1
|
Navarro-Guillén C, Jerez-Cepa I, Lopes A, Mancera JM, Engrola S. Effects of early-life amino acids supplementation on fish responses to a thermal challenge. J Comp Physiol B 2024; 194:827-842. [PMID: 39269478 PMCID: PMC11511724 DOI: 10.1007/s00360-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Nutritional programming is a promising concept for promoting metabolic adaptation of fish to challenging conditions, such as the increase in water temperature. The present work evaluates in ovo arginine or glutamine supplementation as enhancers of zebrafish metabolic or absorptive capacity, respectively, at optimum (28 ºC) and challenging temperatures (32 ºC) in the long-term. Growth performance, free amino acids profile, methylation index and the activity levels of digestive and intermediary metabolism enzymes were analysed to assess the metabolic plasticity induced by an early nutritional intervention. Temperature affected fish larvae growth performance. At the end of the experimental period 28 ºC-fish showed higher dry weight than 32 ºC-fish. The effects of the early supplementation were reflected in the larval free amino acids profile at the end of the experiment. Higher methylation potential was observed in the ARG-fish. In ovo amino acid supplementation modulated the metabolic response in zebrafish larvae, however, the magnitude of this effect differed according to the amino acid and the temperature. Overall, arginine supplementation enhanced carbohydrates metabolism at 32 ºC. In conclusion, the present work suggests that in ovo arginine supplementation may promote a better adaptive response to higher temperatures.
Collapse
Affiliation(s)
- Carmen Navarro-Guillén
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
- Departmento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, Cádiz, Spain
| | - Ismael Jerez-Cepa
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - André Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
2
|
Franke A, Bayer T, Clemmesen C, Wendt F, Lehmann A, Roth O, Schneider RF. Climate challenges for fish larvae: Interactive multi-stressor effects impair acclimation potential of Atlantic herring larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175659. [PMID: 39181268 DOI: 10.1016/j.scitotenv.2024.175659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Fish early life stages are particularly vulnerable and heavily affected by changing environmental factors. The interactive effects of multiple climate change-related stressors on fish larvae remain, however, largely underexplored. As rising temperatures can increase the abundance and virulence of bacteria, we investigated the combination of a spring heat wave and bacterial exposure on the development of Atlantic herring larvae (Clupea harengus). Eggs and larvae of Western Baltic Spring-spawners were reared at a normal and high temperature ramp and exposed to Vibrio alginolyticus and V. anguillarum, respectively. Subsequently, mRNA and miRNA transcriptomes, microbiota composition, growth and survival were assessed. Both high temperature and V. alginolyticus exposure induced a major downregulation of gene expression likely impeding larval cell proliferation. In contrast, interactive effects of elevated temperature and V. alginolyticus resulted in minimal gene expression changes, indicating an impaired plastic response, which may cause cellular damage reducing survival in later larval stages. The heat wave alone or in combination with V. alginolyticus induced a notable shift in miRNA expression leading to the down- but also upregulation of predicted target genes. Moreover, both increased temperature and the Vibrio exposures significantly altered the larval microbiota composition, with warming reducing microbial richness and diversity. The outcomes of this study highlight the high sensitivity of herring early life stages towards multiple climate change-related stressors. Our results indicate that interactive effects of rapidly changing environmental factors may exceed the larval stress threshold impairing essential acclimation responses, which may contribute to the ongoing recruitment decline of Western Baltic Spring-Spawning herring.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Im Technologiepark 5, 26129 Oldenburg, Germany; Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Till Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Catriona Clemmesen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Fabian Wendt
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Andreas Lehmann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
| | - Olivia Roth
- Marine Evolutionary Biology, Zoological Institute, Am Botanischen Garten 1-9, Kiel University, 24118 Kiel, Germany.
