approach. Phenotypic and genotypic antimicrobial resistance profiles were determined, and serotype, phylogroup, sequence type (ST) and phylogenomics were predicted using bioinformatic tools. Three thousand three hundred samples collected in 2019 were screened, of which 18 were positive for STEC strains (0.5%), with stx2a (61.1%) being the predominant stx subtype. The presence of the virulence genes lpfA (100%), iha and ehaA (94.4%), and ehxA, hlyA and saa (83.3%) was confirmed among the STEC strains; the Locus of adhesion and autoaggregation (LAA) was predicted in 14 (77.8%) strains. Strains displayed resistance to colistin (100%), and intermediate resistance to enrofloxacin (11.1%) and chloramphenicol (5.6%). In this regard, mutations in the two-component regulatory system genes pmrA (S29G), pmrB (D283G) and phoP (I44L), and the presence of the qnrB19 gene were confirmed. STEC strains belonged to ST11231 (38.9%), ST297 and ST58 (16.7% each), and ST1635, ST11232, ST446, ST442 and ST54 (5.6% each), and the most frequently detected serotypes were O113:H21 (44.4%), O130:H11 and O116:H21 (16.7% each), and O174:H21 (11.1%). Strains belonging to the international ST58 showed genomic relatedness with worldwide strains from human and non-human sources. Our study reports for the first time the genomic profile of STEC strains isolated from food in Chile, highlighting the presence of international clones and sequence types commonly associated with human infections in different geographical regions, as well as the convergence of virulence and resistance in STEC lineages circulating in this country.
Collapse
Affiliation(s)
- Fernando Sánchez
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile.,Programa de Magíster en Ciencias Animales y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Verónica Fuenzalida
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Romina Ramos
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Víctor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Consuelo Borie
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Lisette Lapierre
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Paulina López
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Lucas Venegas
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Phillip Dettleff
- Laboratorio FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Fomento de la Producción Animal, Universidad de Chile, Santiago, Chile.,Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago, Chile
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, MI, USA
| | - Danny Fuentes-Castillo
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patología, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Nicolás Galarce
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Genome Informatics and Machine Learning-Based Identification of Antimicrobial Resistance-Encoding Features and Virulence Attributes in Escherichia coli Genomes Representing Globally Prevalent Lineages, Including High-Risk Clonal Complexes. mBio 2021; 13:e0379621. [PMID: 35164570 PMCID: PMC8844930 DOI: 10.1128/mbio.03796-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli, a ubiquitous commensal/pathogenic member from the Enterobacteriaceae family, accounts for high infection burden, morbidity, and mortality throughout the world. With emerging multidrug resistance (MDR) on a massive scale, E. coli has been listed as one of the Global Antimicrobial Resistance and Use Surveillance System (GLASS) priority pathogens. Understanding the resistance mechanisms and underlying genomic features appears to be of utmost importance to tackle further spread of these multidrug-resistant superbugs. While a few of the globally prevalent sequence types (STs) of E. coli, such as ST131, ST69, ST405, and ST648, have been previously reported to be highly virulent and harboring MDR, there is no clarity if certain ST lineages have a greater propensity to acquire MDR. In this study, large-scale comparative genomics of a total of 5,653 E. coli genomes from 19 ST lineages revealed ST-wide prevalence patterns of genomic features, such as antimicrobial resistance (AMR)-encoding genes/mutations, virulence genes, integrons, and transposons. Interpretation of the importance of these features using a Random Forest Classifier trained with 11,988 genomic features from whole-genome sequence data identified ST-specific or phylogroup-specific signature proteins mostly belonging to different protein superfamilies, including the toxin-antitoxin systems. Our study provides a comprehensive understanding of a myriad of genomic features, ST-specific proteins, and resistance mechanisms entailing different lineages of E. coli at the level of genomes; this could be of significant downstream importance in understanding the mechanisms of AMR, in clinical discovery, in epidemiology, and in devising control strategies. IMPORTANCE With the leap in whole-genome data being generated, the application of relevant methods to mine biologically significant information from microbial genomes is of utmost importance to public health genomics. Machine-learning methods have been used not only to mine, curate, or classify the data but also to identify the relevant features that could be linked to a particular class/target. This is perhaps one of the pioneering studies that has attempted to classify a large repertoire of E. coli genome data sets (5,653 genomes) belonging to 19 different STs (including well-studied as well as understudied STs) using machine learning approaches. Important features identified by these approaches have revealed ST-specific signature proteins, which could be further studied to predict possible associations with the phenotypic profiles, thereby providing a better understanding of virulence and the resistance mechanisms among different clonal lineages of E. coli.
