1
|
Ponce TP, Bugança MDS, da Silva VS, de Souza RF, Moda-Cirino V, Tomaz JP. Differential Gene Expression in Contrasting Common Bean Cultivars for Drought Tolerance during an Extended Dry Period. Genes (Basel) 2024; 15:935. [PMID: 39062714 PMCID: PMC11276061 DOI: 10.3390/genes15070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Common beans (Phaseolus vulgaris L.), besides being an important source of nutrients such as iron, magnesium, and protein, are crucial for food security, especially in developing countries. Common bean cultivation areas commonly face production challenges due to drought occurrences, mainly during the reproductive period. Dry spells last approximately 20 days, enough time to compromise production. Hence, it is crucial to understand the genetic and molecular mechanisms that confer drought tolerance to improve common bean cultivars' adaptation to drought. Sixty six RNASeq libraries, generated from tolerant and sensitive cultivars in drought time sourced from the R5 phenological stage at 0 to 20 days of water deficit were sequenced, generated over 1.5 billion reads, that aligned to 62,524 transcripts originating from a reference transcriptome, as well as 6673 transcripts obtained via de novo assembly. Differentially expressed transcripts were functionally annotated, revealing a variety of genes associated with molecular functions such as oxidoreductase and transferase activity, as well as biological processes related to stress response and signaling. The presence of regulatory genes involved in signaling cascades and transcriptional control was also highlighted, for example, LEA proteins and dehydrins associated with dehydration protection, and transcription factors such as WRKY, MYB, and NAC, which modulate plant response to water deficit. Additionally, genes related to membrane and protein protection, as well as water and ion uptake and transport, were identified, including aquaporins, RING-type E3 ubiquitin transferases, antioxidant enzymes such as GSTs and CYPs, and thioredoxins. This study highlights the complexity of plant response to water scarcity, focusing on the functional diversity of the genes involved and their participation in the biological processes essential for plant adaptation to water stress. The identification of regulatory and cell protection genes offers promising prospects for genetic improvement aiming at the production of common bean varieties more resistant to drought. These findings have the potential to drive sustainable agriculture, providing valuable insights to ensure food security in a context of climate change.
Collapse
Affiliation(s)
- Talita Pijus Ponce
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Michely da Silva Bugança
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Victória Stern da Silva
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Vânia Moda-Cirino
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Juarez Pires Tomaz
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| |
Collapse
|
2
|
Peña Barrena LE, Mats L, Earl HJ, Bozzo GG. Phenylpropanoid Metabolism in Phaseolus vulgaris during Growth under Severe Drought. Metabolites 2024; 14:319. [PMID: 38921454 PMCID: PMC11205357 DOI: 10.3390/metabo14060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Drought limits the growth and development of Phaseolus vulgaris L. (known as common bean). Common bean plants contain various phenylpropanoids, but it is not known whether the levels of these metabolites are altered by drought. Here, BT6 and BT44, two white bean recombinant inbred lines (RILs), were cultivated under severe drought. Their respective growth and phenylpropanoid profiles were compared to those of well-irrigated plants. Both RILs accumulated much less biomass in their vegetative parts with severe drought, which was associated with more phaseollin and phaseollinisoflavan in their roots relative to well-irrigated plants. A sustained accumulation of coumestrol was evident in BT44 roots with drought. Transient alterations in the leaf profiles of various phenolic acids occurred in drought-stressed BT6 and BT44 plants, including the respective accumulation of two separate caftaric acid isomers and coutaric acid (isomer 1) relative to well-irrigated plants. A sustained rise in fertaric acid was observed in BT44 with drought stress, whereas the greater amount relative to well-watered plants was transient in BT6. Apart from kaempferol diglucoside (isomer 2), the concentrations of most leaf flavonol glycosides were not altered with drought. Overall, fine tuning of leaf and root phenylpropanoid profiles occurs in white bean plants subjected to severe drought.