| | - Ralf F Schneider
- Marine Evolutionary Biology, Zoological Institute, Am Botanischen Garten 1-9, Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
3
|
Czaja R, Holmberg R, Pales Espinosa E, Hennen D, Cerrato R, Lwiza K, O'Dwyer J, Beal B, Root K, Zuklie H, Allam B. Behavioral and physiological effects of ocean acidification and warming on larvae of a continental shelf bivalve. MARINE POLLUTION BULLETIN 2023; 192:115048. [PMID: 37236091 DOI: 10.1016/j.marpolbul.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
The negative impacts of ocean warming and acidification on bivalve fisheries are well documented but few studies investigate parameters relevant to energy budgets and larval dispersal. This study used laboratory experiments to assess developmental, physiological and behavioral responses to projected climate change scenarios using larval Atlantic surfclams Spisula solidissima solidissima, found in northwest Atlantic Ocean continental shelf waters. Ocean warming increased feeding, scope for growth, and biomineralization, but decreased swimming speed and pelagic larval duration. Ocean acidification increased respiration but reduced immune performance and biomineralization. Growth increased under ocean warming only, but decreased under combined ocean warming and acidification. These results suggest that ocean warming increases metabolic activity and affects larval behavior, while ocean acidification negatively impacts development and physiology. Additionally, principal component analysis demonstrated that growth and biomineralization showed similar response profiles, but inverse response profiles to respiration and swimming speed, suggesting alterations in energy allocation under climate change.
Collapse
Affiliation(s)
- Raymond Czaja
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Robert Holmberg
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Daniel Hennen
- Northeast Fisheries Science Center, 166 Water Street Woods Hole, MA 02543-1026, United States
| | - Robert Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Kamazima Lwiza
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Jennifer O'Dwyer
- New York State Department of Environmental Conservation, East Setauket, NY 1173, United States
| | - Brian Beal
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States; University of Maine at Machias, 116 O'Brien Avenue, Machias, ME 04654, United States
| | - Kassandra Root
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Hannah Zuklie
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States.
| |
Collapse
|
4
|
Servili A, Lévêque E, Mouchel O, Devergne J, Lebigre C, Roussel S, Mazurais D, Zambonino-Infante JL. Ocean acidification alters the acute stress response of a marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159804. [PMID: 36349621 DOI: 10.1016/j.scitotenv.2022.159804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France.
| | - Etienne Lévêque
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Olivier Mouchel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Jimmy Devergne
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Christophe Lebigre
- UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, F-29280 Plouzané, France
| | - Sabine Roussel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - David Mazurais
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | | |
Collapse
|
5
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
6
|
Cohen-Rengifo M, Danion M, Gonzalez AA, Bégout ML, Cormier A, Noël C, Cabon J, Vitré T, Mark FC, Mazurais D. The extensive transgenerational transcriptomic effects of ocean acidification on the olfactory epithelium of a marine fish are associated with a better viral resistance. BMC Genomics 2022; 23:448. [PMID: 35710351 PMCID: PMC9204966 DOI: 10.1186/s12864-022-08647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid–base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. Results We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08647-w.
Collapse
Affiliation(s)
| | - Morgane Danion
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Anne-Alicia Gonzalez
- MGX, CNRS, INSERM, University of Montpellier, Biocampus Montpellier, Montpellier, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, IFREMER, 34250, Palavas-les-Flots, IRD, France
| | | | - Cyril Noël
- IFREMER, SEBIMER, 29280, Plouzané, France
| | - Joëlle Cabon
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Department of Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | | |
Collapse
|
7
|
Howald S, Moyano M, Crespel A, Kuchenmüller LL, Cominassi L, Claireaux G, Peck MA, Mark FC. Effects of Ocean Acidification over successive generations decrease larval resilience to Ocean Acidification & Warming but juvenile European sea bass could benefit from higher temperatures in the NE Atlantic. J Exp Biol 2022; 225:275035. [PMID: 35417012 DOI: 10.1242/jeb.243802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
European sea bass (Dicentrarchus labrax) is a large, economically important fish species with a long generation time whose long-term resilience to ocean acidification (OA) and warming (OW) is not clear. We incubated sea bass from Brittany (France) for two generations (>5 years in total) under ambient and predicted OA conditions (PCO2: 650 and 1700 µatm) crossed with ambient and predicted ocean OW conditions in F1 (temperature: 15-18°C and 20-23°C) to investigate the effects of climate change on larval and juvenile growth and metabolic rate. We found that in F1, OA as single stressor at ambient temperature did not affect larval or juvenile growth and OW increased developmental time and growth rates, but OAW decreased larval size at metamorphosis. Larval routine and juvenile standard metabolic rates were significantly lower in cold compared to warm conditioned fish and also lower in F0 compared to F1 fish. We did not find any effect of OA as a single stressor on metabolic rates. Juvenile PO2crit was not affected by OA or OAW in both generations. We discuss the potential underlying mechanisms resulting in the resilience of F0 and F1 larvae and juveniles to OA and in the beneficial effects of OW on F1 larval growth and metabolic rate, but on the other hand in the vulnerability of F1, but not F0 larvae to OAW. With regard to the ecological perspective, we conclude that recruitment of larvae and early juveniles to nursery areas might decrease under OAW conditions but individuals reaching juvenile phase might benefit from increased performance at higher temperatures.