Collapse
|
22
|
Eybpoosh S, Mostaan S, Gouya MM, Masoumi-Asl H, Owlia P, Eshrati B, Montazer Razavi Khorasan MR, Bouzari S. Frequency of five Escherichia Coli pathotypes in Iranian adults and children with acute diarrhea. PLoS One 2021; 16:e0245470. [PMID: 33539359 PMCID: PMC7861387 DOI: 10.1371/journal.pone.0245470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background Knowledge about the distribution of Escherichia Coli (E. coli) pathotypes in Iran is limited. This nation-wide survey aims to provide a comprehensive description of the distribution of five pathogenic E. coli in Iran. Methods Stool samples were collected from 1,306 acute diarrhea cases from 15 provinces (2013–2014). E. coli-positive cultures underwent PCR testing for the detection of STEC, ETEC, EPEC, EAEC, and EIEC pathotypes. Pathotype frequency by province, age-group, and season was estimated. Results 979 diarrhea samples (75.0%) were culture-positive for E. coli (95% CI: 72.6, 77.3%), and 659 (50.5%) were pathogenic E. coli (95% CI: 47.8, 53.2%). STEC was the most frequent pathotype (35.4%). ETEC (14.0%) and EPEC (13.1%) were the second and the third most frequent pathotypes, respectively. EAEC (4.3%) and EIEC (0.3%) were not highly prevalent. Fars (88.7%) and Khorasan-e-Razavi (34.8%) provinces had the highest and lowest frequencies, respectively. E. coli pathotypes were more frequent in warmer than cooler seasons, showed the highest frequency among children under five years of age (73%), and had no significant association with participants’ gender. Conclusions Diarrheagenic E. coli may be an important cause of acute diarrhea in adults and children in Iran. STEC and ETEC seem to be widespread in the country with a peak in warmer seasons, impacting the recommended use of seasonal STEC and ETEC vaccines, especially in high-risk groups. Monitoring the incidence of E. coli pathotypes, serotypes, and antibiotic resistance over time is highly recommended for evaluation of interventions.
Collapse
Affiliation(s)
- Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Mostaan
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mehdi Gouya
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Masoumi-Asl
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Babak Eshrati
- Center for Preventive Medicine, Department of Social Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
23
|
Su Z, Zhang L, Sun H, Hu Y, Fanning S, Du P, Cui S, Bai L. Characterization of Non-O157 Shiga Toxin-Producing Escherichia coli Cultured from Cattle Farms in Xinjiang Uygur Autonomous Region, China, During 2016-2017. Foodborne Pathog Dis 2021; 18:761-770. [PMID: 33524305 DOI: 10.1089/fpd.2020.2843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Most outbreaks of Shiga toxin-producing Escherichia coli (STEC) are attributed to consumption of contaminated foodstuffs including beef and dairy products. In this study, we evaluated the prevalence of non-O157 STEC cultured from beef and dairy cattle and collected in Xinjiang Uygur Autonomous Region in China. Results identified 67 non-O157 STEC recovered from the 793 samples including beef cattle (10.28%, 43/418) and dairy cattle (6.40%, 24/375). A total of 67 non-O157 STEC was sequenced allowing for in silico analyses of their serotypes, virulence genes, and identification of the corresponding multilocus sequence types (STs). Twenty-one O serogroups and nine H serotypes were identified and the dominant serotype identified was O22:H8. One stx1 subtype (stx1a) and four stx2 subtypes (2a, 2b, 2c, and 2d) were found in the 67 non-O157 STEC isolates. The results revealed that stx1a+stx2a-positive STEC isolates were predominant (32.83%, 22/67), followed by stx1a+stx2d (29.85%, 20/67) and stx2a alone (17.91%, 12/67). Non-O157 STEC isolates carried virulence genes ehxA (98.51%), subA (53.73%), and cdtB (17.91%). Of the four adherence-associated genes tested, eaeA was absent, whereas lpfA and iha were present in 67 and 55 non-O157 STEC isolates, respectively. The STEC isolates were divided into 48 pulsed-field gel electrophoresis patterns and 10 STs, and ST446 (O22:H8) was the dominant clone (22.38%). Our results revealed that there was a high genetic diversity among non-O157 STEC isolated from beef and dairy cattle, some of which have potential to cause human diseases.