Collapse
Affiliation(s)
- Luis Eduardo Peña Barrena
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (L.E.P.B.); (H.J.E.)
| | - Lili Mats
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada;
| | - Hugh J. Earl
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (L.E.P.B.); (H.J.E.)
| | - Gale G. Bozzo
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (L.E.P.B.); (H.J.E.)
| |
Collapse
|
3
|
Subramani M, Urrea CA, Tamatamu SR, Sripathi VR, Williams K, Chintapenta LK, Todd A, Ozbay G. Comprehensive Proteomic Analysis of Common Bean ( Phaseolus vulgaris L.) Seeds Reveal Shared and Unique Proteins Involved in Terminal Drought Stress Response in Tolerant and Sensitive Genotypes. Biomolecules 2024; 14:109. [PMID: 38254709 PMCID: PMC10813106 DOI: 10.3390/biom14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
This study identified proteomic changes in the seeds of two tolerant (SB-DT3 and SB-DT2) and two sensitive (Merlot and Stampede) common bean genotypes in response to terminal drought stress. Differentially expressed proteins (DEPs) were abundant in the susceptible genotype compared to the tolerant line. DEPs associated with starch biosynthesis, protein-chromophore linkage, and photosynthesis were identified in both genotypes, while a few DEPs and enriched biological pathways exhibited genotype-specific differences. The tolerant genotypes uniquely showed DEPs related to sugar metabolism and plant signaling, while the sensitive genotypes displayed more DEPs involved in plant-pathogen interaction, proteasome function, and carbohydrate metabolism. DEPs linked with chaperone and signal transduction were significantly altered between both genotypes. In summary, our proteomic analysis revealed both conserved and genotype-specific DEPs that could be used as targets in selective breeding and developing drought-tolerant common bean genotypes.
Collapse
Affiliation(s)
- Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Carlos A. Urrea
- Panhandle Research Extension and Education Center, University of Nebraska, 4502 Avenue I, Scottsbluff, NE 69361, USA;
| | - Sowjanya R. Tamatamu
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762, USA; (S.R.T.); (V.R.S.)
| | | | - Krystal Williams
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Lathadevi K. Chintapenta
- Biology Department, College of Arts and Sciences (CAS), University of Wisconsin-River Falls, River Falls, WI 54022, USA;
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Gulnihal Ozbay
- Department of Agriculture and Natural Resources, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
4
|
Mangena P, Mushadu PN. Colchicine-Induced Polyploidy in Leguminous Crops Enhances Morpho-Physiological Characteristics for Drought Stress Tolerance. Life (Basel) 2023; 13:1966. [PMID: 37895348 PMCID: PMC10607973 DOI: 10.3390/life13101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Legumes play a significant role in the alleviation of food insecurity, maintaining soil fertility, and achieving sustainable crop production under adverse environmental conditions. The increased demand in legume production contemplates that attention on the genetic improvement of these crops through various means such as genetic engineering and mutation breeding should take a centre stage in global agriculture. Therefore, this paper provides a succinct analysis of the currently available literature on morphological and physiological traits in polyploidised leguminous plants to counter the adverse effects of drought stress. The effects of colchicine on various morphological and physiological traits of polyploidised legumes compared to their diploid counterparts were examined. Numerous reports revealed variations in these traits, such as improved root and shoot growth, plant biomass, chloroplastidic content, protein, RNA, and DNA. The differences observed were also associated with the strong relationship between plant ploidy induction and colchicine application. Furthermore, the analysis indicated that polyploidisation remains dose-dependent and may be achievable within a shorter space of time as this antimitotic chemical interferes with chromosome separations in somatic plant cells. The efficiency of this process also depends on the advancement of treatment conditions (in vitro, in vivo, or ex vitro) and the successful regeneration of polyploidised plants for adaptation under drought stress conditions. As such, the improvement in metabolite profile and other essential growth characteristics serves as a clear indication that induced polyploidy needs to be further explored to confer resilience to environmental stress and improve crop yield under drought stress conditions in leguminous plants.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | | |
Collapse
|
5
|
Bansal R, Bana RS, Dikshit HK, Srivastava H, Priya S, Kumar S, Aski MS, Kumari NKP, Gupta S, Kumar S. Seed nutritional quality in lentil ( Lens culinaris) under different moisture regimes. Front Nutr 2023; 10:1141040. [PMID: 37396135 PMCID: PMC10313473 DOI: 10.3389/fnut.2023.1141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The world's most challenging environmental issue is climate change. Agricultural productivity and nutritional quality are both substantially threatened by extreme and unpredicted climate events. To develop climate resilient cultivars, stress tolerance along with the grain quality needs to be prioritized. Present study was planned to assess the effect of water limitation on seed quality in lentil, a cool season legume crop. A pot experiment was carried out with 20 diverse lentil genotypes grown under normal (80% field capacity) and limited (25% field capacity) soil moisture. Seed protein, Fe, Zn, phytate, protein and yield were recorded in both the conditions. Seed yield and weight were reduced by 38.9 and 12.1%, respectively, in response to stress. Seed protein, Fe, Zn, its availability as well as antioxidant properties also reduced considerably, while genotype dependent variation was noted with respect to seed size traits. Positive correlation was observed between seed yield and antioxidant activity, seed weight and Zn content and availability in stress. Based on principal component analysis and clustering, IG129185, IC559845, IC599829, IC282863, IC361417, IG334, IC560037, P8114 and L5126 were promising genotypes for seed size, Fe and protein content, while, FLIP-96-51, P3211 and IC398019 were promising for yield, Zn and antioxidant capacity. Identified lentil genotypes can be utilized as trait donors for quality improvement in lentil breeding.
