1
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Espregueira Themudo G, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O'Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 2024; 25:1025. [PMID: 39487448 PMCID: PMC11529218 DOI: 10.1186/s12864-024-10899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia.
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, 27858, USA
| | - Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
- Historia Natural C.J. Marinkelle, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Simon T Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
| | | | - Victor L N Araújo
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Lorenzo V Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4810, Australia
| | - Gary M Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, KS, 66045, USA
| | - Ying Chen
- Biology Department, Queen's University, Kingston, ON, Canada
| | - Angelica Crottini
- Centro de Investigação Em Biodiversidade E Recursos Genéticos, CIBIOInBIO Laboratório AssociadoUniversidade Do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, I-50019, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jessica M da Silva
- Evolutionary Genomics and Wildlife Management, Foundational Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town, 7735, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Robert D Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Department of Life Science, Konrad-Lorenz-Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões Matosinhos, Avenida General Norton de Matos, Matosinhos, S/N, Portugal
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, UK
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, UK
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, 1015, Biophore, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, , Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Kevin P Mulder
- Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476, Potsdam, Germany
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, BT7 1NN, UK
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, UK
| | - Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
| | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
2
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
3
|
Pauwels OSG, Brecko J, Baeghe D, Venderickx J, Vanderheyden A, Backeljau T. Morphological, acoustic and genetic identification of a reproducing population of the invasive African clawed frog Xenopuslaevis (Anura, Pipidae) recently discovered in Belgium. Zookeys 2023; 1184:41-64. [PMID: 38023767 PMCID: PMC10664028 DOI: 10.3897/zookeys.1184.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023] Open
Abstract
Using external morphology of adults and tadpoles, osteology from high-resolution microcomputed tomography, vocalization analysis, and DNA sequence data, the identity of a reproducing Belgian population of invasive Xenopus at the current northernmost edge of the distribution of the genus in Europe was assessed. All data concur to an identification as Xenopus (Xenopus) laevis (Daudin, 1802). Genetically it is most closely related to populations of the Cape region in South Africa. No studies on the natural history of the Belgian Xenopus population and its impact on the local environment have been made to date.
Collapse
Affiliation(s)
- Olivier S. G. Pauwels
- Scientific Heritage, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, BelgiumScientific Heritage, Royal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Jonathan Brecko
- Scientific Heritage, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, BelgiumScientific Heritage, Royal Belgian Institute of Natural SciencesBrusselsBelgium
- Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, BelgiumRoyal Museum for Central AfricaTervurenBelgium
| | - Dimitri Baeghe
- Evolutionary Biology and Ecology (CP 160/12), Department of Organismic Biology, Faculty of Sciences, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, BelgiumUniversité Libre de BruxellesBrusselsBelgium
| | - Jeroen Venderickx
- Scientific Heritage, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, BelgiumScientific Heritage, Royal Belgian Institute of Natural SciencesBrusselsBelgium
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, BelgiumOperational Directorate Natural Environment, Royal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Ann Vanderheyden
- Barcoding Facility for Organisms and Tissues of Policy Concern (BopCo), Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, BelgiumBarcoding Facility for Organisms and Tissues of Policy Concern (BopCo), Royal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Thierry Backeljau
- Barcoding Facility for Organisms and Tissues of Policy Concern (BopCo), Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, BelgiumBarcoding Facility for Organisms and Tissues of Policy Concern (BopCo), Royal Belgian Institute of Natural SciencesBrusselsBelgium
- Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, BelgiumUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
4
|
Cauret CMS, Jordan DC, Kukoly LM, Burton SR, Anele EU, Kwiecien JM, Gansauge MT, Senthillmohan S, Greenbaum E, Meyer M, Horb ME, Evans BJ. Functional dissection and assembly of a small, newly evolved, W chromosome-specific genomic region of the African clawed frog Xenopus laevis. PLoS Genet 2023; 19:e1010990. [PMID: 37792893 PMCID: PMC10578606 DOI: 10.1371/journal.pgen.1010990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/16/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Genetic triggers for sex determination are frequently co-inherited with other linked genes that may also influence one or more sex-specific phenotypes. To better understand how sex-limited regions evolve and function, we studied a small W chromosome-specific region of the frog Xenopus laevis that contains only three genes (dm-w, scan-w, ccdc69-w) and that drives female differentiation. Using gene editing, we found that the sex-determining function of this region requires dm-w but that scan-w and ccdc69-w are not essential for viability, female development, or fertility. Analysis of mesonephros+gonad transcriptomes during sexual differentiation illustrates masculinization of the dm-w knockout transcriptome, and identifies mostly non-overlapping sets of differentially expressed genes in separate knockout lines for each of these three W-specific gene compared to wildtype sisters. Capture sequencing of almost all Xenopus species and PCR surveys indicate that the female-determining function of dm-w is present in only a subset of species that carry this gene. These findings map out a dynamic evolutionary history of a newly evolved W chromosome-specific genomic region, whose components have distinctive functions that frequently degraded during Xenopus diversification, and evidence the evolutionary consequences of recombination suppression.