Collapse
Affiliation(s)
- Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang Uygur Autonomous Region, China
| | - Ling Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang Uygur Autonomous Region, China.,National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Honghu Sun
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,Food Microbiology Lab, Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Ying Hu
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China.,School of Public Health, Zunyi Medical University, Zunyi, China
| | - Séamus Fanning
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Cui
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China
| | - Li Bai
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
24
|
Liu Y, Li H, Chen X, Tong P, Zhang Y, Zhu M, Su Z, Yao G, Li G, Cai W. Characterization of Shiga toxin-producing Escherichia coli isolated from Cattle and Sheep in Xinjiang province, China, using whole-genome sequencing. Transbound Emerg Dis 2021; 69:413-422. [PMID: 33480086 DOI: 10.1111/tbed.13999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 11/29/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important food-borne pathogen capable of causing severe gastrointestinal diseases in humans. Cattle and sheep are the natural reservoir hosts of STEC strains. Previously, we isolated 56 STEC strains from anal and carcass swab samples of cattle and sheep in farms and slaughterhouses. In this study, we performed whole-genome sequencing of these isolates and determined their serotypes, virulence profiles, sequence types (STs) and genetic relationships. Our results showed that the 56 isolates belong to 20 different STs, 29 O:H serotypes and 8 stx subtype combinations. The highly prevalent serotypes for bovine and ovine isolates were O8:H25 and O87:H16, respectively. Five serotypes of cattle or sheep isolates are novel. The majority (63%) of cattle isolates contain stx1 + stx2, subtyped into stx1a, stx2a and stx2c. In contrast, most of the sheep isolates contain stx1 only, primarily subtyped into stx1a and stx1c. None of the isolates tested eae-positive, but virulence factors such as ehxA and espP were present with variable prevalence rates. The prevalence of saa (19.6%) and espP (12.5%) in cattle isolates is much higher than that in sheep isolates, whereas that of subA (34%), katP (14.3%) and ireA (28.6%) in sheep isolates is considerably higher than that in cattle isolates. Core-genome SNP analysis revealed that the majority of isolates could be clustered based on their serotypes or STs, whereas some clustering is associated with more than one ST or serotype. Five sheep isolates (4 belonging to ST675 and serotype O76:H19 and 1 belonging to ST25 and serotype O128:H2) share STs, serotypes and stx profiles with two hemolytic uremic syndrome-associated enterohemorrhagic E. coli (HUSEC) isolates; a cattle isolate belonging to the same ST as HUSEC isolate HUSEC001 contains all the nine virulence genes tested. These data suggest a potential of the six isolates for causing severe human infections. Collectively, we described the characteristics of cattle and sheep STEC isolates from Xinjiang, China, which may be utilized in comparative studies of other geographic regions and sources of isolation, and for surveillance as well.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Huoming Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuhua Chen
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yan Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Mingyue Zhu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ganwu Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Wentong Cai
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
25
|
Precision long-read metagenomics sequencing for food safety by detection and assembly of Shiga toxin-producing Escherichia coli in irrigation water. PLoS One 2021; 16:e0245172. [PMID: 33444384 PMCID: PMC7808635 DOI: 10.1371/journal.pone.0245172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) contamination of agricultural water might be an important factor to recent foodborne illness and outbreaks involving leafy greens. Closed bacterial genomes from whole genome sequencing play an important role in source tracking. We aimed to determine the limits of detection and classification of STECs by qPCR and nanopore sequencing using 24 hour enriched irrigation water artificially contaminated with E. coli O157:H7 (EDL933). We determined the limit of STEC detection by qPCR to be 30 CFU/reaction, which is equivalent to 105 CFU/ml in the enrichment. By using Oxford Nanopore's EPI2ME WIMP workflow and de novo assembly with Flye followed by taxon classification with a k-mer analysis software (Kraken2), E. coli O157:H7 could be detected at 103 CFU/ml (68 reads) and a complete fragmented E. coli O157:H7 metagenome-assembled genome (MAG) was obtained at 105-108 CFU/ml. Using a custom script to extract the E. coli reads, a completely closed MAG was obtained at 107-108 CFU/ml and a complete, fragmented MAG was obtained at 105-106 CFU/ml. In silico virulence detection for E. coli MAGs for 105-108 CFU/ml showed that the virulotype was indistinguishable from the spiked E. coli O157:H7 strain. We further identified the bacterial species in the un-spiked enrichment, including antimicrobial resistance genes, which could have important implications to food safety. We propose this workflow provides proof of concept for faster detection and complete genomic characterization of STECs from a complex microbial sample compared to current reporting protocols and could be applied to determine the limit of detection and assembly of other foodborne bacterial pathogens.