Collapse
Affiliation(s)
- Ruchi Bansal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | - Swati Priya
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sunil Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Shiv Kumar
- International Center for Agriculture in Dryland Areas, Rabat, Morocco
| |
Collapse
|
6
|
Merchant A, Smith MR, Windt CW. In situ pod growth rate reveals contrasting diurnal sensitivity to water deficit in Phaseolus vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3774-3786. [PMID: 35323925 PMCID: PMC9162186 DOI: 10.1093/jxb/erac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The development of reproductive tissues determines plant fecundity and yield. Loading of resources into the developing reproductive tissue is thought to be under the co-limiting effects of source and sink strength. The dynamics of this co-limitation are unknown, largely due to an inability to measure the flux of resources into a developing sink. Here we use nuclear magnetic resonance (NMR) sensors to measure sink strength by quantifying rates of pod dry matter accumulation (pod loading) in Phaseolus vulgaris at 13-min intervals across the diel period. Rates of pod loading showed contrasting variation across light and dark periods during the onset of water deficit. In addition, rates of pod loading appeared decoupled from net photosynthetic rates when adjusted to the plant scale. Combined, these observations illustrate that the rate of pod development varies under water limitation and that continuous, non-invasive methodologies to measure sink strength provide insight into the governing processes that determine the development of reproductive tissues.
Collapse
Affiliation(s)
| | - Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Carel W Windt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
7
|
Smith MR, Dinglasan E, Veneklaas E, Polania J, Rao IM, Beebe SE, Merchant A. Effect of Drought and Low P on Yield and Nutritional Content in Common Bean. FRONTIERS IN PLANT SCIENCE 2022; 13:814325. [PMID: 35422826 PMCID: PMC9002355 DOI: 10.3389/fpls.2022.814325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Common bean (Phaseolus vulgaris L.) production in the tropics typically occurs in rainfed systems on marginal lands where yields are low, primarily as a consequence of drought and low phosphorus (P) availability in soil. This study aimed to investigate the physiological and chemical responses of 12 bush bean genotypes for adaptation to individual and combined stress factors of drought and low P availability. Water stress and P deficiency, both individually and combined, decreased seed weight and aboveground biomass by ∼80%. Water deficit and P deficiency decreased photosynthesis and stomatal conductance during plant development. Maximum rates of carboxylation, electron transport, and triose phosphate utilization were superior for two common bean genotypes (SEF60 and NCB226) that are better adapted to combined stress conditions of water deficit and low P compared to the commercial check (DOR390). In response to water deficit treatment, carbon isotope fractionation in the leaf tissue decreased at all developmental stages. Within the soluble leaf fraction, combined water deficit and low P, led to significant changes in the concentration of key nutrients and amino acids, whereas no impact was detected in the seed. Our results suggest that common bean genotypes have a degree of resilience in yield development, expressed in traits such as pod harvest index, and conservation of nutritional content in the seed. Further exploration of the chemical and physiological traits identified here will enhance the resilience of common bean production systems in the tropics.
Collapse
Affiliation(s)
- Millicent R. Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, QLD, Australia
| | - Erik Veneklaas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | | | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | - Andrew Merchant
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Soboleva A, Frolova N, Bureiko K, Shumilina J, Balcke GU, Zhukov VA, Tikhonovich IA, Frolov A. Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress. Int J Mol Sci 2022; 23:2726. [PMID: 35269869 PMCID: PMC8910736 DOI: 10.3390/ijms23052726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Julia Shumilina
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Gerd U. Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
9
|
Panzeri D, Guidi Nissim W, Labra M, Grassi F. Revisiting the Domestication Process of African Vigna Species (Fabaceae): Background, Perspectives and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040532. [PMID: 35214865 PMCID: PMC8879845 DOI: 10.3390/plants11040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 05/14/2023]
Abstract
Legumes are one of the most economically important and biodiverse families in plants recognised as the basis to develop functional foods. Among these, the Vigna genus stands out as a good representative because of its relatively recent African origin as well as its outstanding potential. Africa is a great biodiversity centre in which a great number of species are spread, but only three of them, Vigna unguiculata, Vigna subterranea and Vigna vexillata, were successfully domesticated. This review aims at analysing and valorising these species by considering the perspective of human activity and what effects it exerts. For each species, we revised the origin history and gave a focus on where, when and how many times domestication occurred. We provided a brief summary of bioactive compounds naturally occurring in these species that are fundamental for human wellbeing. The great number of wild lineages is a key point to improve landraces since the domestication process caused a loss of gene diversity. Their genomes hide a precious gene pool yet mostly unexplored, and genes lost during human activity can be recovered from the wild lineages and reintroduced in cultivated forms through modern technologies. Finally, we describe how all this information is game-changing to the design of future crops by domesticating de novo.