Collapse
Affiliation(s)
- Caroline M. S. Cauret
- Biology Department, McMaster University, Hamilton, Ontario, Canada
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Danielle C. Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts United States of America
- The School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Sarah R. Burton
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts United States of America
| | - Emmanuela U. Anele
- Biology Department, McMaster University, Hamilton, Ontario, Canada
- Department Zoology, Ahmadu Bello University, Zaria, Nigeria
| | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Eli Greenbaum
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts United States of America
| | - Ben J. Evans
- Biology Department, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Premachandra T, Cauret CMS, Conradie W, Measey J, Evans BJ. Population genomics and subgenome evolution of the allotetraploid frog Xenopus laevis in southern Africa. G3 (BETHESDA, MD.) 2022; 13:6916838. [PMID: 36524354 PMCID: PMC9911082 DOI: 10.1093/g3journal/jkac325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Allotetraploid genomes have two distinct genomic components called subgenomes that are derived from separate diploid ancestral species. Many genomic characteristics such as gene function, expression, recombination, and transposable element mobility may differ significantly between subgenomes. To explore the possibility that subgenome population structure and gene flow may differ as well, we examined genetic variation in an allotetraploid frog-the African clawed frog (Xenopus laevis)-over the dynamic and varied habitat of its native range in southern Africa. Using reduced representation genome sequences from 91 samples from 12 localities, we found no strong evidence that population structure and gene flow differed substantially by subgenome. We then compared patterns of population structure in the nuclear genome to the mitochondrial genome using Sanger sequences from 455 samples from 183 localities. Our results provide further resolution to the geographic distribution of mitochondrial and nuclear diversity in this species and illustrate that population structure in both genomes corresponds roughly with variation in seasonal rainfall and with the topography of southern Africa.
Collapse
Affiliation(s)
- Tharindu Premachandra
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada
| | - Caroline M S Cauret
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, ON L8S4K1, Canada,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Gqeberha 6013, South Africa,Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, Nelson Mandela University, George Campus, George 6019, South Africa
| | - John Measey
- Corresponding author: Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| | | |
Collapse
|
6
|
Evans BJ, Mudd AB, Bredeson JV, Furman BLS, Wasonga DV, Lyons JB, Harland RM, Rokhsar DS. New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J Evol Biol 2022; 35:1777-1790. [PMID: 36054077 PMCID: PMC9722552 DOI: 10.1111/jeb.14078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
In many groups, sex chromosomes change frequently but the drivers of their rapid evolution are varied and often poorly characterized. With an aim of further understanding sex chromosome turnover, we investigated the polymorphic sex chromosomes of the Marsabit clawed frog, Xenopus borealis, using genomic data and a new chromosome-scale genome assembly. We confirmed previous findings that 54.1 Mb of chromosome 8L is sex-linked in animals from east Kenya and a laboratory strain, but most (or all) of this region is not sex-linked in natural populations from west Kenya. Previous work suggests possible degeneration of the Z chromosomes in the east population because many sex-linked transcripts of this female heterogametic population have female-biased expression, and we therefore expected this chromosome to not be present in the west population. In contrast, our simulations support a model where most or all of the sex-linked portion of the Z chromosome from the east acquired autosomal segregation in the west, and where much genetic variation specific to the large sex-linked portion of the W chromosome from the east is not present in the west. These recent changes are consistent with the hot-potato model, wherein sex chromosome turnover is favoured by natural selection if it purges a (minimally) degenerate sex-specific sex chromosome, but counterintuitively suggest natural selection failed to purge a Z chromosome that has signs of more advanced and possibly more ancient regulatory degeneration. These findings highlight complex evolutionary dynamics of young, rapidly evolving Xenopus sex chromosomes and set the stage for mechanistic work aimed at pinpointing additional sex-determining genes in this group.