Collapse
Affiliation(s)
- Sarah Howald
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany.,Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany
| | - Marta Moyano
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Center for Coastal Research, University of Agder, Postbox 422, 4604 Kristiansand, Norway
| | - Amélie Crespel
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, Plouzané, France
| | - Luis L Kuchenmüller
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Louise Cominassi
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Institute of Arctic Biology, University of Alaska, Fairbanks, PO Box 757000, Fairbanks, AK 99775, USA
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Brest, France.,Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, Plouzané, France
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Coastal Systems (COS), Royal Netherlands Institute for Sea Research (NIOZ), Netherlands
| | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| |
Collapse
|
8
|
Passos R, Correia AP, Pires D, Pires P, Ferreira I, Simões M, do Carmo B, Santos P, Pombo A, Afonso C, Baptista T. Potential use of macroalgae Gracilaria gracilis in diets for European seabass (Dicentrarchus labrax): Health benefits from a sustainable source. FISH & SHELLFISH IMMUNOLOGY 2021; 119:105-113. [PMID: 34600116 DOI: 10.1016/j.fsi.2021.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Seaweeds still possess a large undisclosed potential, mainly due to their constituent's richness, which may have several uses for society. In aquaculture, they may play a role as an ecological sustainable aquafeed supplement to increase overall health and fight pathogenic outbreaks. This study aimed to evaluate the general health modulation that the inclusion of Gracilaria gracilis could accomplish in the diet of Dicentrarchus labrax. Dried algae at 2.5% and 5% and algal extract at 0.35% inclusion levels were supplemented to seabass diet to evaluate possible growth, haematological, immunological, antioxidant, metabolic, and intestinal morphological modulations. The supplementations did not impact growth or feed utilization, and barely affected the haematological profile and some metabolic parameters. Nevertheless, it caused a marked outcome on lysozyme, some oxidative stress biomarkers, and intestine morphology, suggesting beneficial consequences from the algal inclusion. Dried algae powder, with a 2.5% inclusion, boosted immune response, with higher plasmatic lysozyme and intestinal acid goblet cells and protected against oxidative damages by improved enzymatic and non-enzymatic responses. Thus, we provide evidence that dietary seaweed application may be a path towards a more sustainable aquaculture industry.
Collapse
Affiliation(s)
- Ricardo Passos
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal.
| | - Ana Patrícia Correia
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal.
| | - Damiana Pires
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal.
| | - Pedro Pires
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal.
| | - Inês Ferreira
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal.
| | - Marco Simões
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal.
| | - Beatriz do Carmo
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal.
| | - Paulo Santos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
| | - Ana Pombo
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; School of Tourism and Maritime Technology, Polytechnic of Leiria, Campus 4 - Rua do Conhecimento nº 4 2520-641 Peniche, Portugal.
| | - Clélia Afonso
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; School of Tourism and Maritime Technology, Polytechnic of Leiria, Campus 4 - Rua do Conhecimento nº 4 2520-641 Peniche, Portugal.
| | - Teresa Baptista
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-620 Peniche, Portugal; School of Tourism and Maritime Technology, Polytechnic of Leiria, Campus 4 - Rua do Conhecimento nº 4 2520-641 Peniche, Portugal.