Collapse
Affiliation(s)
- Davide Panzeri
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| | - Werther Guidi Nissim
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Massimo Labra
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
| | - Fabrizio Grassi
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (W.G.N.); (M.L.)
- Correspondence: (D.P.); (F.G.)
| |
Collapse
|
10
|
Diaz S, Polania J, Ariza-Suarez D, Cajiao C, Grajales M, Raatz B, Beebe SE. Genetic Correlation Between Fe and Zn Biofortification and Yield Components in a Common Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 12:739033. [PMID: 35046970 PMCID: PMC8761845 DOI: 10.3389/fpls.2021.739033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption worldwide. It is a rich and relatively inexpensive source of proteins and micronutrients, especially iron and zinc. Bean is a target for biofortification to develop new cultivars with high Fe/Zn levels that help to ameliorate malnutrition mainly in developing countries. A strong negative phenotypic correlation between Fe/Zn concentration and yield is usually reported, posing a significant challenge for breeders. The objective of this study was to investigate the genetic relationship between Fe/Zn. We used Quantitative Trait Loci (QTLs) mapping and Genome-Wide Association Studies (GWAS) analysis in three bi-parental populations that included biofortified parents, identifying genomic regions associated with yield and micromineral accumulation. Significant negative correlations were observed between agronomic traits (pod harvest index, PHI; pod number, PdN; seed number, SdN; 100 seed weight, 100SdW; and seed per pod, Sd/Pd) and micronutrient concentration traits (SdFe and SdZn), especially between pod harvest index (PHI) and SdFe and SdZn. PHI presented a higher correlation with SdN than PdN. Seventy-nine QTLs were identified for the three populations: 14 for SdFe, 12 for SdZn, 13 for PHI, 11 for SdN, 14 for PdN, 6 for 100SdW, and 9 for Sd/Pd. Twenty-three hotspot regions were identified in which several QTLs were co-located, of which 13 hotpots displayed QTL of opposite effect for yield components and Fe/Zn accumulation. In contrast, eight QTLs for SdFe and six QTLs for SdZn were observed that segregated independently of QTL of yield components. The selection of these QTLs will enable enhanced levels of Fe/Zn and will not affect the yield performance of new cultivars focused on biofortification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen E. Beebe
- Bean Program, Crops for Health and Nutrition Area, Alliance Bioversity International – CIAT, Cali, Colombia
| |
Collapse
|
11
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
12
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
13
|
Muktadir MA, Adhikari KN, Ahmad N, Merchant A. Chemical composition and reproductive functionality of contrasting faba bean genotypes in response to water deficit. PHYSIOLOGIA PLANTARUM 2021; 172:540-551. [PMID: 33305355 DOI: 10.1111/ppl.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/05/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
Water deficit (WD), a major contributor to yield reductions in faba bean (Vicia faba), is a complex phenomenon that varies across daily to seasonal cycles. Several studies have identified various morphological and physiological indicators of WD tolerance, which generally show limited water use during WD. Limited information is available on the impact of WD on nutrient content and reproductive biology of the faba bean. We studied carbohydrates, amino acids, mineral nutrients and the abundance of naturally occurring carbon isotopes (δ13 C) in leaf and grain tissues of faba bean genotypes grown under well-watered (WW) and WD conditions. δ13 C of leaf tissues were found to indicate changes in water use due to WD but this was not reflected in grain tissues. Nutrient concentrations with regard to amino acids and minerals were not influenced by WD. However, carbohydrate accumulation was found to be significant for WD, specifically through the presence of a higher concentration of myo-inositol in WD leaf tissues. Alternatively, sucrose concentration in grain tissues was reduced under WD treatment. WD hampered reproductive functionality by reducing pollen viability and germination with the severity and duration of stress and this reduction was less prominent in the drought-tolerant genotype (AC0805#4912) compared to the sensitive one (11NF010c-4). It was also demonstrated that WD caused developmental impairment in the stamen and pistil, where the pistil appeared more sensitive than stamen. These findings suggest that WD impairs pollen viability and pistil function reducing yield volume, but the nutrient content of the resulting yield is not significantly affected.