Collapse
Affiliation(s)
- Ben J Evans
- Biology Department, Life Sciences Building Room 328, McMaster University, Hamilton, Ontario, Canada
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Benjamin L S Furman
- Biology Department, Life Sciences Building Room 328, McMaster University, Hamilton, Ontario, Canada
- Canexia Health, Vancouver, British Columbia, Canada
| | | | - Jessica B Lyons
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Dan S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Okinawa Institute of Science and Technology Graduate University, Onna, Japan
- Chan-Zuckerberg BioHub, San Francisco, California, USA
| |
Collapse
|
7
|
Hayashi S, Suda K, Fujimura F, Fujikawa M, Tamura K, Tsukamoto D, Evans BJ, Takamatsu N, Ito M. Neofunctionalization of a non-coding portion of a DNA transposon in the coding region of the chimerical sex-determining gene dm-W in Xenopus frogs. Mol Biol Evol 2022; 39:6613159. [PMID: 35763822 PMCID: PMC9250109 DOI: 10.1093/molbev/msac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most vertebrate sex-determining genes (SDGs) emerge as neofunctionalized genes through duplication and/or mutation of ancestral genes that are involved with sexual differentiation. We previously demonstrated dm-W to be the SDG in the African clawed frog Xenopus laevis and found that a portion of this gene emerged from the masculinization gene dmrt1 after allotetraploidization by interspecific hybridization between two ancestral species around 17–18 Ma. dm-W has four exons consisting of a noncoding exon 1, dmrt1-derived exons 2 and 3, and an orphan exon 4 (Ex4) of unknown origin that includes coding sequence (CDS). In this study, we searched for the origin of Ex4 and investigated the function of the CDS of this exon. We found that the Ex4-CDS is derived from a noncoding portion of the hAT-10 family of DNA transposon. Evolutionary analysis of transposons and determination of the Ex4 sequences from three other species indicated that Ex4 was generated before the diversification of most or all extant allotetraploid species in subgenus Xenopus, during which time we hypothesize that transposase activity of this hAT superfamily was active. Using DNA–protein binding and transfection assays, we further demonstrate that the Ex4-encoded amino acid sequence increases the DNA-binding ability and transrepression activity of DM-W. These findings suggest that the conversion of the noncoding transposon sequence to the CDS of dm-W contributed to neofunctionalization of a new chimeric SDG in the ancestor of the allotetraploid Xenopus species, offering new insights into de novo origin and functional evolution of chimerical genes.