Collapse
|
26
|
Harrison LM, Lacher DW, Mammel MK, Leonard SR. Comparative Transcriptomics of Shiga Toxin-Producing and Commensal Escherichia coli and Cytokine Responses in Colonic Epithelial Cell Culture Infections. Front Cell Infect Microbiol 2020; 10:575630. [PMID: 33194815 PMCID: PMC7649339 DOI: 10.3389/fcimb.2020.575630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Ingestion of Shiga toxin-producing Escherichia coli (STEC) can result in a range of illness severity from asymptomatic to hemorrhagic colitis and death; thus risk assessment of STEC strains for human pathogenicity is important in the area of food safety. Illness severity depends in part on the combination of virulence genes carried in the genome, which can vary between strains even of identical serotype. To better understand how core genes are regulated differently among strains and to identify possible novel STEC virulence gene candidates that could be added to the risk assessment repertoire, we used comparative transcriptomics to investigate global gene expression differences between two STEC strains associated with severe illness and a commensal E. coli strain during in vitro intestinal epithelial cell (IEC) infections. Additionally, we compared a wide array of concomitant cytokine levels produced by the IECs. The cytokine expression levels were examined for a pattern representing STEC pathogenicity; however, while one STEC strain appeared to elicit a proinflammatory response, infection by the other strain produced a pattern comparable to the commensal E. coli. This result may be explained by the significant differences in gene content and expression observed between the STEC strains. RNA-Seq analysis revealed considerable disparity in expression of genes in the arginine and tryptophan biosynthesis/import pathways between the STEC strains and the commensal E. coli strain, highlighting the important role some amino acids play in STEC colonization and survival. Contrasting differential expression patterns were observed for genes involved in respiration among the three strains suggesting that metabolic diversity is a strategy utilized to compete with resident microflora for successful colonization. Similar temporal expression results for known and putative virulence genes were observed in the STEC strains, revealing strategies used for survival prior to and after initial adherence to IECs. Additionally, three genes encoding hypothetical proteins located in mobile genetic elements were, after interrogation of a large set of E. coli genomes, determined to likely represent novel STEC virulence factors.