| |
Collapse
|
9
|
Illing B, Severati A, Hochen J, Boyd P, Raison P, Mather R, Downie AT, Rummer JL, Kroon FJ, Humphrey C. Automated flow control of a multi-lane swimming chamber for small fishes indicates species-specific sensitivity to experimental protocols. CONSERVATION PHYSIOLOGY 2021; 9:coaa131. [PMID: 33659062 PMCID: PMC7905161 DOI: 10.1093/conphys/coaa131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 05/03/2023]
Abstract
In fishes, swimming performance is considered an important metric to measure fitness, dispersal and migratory abilities. The swimming performance of individual larval fishes is often integrated into models to make inferences on how environmental parameters affect population-level dynamics (e.g. connectivity). However, little information exists regarding how experimental protocols affect the swimming performance of marine fish larvae. In addition, the technical setups used to measure larval fish swimming performance often lack automation and accurate control of water quality parameters and flow velocity. In this study, we automated the control of multi-lane swimming chambers for small fishes by developing an open-source algorithm. This automation allowed us to execute repeatable flow scenarios and reduce operator interference and inaccuracies in flow velocity typically associated with manual control. Furthermore, we made structural modifications to a prior design to reduce the areas of lower flow velocity. We then validated the flow dynamics of the new chambers using computational fluid dynamics and particle-tracking software. The algorithm provided an accurate alignment between the set and measured flow velocities and we used it to test whether faster critical swimming speed (U crit) protocols (i.e. shorter time intervals and higher velocity increments) would increase U crit of early life stages of two tropical fish species [4-10-mm standard length (SL)]. The U crit of barramundi (Lates calcarifer) and cinnamon anemonefish (Amphiprion melanopus) increased linearly with fish length, but in cinnamon anemonefish, U crit started to decrease upon metamorphosis. Swimming protocols using longer time intervals (more than 2.5 times increase) negatively affected U crit in cinnamon anemonefish but not in barramundi. These species-specific differences in swimming performance highlight the importance of testing suitable U crit protocols prior to experimentation. The automated control of flow velocity will create more accurate and repeatable data on swimming performance of larval fishes. Integrating refined measurements into individual-based models will support future research on the effects of environmental change.
Collapse
Affiliation(s)
- Björn Illing
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Andrea Severati
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Justin Hochen
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Paul Boyd
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Paulin Raison
- École Polytechnique Fédérale de Lausanne, School of Engineering, Route Cantonale, 1015 Lausanne, Switzerland
| | - Rachel Mather
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Adam T Downie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Frederieke J Kroon
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
- Division of Research and Innovation, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Craig Humphrey
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
10
|
Hannan KD, McMahon SJ, Munday PL, Rummer JL. Contrasting effects of constant and fluctuating pCO 2 conditions on the exercise physiology of coral reef fishes. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105224. [PMID: 33316710 DOI: 10.1016/j.marenvres.2020.105224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 05/28/2023]
Abstract
Ocean acidification (OA) is predicted to affect the physiology of some fishes. To date, most studies have investigated this issue using stable pCO2 levels based on open ocean projections. Yet, most shallow, nearshore systems experience temporal and spatial pCO2 fluctuations. For example, pCO2 on coral reefs is highest at night and lowest during the day, but as OA progresses, both the average pCO2 and magnitude of fluctuations are expected to increase. We exposed four coral reef fishes - Lutjanus fulviflamma, Caesio cuning, Abudefduf whitleyi, and Cheilodipterus quinquelineatus - to ambient, stable elevated, or fluctuating elevated pCO2 conditions for 9-11 days. Then, we measured swimming performance, oxygen uptake rates, and haematological parameters during the day and at night. When compared to ambient pCO2 conditions, L. fulviflamma, C. cuning, and A. whitleyi exposed to fluctuating elevated pCO2 increased swimming performance, maximum oxygen uptake rates, and aerobic scope, regardless of time of day; whereas, the only nocturnal species studied, C. quinquelineatus, decreased maximum oxygen uptake rates and aerobic scope. Our findings suggest that exposure to fluctuating or stable elevated pCO2 can physiologically benefit some coral reef fishes; however, other species, such as the cardinalfish examined here, may be more sensitive to future OA conditions.