Collapse
Affiliation(s)
- Shun Hayashi
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Kosuke Suda
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Fuga Fujimura
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Makoto Fujikawa
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Kei Tamura
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Daisuke Tsukamoto
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Ben J Evans
- Department of Biology, Life Sciences Room 328, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Nobuhiko Takamatsu
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| | - Michihiko Ito
- Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
8
|
Fouquet A, Cornuault J, Rodrigues MT, Werneck FP, Hrbek T, Acosta-Galvis AR, Massemin D, J. R. Kok P, Ernst R. Diversity, biogeography and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae). Mol Phylogenet Evol 2022; 170:107442. [DOI: 10.1016/j.ympev.2022.107442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
|
9
|
Contextualizing enigmatic extinctions using genomic DNA from fluid-preserved museum specimens of Desmognathus salamanders. CONSERV GENET 2022. [DOI: 10.1007/s10592-021-01424-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Song XY, Furman BLS, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, Measey J, Dworkin I, Evans BJ. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs ( Xenopus). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200095. [PMID: 34247503 DOI: 10.1098/rstb.2020.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The tempo of sex chromosome evolution-how quickly, in what order, why and how their particular characteristics emerge during evolution-remains poorly understood. To understand this further, we studied three closely related species of African clawed frog (genus Xenopus), that each has independently evolved sex chromosomes. We identified population polymorphism in the extent of sex chromosome differentiation in wild-caught Xenopus borealis that corresponds to a large, previously identified region of recombination suppression. This large sex-linked region of X. borealis has an extreme concentration of genes that encode transcripts with sex-biased expression, and we recovered similar findings in the smaller sex-linked regions of Xenopus laevis and Xenopus tropicalis. In two of these species, strong skews in expression (mostly female-biased in X. borealis, mostly male-biased in X. tropicalis) are consistent with expectations associated with recombination suppression, and in X. borealis, we hypothesize that a degenerate ancestral Y-chromosome transitioned into its contemporary Z-chromosome. These findings indicate that Xenopus species are tolerant of differences between the sexes in dosage of the products of multiple genes, and offer insights into how evolutionary transformations of ancestral sex chromosomes carry forward to affect the function of new sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Xue-Ying Song
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Benjamin L S Furman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.,Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Tharindu Premachandra
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.,Department of Cell Biology, Charles University, 7 Vinicna Street, Prague 12843, Czech Republic
| | - Caroline M S Cauret
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Ben J Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
11
|
Ernst R, Kehlmaier C, Baptista NL, Pinto PV, Branquima MF, Dewynter M, Fouquet A, Ohler A, Schmitz A. Filling the gaps: The mitogenomes of Afrotropical egg-guarding frogs based on historical type material and a re-assessment of the nomenclatural status of Alexteroon Perret, 1988 (Hyperoliidae). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Straube N, Lyra ML, Paijmans JLA, Preick M, Basler N, Penner J, Rödel MO, Westbury MV, Haddad CFB, Barlow A, Hofreiter M. Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Mol Ecol Resour 2021; 21:2299-2315. [PMID: 34036732 DOI: 10.1111/1755-0998.13433] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023]
Abstract
Millions of scientific specimens are housed in museum collections, a large part of which are fluid preserved. The use of formaldehyde as fixative and subsequent storage in ethanol is especially common in ichthyology and herpetology. This type of preservation damages DNA and reduces the chance of successful retrieval of genetic data. We applied ancient DNA extraction and single stranded library construction protocols to a variety of vertebrate samples obtained from wet collections and of different ages. Our results show that almost all samples tested yielded endogenous DNA. Archival DNA extraction was successful across different tissue types as well as using small amounts of tissue. Conversion of archival DNA fragments into single-stranded libraries resulted in usable data even for samples with initially undetectable DNA amounts. Subsequent target capture approaches for mitochondrial DNA using homemade baits on a subset of 30 samples resulted in almost complete mitochondrial genome sequences in several instances. Thus, application of ancient DNA methodology makes wet collection specimens, including type material as well as rare, old or extinct species, accessible for genetic and genomic analyses. Our results, accompanied by detailed step-by-step protocols, are a large step forward to open the DNA archive of museum wet collections for scientific studies.
Collapse
Affiliation(s)
- Nicolas Straube
- University Museum of Bergen, Bergen, Norway.,SNSB Bavarian State Collection of Zoology, München, Germany
| | - Mariana L Lyra
- Departamento de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Universidade Estadual Paulista - UNESP, Rio Claro, SP, Brazil.,Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Johanna L A Paijmans
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michaela Preick
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nikolas Basler
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Johannes Penner
- Museum für Naturkunde- Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Chair of Wildlife Ecology and Management, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde- Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Michael V Westbury
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Célio F B Haddad
- Departamento de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Universidade Estadual Paulista - UNESP, Rio Claro, SP, Brazil
| | - Axel Barlow
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Hofreiter
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
13
|
South KE, Klingenberg B, Leininger EC. A novel degree of sex difference in laryngeal physiology of Xenopus muelleri: behavioral and evolutionary implications. J Exp Biol 2021; 224:jeb.231712. [PMID: 34424964 DOI: 10.1242/jeb.231712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023]
Abstract
Characterizing sex and species differences in muscle physiology can contribute to a better understanding of proximate mechanisms underlying behavioral evolution. In Xenopus, the laryngeal muscle's ability to contract rapidly and its electromyogram potentiation allows males to produce calls that are more rapid and intensity-modulated than female calls. Prior comparative studies have shown that some species lacking typical male features of vocalizations sometimes show reduced sex differences in underlying laryngeal physiology. To further understand the evolution of sexually differentiated laryngeal muscle physiology and its role in generating behavior, we investigated sex differences in the laryngeal physiology of X. muelleri, a species in which male and female calls are similar in rapidity but different with respect to intensity modulation. We delivered ethologically relevant stimulus patterns to ex vivo X. muelleri larynges to investigate their ability to produce various call patterns, and we also delivered stimuli over a broader range of intervals to assess sex differences in muscle tension and electromyogram potentiation. We found a small but statistically significant sex difference in laryngeal electromyogram potentiation that varied depending on the number of stimuli. We also found a small interaction between sex and stimulus interval on muscle tension over an ethologically relevant range of stimulus intervals; male larynges were able to produce similar tensions to female larynges at slightly smaller (11-12 ms) inter-stimulus intervals. These findings are consistent with behavioral observations and present a previously undescribed intermediate sex difference in Xenopus laryngeal muscle physiology.