Collapse
Affiliation(s)
- Lisa M Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - David W Lacher
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Susan R Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
27
|
Nouws S, Bogaerts B, Verhaegen B, Denayer S, Piérard D, Marchal K, Roosens NHC, Vanneste K, De Keersmaecker SCJ. Impact of DNA extraction on whole genome sequencing analysis for characterization and relatedness of Shiga toxin-producing Escherichia coli isolates. Sci Rep 2020; 10:14649. [PMID: 32887913 PMCID: PMC7474065 DOI: 10.1038/s41598-020-71207-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/11/2020] [Indexed: 01/28/2023] Open
Abstract
Whole genome sequencing (WGS) has proven to be the ultimate tool for bacterial isolate characterization and relatedness determination. However, standardized and harmonized workflows, e.g. for DNA extraction, are required to ensure robust and exchangeable WGS data. Data sharing between (inter)national laboratories is essential to support foodborne pathogen control, including outbreak investigation. This study evaluated eight commercial DNA preparation kits for their potential influence on: (i) DNA quality for Nextera XT library preparation; (ii) MiSeq sequencing (data quality, read mapping against plasmid and chromosome references); and (iii) WGS data analysis, i.e. isolate characterization (serotyping, virulence and antimicrobial resistance genotyping) and phylogenetic relatedness (core genome multilocus sequence typing and single nucleotide polymorphism analysis). Shiga toxin-producing Escherichia coli (STEC) was selected as a case study. Overall, data quality and inferred phylogenetic relationships between isolates were not affected by the DNA extraction kit choice, irrespective of the presence of confounding factors such as EDTA in DNA solution buffers. Nevertheless, completeness of STEC characterization was, although not substantially, influenced by the plasmid extraction performance of the kits, especially when using Nextera XT library preparation. This study contributes to addressing the WGS challenges of standardizing protocols to support data portability and to enable full exploitation of its potential.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium.,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium.,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | |
Collapse
|
28
|
He L, Simpson DJ, Gänzle MG. Detection of enterohaemorrhagic Escherichia coli in food by droplet digital PCR to detect simultaneous virulence factors in a single genome. Food Microbiol 2020; 90:103466. [DOI: 10.1016/j.fm.2020.103466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
|
29
|
Abstract
Escherichia coli is a commensal of the vertebrate gut that is increasingly involved in various intestinal and extra-intestinal infections as an opportunistic pathogen. Numerous pathotypes that represent groups of strains with specific pathogenic characteristics have been described based on heterogeneous and complex criteria. The democratization of whole-genome sequencing has led to an accumulation of genomic data that render possible a population phylogenomic approach to the emergence of virulence. Few lineages are responsible for the pathologies compared with the diversity of commensal strains. These lineages emerged multiple times during E. coli evolution, mainly by acquiring virulence genes located on mobile elements, but in a specific chromosomal phylogenetic background. This repeated emergence of stable and cosmopolitan lineages argues for an optimization of strain fitness through epistatic interactions between the virulence determinants and the remaining genome.
Collapse
|
30
|
Antimicrobial-resistant Shiga-toxin producing Escherichia coli Isolated from Ready-to-Eat Meat Products and Fermented Milk Sold in the Formal and Informal Sectors in Harare, Zimbabwe. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
31
|
Shu X, Singh M, Karampudi NBR, Bridges DF, Kitazumi A, Wu VCH, De los Reyes BG. Xenobiotic Effects of Chlorine Dioxide to Escherichia coli O157:H7 on Non-host Tomato Environment Revealed by Transcriptional Network Modeling: Implications to Adaptation and Selection. Front Microbiol 2020; 11:1122. [PMID: 32582084 PMCID: PMC7286201 DOI: 10.3389/fmicb.2020.01122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli serotype O157:H7 is one of the major agents of pathogen outbreaks associated with fresh fruits and vegetables. Gaseous chlorine dioxide (ClO2) has been reported to be an effective intervention to eliminate bacterial contamination on fresh produce. Although remarkable positive effects of low doses of ClO2 have been reported, the genetic regulatory machinery coordinating the mechanisms of xenobiotic effects and the potential bacterial adaptation remained unclear. This study examined the temporal transcriptome profiles of E. coli O157:H7 during exposure to different doses of ClO2 in order to elucidate the genetic mechanisms underlying bacterial survival under such harsh conditions. Dosages of 1 μg, 5 μg, and 10 μg ClO2 per gram of tomato fruits cause different effects with dose-by-time dynamics. The first hour of exposure to 1 μg and 5 μg ClO2 caused only partial killing with significant growth reduction starting at the second hour, and without further significant reduction at the third hour. However, 10 μg ClO2 exposure led to massive bacterial cell death at 1 h with further increase in cell death at 2 and 3 h. The first hour exposure to 1 μg ClO2 caused activation of primary defense and survival mechanisms. However, the defense response was attenuated during the second and third hours. Upon treatment with 5 μg ClO2, the transcriptional networks showed massive downregulation of pathogenesis and stress response genes at the first hour of exposure, with decreasing number of differentially expressed genes at the second and third hours. In contrast, more genes were further downregulated with exposure to 10 μg ClO2 at the first hour, with the number of both upregulated and downregulated genes significantly decreasing at the second hour. A total of 810 genes were uniquely upregulated at the third hour at 10 μg ClO2, suggesting that the potency of xenobiotic effects had led to potential adaptation. This study provides important knowledge on the possible selection of target molecules for eliminating bacterial contamination on fresh produce without overlooking potential risks of adaptation.