Collapse
Affiliation(s)
- Md Abdul Muktadir
- Centre for Carbon Water and Food, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- IA Watson Grains Research Centre, Faculty of Science, The University of Sydney, Narrabri, New South Wales, Australia
- Pulses Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Kedar N Adhikari
- IA Watson Grains Research Centre, Faculty of Science, The University of Sydney, Narrabri, New South Wales, Australia
| | - Nabil Ahmad
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Andrew Merchant
- Centre for Carbon Water and Food, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
14
|
Leitão ST, Bicho MC, Pereira P, Paulo MJ, Malosetti M, Araújo SDS, van Eeuwijk F, Vaz Patto MC. Common bean SNP alleles and candidate genes affecting photosynthesis under contrasting water regimes. HORTICULTURE RESEARCH 2021; 8:4. [PMID: 33384448 PMCID: PMC7775448 DOI: 10.1038/s41438-020-00434-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/01/2023]
Abstract
Water deficit is a major worldwide constraint to common bean (Phaseolus vulgaris L.) production, being photosynthesis one of the most affected physiological processes. To gain insights into the genetic basis of the photosynthetic response of common bean under water-limited conditions, a collection of 158 Portuguese accessions was grown under both well-watered and water-deficit regimes. Leaf gas-exchange parameters were measured and photosynthetic pigments quantified. The same collection was genotyped using SNP arrays, and SNP-trait associations tested considering a linear mixed model accounting for the genetic relatedness among accessions. A total of 133 SNP-trait associations were identified for net CO2 assimilation rate, transpiration rate, stomatal conductance, and chlorophylls a and b, carotenes, and xanthophyll contents. Ninety of these associations were detected under water-deficit and 43 under well-watered conditions, with only two associations common to both treatments. Identified candidate genes revealed that stomatal regulation, protein translocation across membranes, redox mechanisms, hormone, and osmotic stress signaling were the most relevant processes involved in common bean response to water-limited conditions. These candidates are now preferential targets for common bean water-deficit-tolerance breeding. Additionally, new sources of water-deficit tolerance of Andean, Mesoamerican, and admixed origin were detected as accessions valuable for breeding, and not yet explored.
Collapse
Affiliation(s)
- Susana Trindade Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Maria Catarina Bicho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Priscila Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Marcos Malosetti
- Wageningen University & Research, Wageningen, The Netherlands
- Nunhems Vegetable Seeds, Nunhem, The Netherlands
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Association BLC3-Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, Lisboa, Portugal
| | | | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
15
|
Choukri H, Hejjaoui K, El-Baouchi A, El Haddad N, Smouni A, Maalouf F, Thavarajah D, Kumar S. Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil ( Lens culinaris Medikus). Front Nutr 2020; 7:596307. [PMID: 33330596 PMCID: PMC7719779 DOI: 10.3389/fnut.2020.596307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lentil (Lens culinaris Medikus) is a protein-rich cool-season food legume with an excellent source of protein, prebiotic carbohydrates, minerals, and vitamins. With climate change, heat, and drought stresses have become more frequent and intense in lentil growing areas with a strong influence on phenology, grain yield, and nutritional quality. This study aimed to assess the impact of heat and drought stresses on phenology, grain yield, and nutritional quality of lentil. For this purpose, 100 lentil genotypes from the global collection were evaluated under normal, heat, and combined heat-drought conditions. Analysis of variance revealed significant differences (p < 0.001) among lentil genotypes for phenological traits, yield components, and grain quality traits. Under no stress conditions, mineral concentrations among lentil genotypes varied from 48 to 109 mg kg−1 for iron (Fe) and from 31 to 65 mg kg−1 for zinc (Zn), while crude protein content ranged from 22.5 to 32.0%. Iron, zinc, and crude protein content were significantly reduced under stress conditions, and the effect of combined heat-drought stress was more severe than heat stress alone. A significant positive correlation was observed between iron and zinc concentrations under both no stress and stress conditions. Based on grain yield, crude protein, and iron and zinc concentrations, lentil genotypes were grouped into three clusters following the hierarchical cluster analysis. Promising lentil genotypes with high micronutrient contents, crude protein, and grain yield with the least effect of heat and drought stress were identified as the potential donors for biofortification in the lentil breeding program.