Collapse
Affiliation(s)
- Kelly E South
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | - Bernhard Klingenberg
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA.,Department of Mathematics & Statistics, Williams College, Williamstown, MA 01267, USA
| | | |
Collapse
|
14
|
Ducret V, Richards AJ, Videlier M, Scalvenzi T, Moore KA, Paszkiewicz K, Bonneaud C, Pollet N, Herrel A. Transcriptomic analysis of the trade-off between endurance and burst-performance in the frog Xenopus allofraseri. BMC Genomics 2021; 22:204. [PMID: 33757428 PMCID: PMC7986297 DOI: 10.1186/s12864-021-07517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
Collapse
Affiliation(s)
- Valérie Ducret
- UMR 7179 MECADEV, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, 55 Rue Buffon, 75005, Paris, France.
| | - Adam J Richards
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
| | - Mathieu Videlier
- Functional Ecology Lab, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Thibault Scalvenzi
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Karen A Moore
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Konrad Paszkiewicz
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Nicolas Pollet
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Anthony Herrel
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
15
|
'Barcode fishing' for archival DNA from historical type material overcomes taxonomic hurdles, enabling the description of a new frog species. Sci Rep 2020; 10:19109. [PMID: 33154397 PMCID: PMC7644772 DOI: 10.1038/s41598-020-75431-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/28/2020] [Indexed: 11/08/2022] Open
Abstract
Taxonomic progress is often hindered by intrinsic factors, such as morphologically cryptic species that require a broad suite of methods to distinguish, and extrinsic factors, such as uncertainties in the allocation of scientific names to species. These uncertainties can be due to a wide variety of factors, including old and poorly preserved type specimens (which contain only heavily degraded DNA or have lost important diagnostic characters), inappropriately chosen type specimens (e.g. juveniles without diagnostic characters) or poorly documented type specimens (with unprecise, incorrect, or missing locality data). Thanks to modern sequencing technologies it is now possible to overcome many such extrinsic factors by sequencing DNA from name-bearing type specimens of uncertain assignment and assigning these to known genetic lineages. Here, we apply this approach to frogs of the Mantidactylus ambreensis complex, which was recently shown to consist of two genetic lineages supported by concordant differentiation in mitochondrial and nuclear genes. These lineages co-occur on the Montagne d'Ambre Massif in northern Madagascar but appear to have diverged in allopatry. We use a recently published bait set based on three mitochondrial markers from all known Malagasy frog lineages to capture DNA sequences from the 127-year-old holotype of Mantidactylus ambreensis Mocquard, 1895. With the obtained sequences we are able to assign the name M. ambreensis to the lowland lineage, which is rather widespread in the rainforests of northern Madagascar, leaving the microendemic high-elevation lineage on Montagne d'Ambre in north Madagascar in need of description. We describe this species as Mantidactylus ambony sp. nov., differing from M. ambreensis in call parameters and a smaller body size. Thus, using target enrichment to obtain DNA sequence data from this old specimen, we were able to resolve the extrinsic (nomenclatural) hindrances to taxonomic resolution of this complex. We discuss the broad-scale versatility of this 'barcode fishing' approach, which can draw on the enormous success of global DNA barcoding initiatives to quickly and efficiently assign type specimens to lineages.