Collapse
Affiliation(s)
- Kelly D Hannan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Shannon J McMahon
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
11
|
Chang CC, Lu YC, Wang CC, Ko TL, Chen JR, Wang W, Chen YL, Wang YW, Chang TH, Hsu HF, Houng JY. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules 2020; 25:molecules25184213. [PMID: 32937928 PMCID: PMC7571120 DOI: 10.3390/molecules25184213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
Antrodia cinnamomea (AC) has been shown to have anti-inflammatory, anti-tumor, and immunomodulation activities. It is estimated that hundreds of metric tons of AC extraction waste (ACEW) are produced per year in Taiwan. This study aims to assess the feasibility of applying ACEW as feed supplement in the aquaculture industry. ACEW significantly inhibited the growth of microorganisms in the water tank, by around 39.4% reduction on the fifth day with feed supplemented of 10% ACEW. The feed conversion efficiency of zebrafish with 10% ACEW supplementation for 30 days was 1.22-fold compared to that of the control. ACEW dramatically improved the tolerances of zebrafish under the heat and cold stresses. When at water temperature extremes of 38 °C or 11 °C, compared to the 100% mortality rate in the control group, the 10% ACEW diet group still had 91.7% and 83.3% survival rates, respectively. In a caudal fin amputation test, the fin recovery of zebrafish was increased from 68.4% to 93% with 10% ACEW diet after 3-week regeneration. ACEW effectively down-regulated the gene expression of TNF-α, IL-1β, IL-6, and IL-10, and up-regulated the gene expression of IL-4/13A. Additionally, the supplement of ACEW in the feed can maintain and prevent the fish’s body weight from dropping too much under enteritis. Taken together, ACEW has beneficial potential in aquaculture.
Collapse
Affiliation(s)
- Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Chih-Chun Wang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Otolaryngology, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Tsui-Ling Ko
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
| | - Jung-Ren Chen
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Wei Wang
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yu-Wen Wang
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Tzu-Hsien Chang
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Hsia-Fen Hsu
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Jer-Yiing Houng
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7915)
| |
Collapse
|
12
|
Murray CS, Baumann H. Are long-term growth responses to elevated pCO2 sex-specific in fish? PLoS One 2020; 15:e0235817. [PMID: 32678858 PMCID: PMC7367484 DOI: 10.1371/journal.pone.0235817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022] Open
Abstract
Whether marine fish will grow differently in future high pCO2 environments remains surprisingly uncertain. Long-term and whole-life cycle effects are particularly unknown, because such experiments are logistically challenging, space demanding, exclude long-lived species, and require controlled, restricted feeding regimes—otherwise increased consumption could mask potential growth effects. Here, we report on repeated, long-term, food-controlled experiments to rear large populations (>4,000 individuals total) of the experimental model and ecologically important forage fish Menidia menidia (Atlantic silverside) under contrasting temperature (17°, 24°, and 28°C) and pCO2 conditions (450 vs. ~2,200 μatm) from fertilization to ~ a third of this annual species’ life span. Quantile analyses of trait distributions showed mostly negative effects of high pCO2 on long-term growth. At 17°C and 28°C, but not at 24°C, high pCO2 fish were significantly shorter [17°C: -5 to -9%; 28°C: -3%] and weighed less [17°C: -6 to -18%; 28°C: -8%] compared to ambient pCO2 fish. Reductions in fish weight were smaller than in length, which is why high pCO2 fish at 17°C consistently exhibited a higher Fulton’s k (weight/length ratio). Notably, it took more than 100 days of rearing for statistically significant length differences to emerge between treatment populations, showing that cumulative, long-term CO2 effects could exist elsewhere but are easily missed by short experiments. Long-term rearing had another benefit: it allowed sexing the surviving fish, thereby enabling rare sex-specific analyses of trait distributions under contrasting CO2 environments. We found that female silversides grew faster than males, but there was no interaction between CO2 and sex, indicating that males and females were similarly affected by high pCO2. Because Atlantic silversides are known to exhibit temperature-dependent sex determination, we also analyzed sex ratios, revealing no evidence for CO2-dependent sex determination in this species.