Collapse
Affiliation(s)
- Hasnae Choukri
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco.,International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kamal Hejjaoui
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco.,International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Adil El-Baouchi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Noureddine El Haddad
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco.,International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Faculté des Sciences, Centre de Recherche BioBio, University Mohammed V in Rabat, Rabat, Morocco
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Dil Thavarajah
- Plant and Environmental Sciences, Pulse Quality and Organic Breeding, Clemson University, Clemson, SC, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| |
Collapse
|
16
|
Tan XL, Azam-Ali S, Goh EV, Mustafa M, Chai HH, Ho WK, Mayes S, Mabhaudhi T, Azam-Ali S, Massawe F. Bambara Groundnut: An Underutilized Leguminous Crop for Global Food Security and Nutrition. Front Nutr 2020; 7:601496. [PMID: 33363196 PMCID: PMC7758284 DOI: 10.3389/fnut.2020.601496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Rapid population growth, climate change, intensive monoculture farming, and resource depletion are among the challenges that threaten the increasingly vulnerable global agri-food system. Heavy reliance on a few major crops is also linked to a monotonous diet, poor dietary habits, and micronutrient deficiencies, which are often associated with diet-related diseases. Diversification-of both agricultural production systems and diet-is a practical and sustainable approach to address these challenges and to improve global food and nutritional security. This strategy is aligned with the recommendations from the EAT-Lancet report, which highlighted the urgent need for increased consumption of plant-based foods to sustain population and planetary health. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized African legume, has the potential to contribute to improved food and nutrition security, while providing solutions for environmental sustainability and equity in food availability and affordability. This paper discusses the potential role of Bambara groundnut in diversifying agri-food systems and contributing to enhanced dietary and planetary sustainability, with emphasis on areas that span the value chain: from genetics, agroecology, nutrition, processing, and utilization, through to its socioeconomic potential. Bambara groundnut is a sustainable, low-cost source of complex carbohydrates, plant-based protein, unsaturated fatty acids, and essential minerals (magnesium, iron, zinc, and potassium), especially for those living in arid and semi-arid regions. As a legume, Bambara groundnut fixes atmospheric nitrogen to improve soil fertility. It is resilient to adverse environmental conditions and can yield on poor soil. Despite its impressive nutritional and agroecological profile, the potential of Bambara groundnut in improving the global food system is undermined by several factors, including resource limitation, knowledge gap, social stigma, and lack of policy incentives. Multiple research efforts to address these hurdles have led to a more promising outlook for Bambara groundnut; however, there is an urgent need to continue research to realize its full potential.
Collapse
Affiliation(s)
- Xin Lin Tan
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Susan Azam-Ali
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Ee Von Goh
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Maysoun Mustafa
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Hui Hui Chai
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wai Kuan Ho
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Sean Mayes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | - Tafadzwanashe Mabhaudhi
- Center for Transformative Agricultural and Food Systems, School of Agricultural, Earth & Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Sayed Azam-Ali
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Festo Massawe
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
17
|
Valdisser PAMR, Müller BSF, de Almeida Filho JE, Morais Júnior OP, Guimarães CM, Borba TCO, de Souza IP, Zucchi MI, Neves LG, Coelho ASG, Brondani C, Vianello RP. Genome-Wide Association Studies Detect Multiple QTLs for Productivity in Mesoamerican Diversity Panel of Common Bean Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:574674. [PMID: 33343591 PMCID: PMC7738703 DOI: 10.3389/fpls.2020.574674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
Drought stress is an important abiotic factor limiting common bean yield, with great impact on the production worldwide. Understanding the genetic basis regulating beans' yield and seed weight (SW) is a fundamental prerequisite for the development of superior cultivars. The main objectives of this work were to conduct genome-wide marker discovery by genotyping a Mesoamerican panel of common bean germplasm, containing cultivated and landrace accessions of broad origin, followed by the identification of genomic regions associated with productivity under two water regimes using different genome-wide association study (GWAS) approaches. A total of 11,870 markers were genotyped for the 339 genotypes, of which 3,213 were SilicoDArT and 8,657 SNPs derived from DArT and CaptureSeq. The estimated linkage disequilibrium extension, corrected for structure and relatedness (r 2 sv ), was 98.63 and 124.18 kb for landraces and breeding lines, respectively. Germplasm was structured into landraces and lines/cultivars. We carried out GWASs for 100-SW and yield in field environments with and without water stress for 3 consecutive years, using single-, segment-, and gene-based models. Higher number of associations at high stringency was identified for the SW trait under irrigation, totaling ∼185 QTLs for both single- and segment-based, whereas gene-based GWASs showed ∼220 genomic regions containing ∼650 genes. For SW under drought, 18 QTLs were identified for single- and segment-based and 35 genes by gene-based GWASs. For yield, under irrigation, 25 associations were identified, whereas under drought the total was 10 using both approaches. In addition to the consistent associations detected across experiments, these GWAS approaches provided important complementary QTL information (∼221 QTLs; 650 genes; r 2 from 0.01% to 32%). Several QTLs were mined within or near candidate genes playing significant role in productivity, providing better understanding of the genetic mechanisms underlying these traits and making available molecular tools to be used in marker-assisted breeding. The findings also allowed the identification of genetic material (germplasm) with better yield performance under drought, promising to a common bean breeding program. Finally, the availability of this highly diverse Mesoamerican panel is of great scientific value for the analysis of any relevant traits in common bean.