Collapse
|
16
|
Furman BLS, Cauret CMS, Knytl M, Song XY, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet 2020; 16:e1009121. [PMID: 33166278 PMCID: PMC7652241 DOI: 10.1371/journal.pgen.1009121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among-and even within-species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.
Collapse
Affiliation(s)
- Benjamin L. S. Furman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd Vancouver, British Columbia, V6T 1Z4 Canada
| | - Caroline M. S. Cauret
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Cell Biology, Charles University, 7 Vinicna Street, Prague, 12843, Czech Republic
| | - Xue-Ying Song
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Tharindu Premachandra
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | | | - Danielle C. Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Ben J. Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
17
|
Beninde J, Möst M, Meyer A. Optimized and affordable high-throughput sequencing workflow for preserved and nonpreserved small zooplankton specimens. Mol Ecol Resour 2020; 20:1632-1646. [PMID: 32677266 DOI: 10.1111/1755-0998.13228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Genomic analysis of hundreds of individuals is increasingly becoming standard in evolutionary and ecological research. Individual-based sequencing generates large amounts of valuable data from experimental and field studies, while using preserved samples is an invaluable resource for studying biodiversity in remote areas or across time. Yet, small-bodied individuals or specimens from collections are often of limited use for genomic analyses due to a lack of suitable extraction and library preparation protocols for preserved or small amounts of tissues. Currently, high-throughput sequencing in zooplankton is mostly restricted to clonal species, that can be maintained in live cultures to obtain sufficient amounts of tissue, or relies on a whole-genome amplification step that comes with several biases and high costs. Here, we present a workflow for high-throughput sequencing of single small individuals omitting the need for prior whole-genome amplification or live cultures. We establish and demonstrate this method using 27 species of the genus Daphnia, aquatic keystone organisms, and validate it with small-bodied ostracods. Our workflow is applicable to both live and preserved samples at low costs per sample. We first show that a silica-column based DNA extraction method resulted in the highest DNA yields for nonpreserved samples while a precipitation-based technique gave the highest yield for ethanol-preserved samples and provided the longest DNA fragments. We then successfully performed short-read whole genome sequencing from single Daphnia specimens and ostracods. Moreover, we assembled a draft reference genome from a single Daphnia individual (>50× coverage) highlighting the value of the workflow for non-model organisms.
Collapse
Affiliation(s)
- Jannik Beninde
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Markus Möst
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
18
|
Zattera ML, Gazolla CB, Soares ADA, Gazoni T, Pollet N, Recco-Pimentel SM, Bruschi DP. Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Front Genet 2020; 11:637. [PMID: 32793276 PMCID: PMC7385237 DOI: 10.3389/fgene.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
The large amphibian genomes contain numerous repetitive DNA components that have played an important role in the karyotypic diversification of this vertebrate group. Hypotheses based on the presumable primitive karyotype (2n = 20) of the anurans of the family Pipidae suggest that they have evolved principally through intrachromosomal rearrangements. Pipa is the only South American pipid, while all the other genera are found in Africa. The divergence of the South American lineages from the African ones occurred at least 136 million years ago and is thought to have had a strong biogeographic component. Here, we tested the potential of the repetitive DNA to enable a better understanding of the differentiation of the karyotype among the family Pipidae and to expand our capacity to interpret the chromosomal evolution in this frog family. Our results indicate a long history of conservation in the chromosome bearing the H3 histone locus, corroborating inferences on the chromosomal homologies between the species in pairs 6, 8, and 9. The chromosomal distribution of the microsatellite motifs also provides useful markers for comparative genomics at the chromosome level between Pipa carvalhoi and Xenopus tropicalis, contributing new insights into the evolution of the karyotypes of these species. We detected similar patterns in the distribution and abundance of the microsatellite arrangements, which reflect the shared organization in the terminal/subterminal region of the chromosomes between these two species. By contrast, the microsatellite probes detected a differential arrangement of the repetitive DNA among the chromosomes of the two species, allowing longitudinal differentiation of pairs that are identical in size and morphology, such as pairs 1, 2, 4, and 5. We also found evidence of the distinctive composition of the repetitive motifs of the centromeric region between the species analyzed in the present study, with a clear enrichment of the (CA) and (GA) microsatellite motifs in P. carvalhoi. Finally, microsatellite enrichment in the pericentromeric region of chromosome pairs 6, 8, and 9 in the P. carvalhoi karyotype, together with interstitial telomeric sequences (ITS), validate the hypothesis that pericentromeric inversions occurred during the chromosomal evolution of P. carvalhoi and reinforce the role of the repetitive DNA in the remodeling of the karyotype architecture of the Pipidae.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Amanda de Araújo Soares
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Thiago Gazoni