Collapse
Affiliation(s)
- Xiaomei Shu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Manavi Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | | - David F. Bridges
- Produce Safety and Microbiology Research, Western Regional Research Center, United States Department of Agriculture – Agricultural Research Service, Albany, CA, United States
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vivian C. H. Wu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
- Produce Safety and Microbiology Research, Western Regional Research Center, United States Department of Agriculture – Agricultural Research Service, Albany, CA, United States
| | | |
Collapse
|
32
|
Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Sci Rep 2020; 10:3275. [PMID: 32094410 PMCID: PMC7040016 DOI: 10.1038/s41598-020-60225-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. The increasing incidence of non-O157 STEC has posed a great risk to public health. Besides the Shiga toxin (Stx), the adherence factor, intimin, coded by eae gene plays a critical role in STEC pathogenesis. In this study, we investigated the prevalence and polymorphisms of eae gene in non-O157 STEC strains isolated from different sources in China. Among 735 non-O157 STEC strains, eae was present in 70 (9.5%) strains. Eighteen different eae genotypes were identified in 62 eae-positive STEC strains with the nucleotide identities ranging from 86.01% to 99.97%. Among which, seven genotypes were newly identified in this study. The eighteen eae genotypes can be categorized into five eae subtypes, namely β1, γ1, ε1, ζ3 and θ. Associations between eae subtypes/genotypes and serotypes as well as origins of strains were observed in this study. Strains belonging to serotypes O26:H11, O103:H2, O111:H8 are associated with particular eae subtypes, i.e., β1, ε1, θ, respectively. Most strains from diarrheal patients (7/9, 77.8%) carried eae-β1 subtype, while most isolates from cattle (23/26, 88.5%) carried eae-ζ3 subtype. This study demonstrated a genetic diversity of eae gene in non-O157 STEC strains from different sources in China.
Collapse
|
33
|
Maria Ferreira Cavalcanti A, Tavanelli Hernandes R, Harummyy Takagi E, Ernestina Cabílio Guth B, de Lima Ori É, Regina Schicariol Pinheiro S, Sueli de Andrade T, Louzada Oliveira S, Cecilia Cergole-Novella M, Rodrigues Francisco G, dos Santos LF. Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil. Microorganisms 2020; 8:microorganisms8020171. [PMID: 31991731 PMCID: PMC7074907 DOI: 10.3390/microorganisms8020171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since no recent data characterizing Shiga toxin-producing E. coli (STEC) from human infections in Brazil are available, the present study aimed to investigate serotypes, stx genotypes, and accessory virulence genes, and also to perform pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) of 43 STEC strains recovered from 2007 to 2017. Twenty-one distinct serotypes were found, with serotype O111:H8 being the most common. However, serotypes less frequently reported in human diseases were also found and included a hybrid STEC/ETEC O100:H25 clone. The majority of the strains carried stx1a as the sole stx genotype and were positive for the eae gene. Regarding the occurrence of 28 additional virulence genes associated with plasmids and pathogenicity islands, a diversity of profiles was found especially among the eae-harboring strains, which had combinations of markers composed of up to 12 distinct genes. Although PFGE analysis demonstrated genetic diversity between serotypes such as O157:H7, O111:H8, O26:H11, O118:H16, and O123:H2, high genetic relatedness was found for strains of serotypes O24:H4 and O145:H34. MLST allowed the identification of 17 distinct sequence types (STs) with ST 16 and 21 being the most common ones. Thirty-five percent of the strains studied were not typeable by the currently used MLST approach, suggesting new STs. Although STEC O111:H8 remains the leading serotype in Brazil, a diversity of other serotypes, some carrying virulence genes and belonging to STs incriminated as causing severe disease, were found in this study. Further studies are needed to determine whether they have any epidemiological relevance.