Collapse
Affiliation(s)
- Paula Arielle Mendes Ribeiro Valdisser
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
- Genetics and Molecular Biology Graduate Program, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Bárbara S. F. Müller
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | | | | | | | - Tereza C. O. Borba
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
| | - Isabela Pavanelli de Souza
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Maria Imaculada Zucchi
- Genetics and Molecular Biology Graduate Program, Institute of Biology, UNICAMP, Campinas, Brazil
- Agribusiness Technology Agency of São Paulo State, Agriculture and Food Supply Secretary of São Paulo, Piracicaba, Brazil
| | | | | | - Claudio Brondani
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
| | | |
Collapse
|
18
|
Kang SM, Adhikari A, Lee KE, Khan MA, Khan AL, Shahzad R, Dhungana SK, Lee IJ. Inoculation with Indole-3-Acetic Acid-Producing Rhizospheric Rhodobacter sphaeroides KE149 Augments Growth of Adzuki Bean Plants Under Water Stress. J Microbiol Biotechnol 2020; 30:717-725. [PMID: 32482937 PMCID: PMC9728276 DOI: 10.4014/jmb.1911.11063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
The use of plant growth-promoting rhizobacteria is economically viable and environmentally safe for mitigating various plant stresses. Abiotic stresses such as flood and drought are a serious threat to present day agriculture. In the present study, the indole-3-acetic acid-producing rhizobacterium R. sphaeroides KE149 was selected, and its effect on the growth of adzuki bean plants was investigated under flood stress (FS) and drought stress (DS). IAA quantification of bacterial pure culture revealed that KE149 produced significant amount of IAA. KE149 inoculation significantly decreased stress-responsive endogenous abscisic acid and jasmonic acid and increased salicylic acid in plants under DS and FS. KE149 inoculation also increased proline under DS and methionine under FS. Moreover, KE149 inoculation significantly increased the calcium (Ca), magnesium (Mg), and potassium (K) content and lowered the sodium (Na) content in the plant shoot under stress. KE149-treated plants had significantly higher root length, shoot length, stem diameter, biomass, and chlorophyll content under both normal and stressed conditions. These results suggest that KE149 could be an efficient biofertilizer for mitigating water stress.
Collapse
Affiliation(s)
- Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Ko-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Abdul Latif Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Raheem Shahzad
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Damam 1441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Damam 311, Saudi Arabia
| | - Sanjeev Kumar Dhungana
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration, Miryang 0424, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 4566, Republic of Korea
| |
Collapse
|
19
|
Philipo M, Ndakidemi PA, Mbega ER. Environmental and genotypes influence on seed iron and zinc levels of landraces and improved varieties of common bean (Phaseolus vulgaris L.) in Tanzania. ECOLOGICAL GENETICS AND GENOMICS 2020; 15:100056. [PMID: 0 DOI: 10.1016/j.egg.2020.100056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
20
|
Cardador-Martínez A, Martínez-Tequitlalpan Y, Gallardo-Velazquez T, Sánchez-Chino XM, Martínez-Herrera J, Corzo-Ríos LJ, Jiménez-Martínez C. Effect of Instant Controlled Pressure-Drop on the Non-Nutritional Compounds of Seeds and Sprouts of Common Black Bean ( Phaseolus vulgaris L.). Molecules 2020; 25:E1464. [PMID: 32213962 PMCID: PMC7146566 DOI: 10.3390/molecules25061464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/16/2022] Open
Abstract
The common bean is an important caloric-protein food source. However, its nutritional value may be affected by the presence of non-nutritional compounds, which decrease the assimilation of some nutrients; however, at low concentrations, they show a beneficial effect. Germination and treatment by controlled pressure-drop (DIC, French acronym of Détente Instantanée Contrôlée) are methods that modify the concentration of these components. The objective of this work was to evaluate the change in the non-nutritional composition of bean seeds and sprouts by DIC treatment. The results show that with the germination, the concentration of phenolic and tannin compounds increased 99% and 73%, respectively, as well as the quantity of saponins (65.7%), while phytates and trypsin inhibitors decreased 26% and 42%, respectively. When applying the DIC treatment, the content of phytates (23-29%), saponins (44%) and oligosaccharides increased in bean sprouts and decreased phenolic compounds (4-14%), tannins (23% to 72%), and trypsin inhibitors (95.5%), according to the pressure and time conditions applied. This technology opens the way to new perspectives, especially to more effective use of legumes as a source of vegetable protein or bioactive compounds.