- Universidade Estadual Paulista (Unesp), Campus Rio Claro, Rio Claro, Brazil
| | - Nicolas Pollet
- Laboratoire Evolution Genomes Comportement Ecologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
19
|
Affiliation(s)
| | - Rowland Sadler
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Simon P. Loader
- Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
20
|
Lyra ML, Lourenço ACC, Pinheiro PDP, Pezzuti TL, Baêta D, Barlow A, Hofreiter M, Pombal JP, Haddad CFB, Faivovich J. High-throughput DNA sequencing of museum specimens sheds light on the long-missing species of the Bokermannohyla claresignata group (Anura: Hylidae: Cophomantini). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The two species of the Bokermannohyla claresignata species group (Anura: Hylidae) have not been collected for the last four decades. It is the only species group of the hyline tribe Cophomantini that has not yet been analysed genetically. Its phylogenetic position is thus uncertain, and it has a combination of adult and larval character states that make this group a crucial missing piece that hinders our understanding of Cophomantini phylogenetics and character evolution. We obtained DNA sequences from a museum larval specimen of Bok. claresignata, using specialized extraction methods and high-throughput DNA sequencing, and combined the molecular phylogenetic results with available phenotypic information to provide new insights into the taxonomy and phylogenetic relationships of its species group. Our phylogenetic results place Bok. claresignata as sister to the Boana pulchella group, supporting its inclusion in Boana, together with Bokermannohyla clepsydra. In light of this new finding, we recognize a newly defined Boana claresignata group to accommodate these species, thus resolving both the polyphyly of Bokermannohyla and the paraphyly of Boana. Considering the phylogenetic relationships of the Boana claresignata group, we also discuss the evolution of suctorial tadpoles and mature oocyte/egg pigmentation in Cophomantini.
Collapse
Affiliation(s)
- Mariana L Lyra
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, CEP, Brazil
| | - Ana Carolina C Lourenço
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Campus Ubá, Avenida Olegário Maciel, Ubá, Minas Gerais, CEP, Brazil
| | - Paulo D P Pinheiro
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa, Sala, Cidade Universitária, São Paulo, São Paulo, CEP, Brazil
| | - Tiago L Pezzuti
- Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, Pampulha, Belo Horizonte, Minas Gerais, CEP, Brazil
| | - Délio Baêta
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, CEP, Brazil
- Setor de Herpetologia, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista,, Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Axel Barlow
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Department of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Straße, Potsdam, Germany
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Department of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Straße, Potsdam, Germany
| | - José P Pombal
- Setor de Herpetologia, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista,, Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, CEP, Brazil
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’-CONICET, Ángel Gallardo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Ernst R, Lautenschläger T, Branquima MF, Hölting M. At the edge of extinction: a first herpetological assessment of the proposed Serra do Pingano Rainforest National Park in Uíge Province, northern Angola. ZOOSYST EVOL 2020. [DOI: 10.3897/zse.96.51997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We systematically assess the herpetofaunal diversity of the Serra do Pingano Forest Ecosystem (SPFE) and additional localities throughout the northern Angolan province of Uíge during four independent Rapid Assessment (RA) field campaigns held between 2013 and 2019. These assessments represent the first systematic surveys of amphibians and reptiles from the province, and thus we provide the first province-wide species list. We collected data on the status and current threats to amphibians and reptiles in the proposed Serra do Pingano Rainforest National Park and were able to document 33 species of reptiles from Uíge province. Of the 33 species recorded from the province, 10 species are exclusively found in the SPFE. Amphibian surveys yielded 47 amphibian species from the province. These include 14 new country records and additional records that may represent undescribed species. This raises the amphibian count for Angola to at least 133 species, which includes 18 species exclusively found within the SPFE. Species-richness estimators indicate that more species should be detected if survey efforts are intensified. The species composition in the SPFE is unique and consists of a high proportion of forest specialists with restricted ranges and species found nowhere else in the country. This emphasizes today’s paramount importance of the SPFE, which is threatened by increasing agricultural encroachment and uncontrolled timber extraction and charcoal production. These principal factors need to be controlled and/or abandoned in already impacted areas. Conservation strategies should particularly consider the strict protection of remaining intact forests and both lentic and lotic aquatic systems. They are not only crucial for safeguarding a significant number of species that depend on these habitats for reproduction; they also provide key ecosystem services to the local population. Angola, and Uíge province in particular, is at a crossroads concerning decisions and trade-offs among utilization, conservation, and preservation of its forests and, thus, substantial parts of the country’s biodiversity. The establishment of a National Protected Area in the Serra do Pingano Ecosystem is therefore a necessary and urgently needed first step towards protecting Angola’s national biodiversity heritage.