Collapse
Affiliation(s)
- Adriene Maria Ferreira Cavalcanti
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Rodrigo Tavanelli Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Elizabeth Harummyy Takagi
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Beatriz Ernestina Cabílio Guth
- Departamento de Microbiologia, Imunologia, Parasitologia, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brasil;
| | - Érica de Lima Ori
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Sandra Regina Schicariol Pinheiro
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Tânia Sueli de Andrade
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Samara Louzada Oliveira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brasil; (R.T.H.); (S.L.O.)
| | - Maria Cecilia Cergole-Novella
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Gabriela Rodrigues Francisco
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
| | - Luís Fernando dos Santos
- Centro de Bacteriologia (National Reference Laboratory for STEC infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brasil; (A.M.F.C.); (E.H.T.); (S.R.S.P.); (T.S.d.A.); (M.C.C.-N.); (G.R.F.)
- Correspondence: ; Tel.: +55-11-3068-2896
| |
Collapse
|
34
|
Migura-Garcia L, González-López JJ, Martinez-Urtaza J, Aguirre Sánchez JR, Moreno-Mingorance A, Perez de Rozas A, Höfle U, Ramiro Y, Gonzalez-Escalona N. mcr-Colistin Resistance Genes Mobilized by IncX4, IncHI2, and IncI2 Plasmids in Escherichia coli of Pigs and White Stork in Spain. Front Microbiol 2020; 10:3072. [PMID: 32010114 PMCID: PMC6978640 DOI: 10.3389/fmicb.2019.03072] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023] Open
Abstract
Colistin has become the last-line antimicrobial for the treatment of multidrug resistant (MDR) Enterobacterales in human medicine. To date, several colistin resistance genes have been described. Of them mcr-1 is disseminated worldwide in Escherichia coli of human and animal origin. The aim of this study was to characterize mcr-mediated resistance plasmids from E. coli of animal origin in Spain. From our strain collection, 70 E. coli of pig origin collected between 2005 and 2014 (10 per year, except for years 2009–2010–2013) were randomly selected and screened for the presence of mcr-genes. Additionally, 20 E. coli isolated in 2011 from white storks (Ciconia ciconia) from the same urban household waste landfill associated colony were also included. Whole genome sequencing of mcr-positive isolates was carried out on a MiSeq (Illumina). Hybrid whole genome sequencing strategy combining nanopore and Illumina technologies were performed in a selection of isolates to close the genomes and plasmids and identify the presence of antimicrobial resistance genes. Minimum inhibitory concentration (MIC) was used to assess the susceptibility to colistin. Mating experiments were carried out to evaluate transferability of the mcr-genes. A total of 19 mcr-1 and one mcr-4 positive isolates were detected, 15 from pigs distributed during the study period, and five from storks collected in 2011. No other mcr-variants were found. The MICs for colistin ranged between 4 and >4 mg/L. High diversity of STs were detected among the mcr-1 positive E. coli isolates, with only ST-10 shared between pigs and white storks. Except for one isolate, all were genotypic and phenotypically MDR, and five of them also harbored cephalosporin resistance genes (blaCTX–M–14, blaSHV–12, and three blaCMY–2). mcr-1 genes were mobilizable by conjugation, associated with IncX4, IncHI2, and IncI2 plasmids. In our study, mcr-1 genes have been circulating in pig farms since 2005 harbored by a variety of E. coli clones. Its persistence may be driven by co-selection since plasmids containing mcr-1 also exhibit resistance to multiple drugs used in veterinary medicine. Furthermore, this is the first report of the presence of mcr-1 gene in isolates from white storks in Spain. This finding highlights the potential importance of wildlife that forage at urban household waste landfills in the transmission and spread of colistin resistance genes.
Collapse
Affiliation(s)
- Lourdes Migura-Garcia
- Centre de Recerca en Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain.,Research and Control of Emerging and Re-emerging Swine Diseases in Europe, OIE Collaborating Centre, CReSA, IRTA, Barcelona, Spain
| | - Juan J González-López
- Servei de Microbiologia, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, United Kingdom
| | - J R Aguirre Sánchez
- Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico.,Health and Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinégéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - A Moreno-Mingorance
- Servei de Microbiologia, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Perez de Rozas
- Centre de Recerca en Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinégéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Y Ramiro
- Health and Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinégéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | |
Collapse
|