Collapse
Affiliation(s)
- Anaberta Cardador-Martínez
- Departamento de Bioingenierías, Tecnologico de Monterrey, Av. Epigmenio González No. 500, Fraccionamiento San Pablo, Querétaro 76130, Mexico
| | - Yara Martínez-Tequitlalpan
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México City, CdMx 07738, Mexico; (Y.M.-T.); (T.G.-V.)
| | - Tzayhri Gallardo-Velazquez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México City, CdMx 07738, Mexico; (Y.M.-T.); (T.G.-V.)
| | - Xariss M. Sánchez-Chino
- Cátedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carretera a Reforma Km. 15.5 s/n. Ra. Guineo 2da. Sección, Villahermosa, Tabasco 86280, Mexico;
| | - Jorge Martínez-Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tabasco, Campo Experimental Huimanguillo, Km. 1. Carr. Huimanguillo-Cárdenas, Tabasco 86400, Mexico;
| | - Luis Jorge Corzo-Ríos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto S/N, Barrio La Laguna, Col. La Laguna Ticomán, México City 07340, Mexico;
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México City, CdMx 07738, Mexico; (Y.M.-T.); (T.G.-V.)
| |
Collapse
|
21
|
Sustainability Perspectives of Vigna unguiculata L. Walp. Cultivation under No Tillage and Water Stress Conditions. PLANTS 2019; 9:plants9010048. [PMID: 31905903 PMCID: PMC7020161 DOI: 10.3390/plants9010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/30/2022]
Abstract
Nowadays, agriculture is facing the great challenge of climate change which puts the productivity of the crops in peril due to unpredictable rain patterns and water shortages, especially in the developing world. Besides productivity, nutritional values of the yields of these crops may also be affected, especially under low mechanization and the low water availability conditions of the developing world. Conservation agriculture (CA) is a topic of emerging interest due to the provision of adequate yields and reduced environmental impact, such as greenhouse gas emissions, by being based on three main principles: minimum soil disturbance (reduced or no tillage), cover crop maintenance, and crop rotation. The aim of this study was to assess the impact of CA management on the growth performance and the nutritional profile of cowpea (Vigna unguiculata L. Walp), a pulse of African origin, commonly known as black eye bean under field conditions. A field experiment was designed to assess the effect of conventional tillage (CT) and no-tillage (NT) combined with the usage of a set of cover crops, coupled to normal and deficient water regimes. Cowpea was revealed to be able to grow and yield comparably at each level of the treatment tested, with a better ability to face water exhaustion under CA management. After a faster initial growth phase in CT plots, the level of adaptability of this legume to NT was such that growth performances improved significantly with respect to CT plots. The flowering rate was higher and earlier in CT conditions, while in NT it was slower but longer-lasting. The leafy photosynthetic rate and the nutritional profile of beans were slightly influenced by tillage management: only total starch content was negatively affected in NT and watered plots while proteins and aminoacids did not show any significant variation. Furthermore, significantly higher carbon and nitrogen concentration occurred in NT soils especially at the topmost (0–5 cm) soil horizon. These findings confirm the capability of CA to enrich soil superficial horizons and highlight that cowpea is a suitable crop to be grown under sustainable CA management. This practice could be pivotal to preserve soils and to save agronomical costs without losing a panel of nutrients that are important to the human diet. Due to its great protein and aminoacidic composition, V. unguiculata is a good candidate for further cultivation in regions of the word facing deficiencies in the intake of such nutrients, such as the Mediterranean basins and Sub-Saharan countries.
Collapse
|