Collapse
|
22
|
Rancilhac L, Bruy T, Scherz MD, Pereira EA, Preick M, Straube N, Lyra ML, Ohler A, Streicher JW, Andreone F, Crottini A, Hutter CR, Randrianantoandro JC, Rakotoarison A, Glaw F, Hofreiter M, Vences M. Target-enriched DNA sequencing from historical type material enables a partial revision of the Madagascar giant stream frogs (genus Mantidactylus). J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1748243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Loïs Rancilhac
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Teddy Bruy
- Sektion Herpetologie, Zoologische Staatssammlung München (ZSM-SNSB), München, Germany
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, Paris, France
| | - Mark D. Scherz
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
- Sektion Herpetologie, Zoologische Staatssammlung München (ZSM-SNSB), München, Germany
| | - Elvis Almeida Pereira
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
- Programa de Pós-Graduação em Biologia Animal, Departamento de Biologia Animal, Laboratório de Herpetologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Michaela Preick
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nicolas Straube
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Mariana L. Lyra
- Depto de Zoologia, Instituto de Biologia, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Annemarie Ohler
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, Paris, France
| | - Jeffrey W. Streicher
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, UK
| | - Franco Andreone
- Sezione zoologia, Museo Regionale di Scienze Naturali, Torino, Italy
| | - Angelica Crottini
- Cibio, Research Centre in Biodiversity, Genetics and Evolution, InBio, Universidade do Porto, Vairão, Portugal
| | - Carl R. Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Andolalao Rakotoarison
- Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d’Antananarivo, Antananarivo, Madagascar
| | - Frank Glaw
- Sektion Herpetologie, Zoologische Staatssammlung München (ZSM-SNSB), München, Germany
| | - Michael Hofreiter
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| |
Collapse
|
23
|
Kelley DB, Ballagh IH, Barkan CL, Bendesky A, Elliott TM, Evans BJ, Hall IC, Kwon YM, Kwong-Brown U, Leininger EC, Perez EC, Rhodes HJ, Villain A, Yamaguchi A, Zornik E. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. J Neurosci 2020; 40:22-36. [PMID: 31896561 PMCID: PMC6939475 DOI: 10.1523/jneurosci.0736-19.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027,
| | - Irene H Ballagh
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Zoology, University of British Columbia, Vancouver V6T132, Canada
| | - Charlotte L Barkan
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Taffeta M Elliott
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Psychology and Education, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
| | - Ben J Evans
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ian C Hall
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Benedictine University, Lisle, Illinois 60532
| | - Young Mi Kwon
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Ursula Kwong-Brown
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Division of Natural Sciences, New College of Florida, Sarasota, Florida 34243
| | - Emilie C Perez
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Heather J Rhodes
- Department of Biology, Boston University, Boston, Massachusetts 02215
- Department of Biology, Denison University, Granville, Ohio 43023, and
| | - Avelyne Villain
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Ayako Yamaguchi
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Erik Zornik
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|