Collapse
Affiliation(s)
- Christopher S. Murray
- Washington Ocean Acidification Center, School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Hannes Baumann
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States of America
| |
Collapse
|
13
|
Mazurais D, Servili A, Noel C, Cormier A, Collet S, Leseur R, Le Roy M, Vitré T, Madec L, Zambonino-Infante JL. Transgenerational regulation of cbln11 gene expression in the olfactory rosette of the European sea bass (Dicentrarchus labrax) exposed to ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105022. [PMID: 32662446 DOI: 10.1016/j.marenvres.2020.105022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Elevated amounts of atmospheric CO2 are causing ocean acidification (OA) that may affect marine organisms including fish species. While several studies carried out in fish revealed that OA induces short term dysfunction in sensory systems including regulation of neurons activity in olfactory epithelium, information on the effects of OA on other physiological processes and actors is scarcer. In the present study we focused our attention on a European sea bass (Dicentrarchus labrax) sghC1q gene, a member of the C1q-domain-containing (C1qDC) protein family. In vertebrates, C1qDC family includes actors involved in different physiological processes including immune response and synaptic organization. Our microsynteny analysis revealed that this sghC1q gene is the orthologous gene in European sea bass to zebrafish (Danio rerio) cbln11 gene. We cloned the full length cbln11 mRNA and identified the different domains (the signal peptide, the coiled coil region and the globular C1q domain) of the deduced protein sequence. Investigation of mRNA expression by qPCR and in situ hybridization revealed that cbln11gene is especially expressed in the non-sensory epithelium of the olfactory rosette at larval and adult stages. The expression of cbln11 mRNA was analysed by qPCR in the first generation (F0) of European sea bass broodstock exposed since larval stages to water pH of 8.0 (control) or 7.6 (predicted for year 2100) and in their offspring (F1) maintained in the environmental conditions of their parents. Our results showed that cbln11 mRNA expression level was lower in larvae exposed to OA then up-regulated at adult stage in the olfactory rosette of F0 and that this up-regulation is maintained under OA at larval and juvenile stages in F1. Overall, this work provides evidence of a transgenerational inheritance of OA-induced up-regulation of cbln11 gene expression in European sea bass. Further studies will investigate the potential immune function of cbln11 gene and the consequences of these regulations, as well as the possible implications in terms of fitness and adaptation to OA in European sea bass.
Collapse
Affiliation(s)
- David Mazurais
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France.
| | - Arianna Servili
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Cyril Noel
- IFREMER, SEBIMER, F-29280, Plouzané, France
| | | | - Sophie Collet
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Romane Leseur
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Maelenn Le Roy
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Thomas Vitré
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Lauriane Madec
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
14
|
Park K, Han EJ, Ahn G, Kwak IS. Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137130. [PMID: 32045767 DOI: 10.1016/j.scitotenv.2020.137130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
Fish are frequently affected by environmental stressors, such as temperature changes and heavy metal exposure, in aquatic ecosystems. In this study, we evaluated the combined effects of cadmium (Cd) toxicity and temperature (rearing temperature of 26 °C and heat stress at 34 °C) on zebrafish (Danio rerio) embryos. The survival and heart rates of zebrafish embryos decreased at relatively high Cd concentrations of 0.07 and 0.1 mg L-1. Abnormal morphology was induced by exposure to a combination of Cd toxicity and heat stress. The yolk sac edema size was not significantly different between the control- and Cd-treated groups. Cd exposure induced reactive oxygen species (ROS) production and cell death in the live zebrafish. High temperature (34 °C) triggered Cd-induced cell death and intracellular ROS production to a greater extent than the rearing temperature of 26 °C. Transcriptional levels of six genes-CAT, SOD, p53, BAX, Dnmt1, and Dnmt3b-were investigated. The mRNA expression of CAT and SOD, molecular indicators of oxidative stress, was increased significantly at 34 °C after Cd exposure. The mRNA expression of CAT was more sensitive to temperature than that of SOD in Cd-treated zebrafish. p53 and BAX, apoptosis-related genes, were upregulated upon combined exposure to high temperature and Cd. In addition, at 34 °C, the expression of Dnmt1 and Dnmt3b transcripts, markers of DNA methylation, was increased upon exposure of zebrafish to all concentrations of Cd. Overall, these results suggest that high temperature facilitates the potential role of Cd toxicity in the transcriptional regulation of genes involved in the antioxidant system, apoptosis, and DNA methylation.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Eui Jeong Han
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|