1
|
Rearte TA, Celis-Pla PSM, Abdala-Díaz R, Castro-Varela P, Marsili SN, García C, Cerón-García MC, Figueroa FL. Increase in polyunsaturated fatty acids and carotenoid accumulation in the microalga Golenkinia brevispicula (Chlorophyceae) by manipulating spectral irradiance and salinity. Biotechnol Bioeng 2024; 121:3715-3727. [PMID: 39183489 DOI: 10.1002/bit.28831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Microalgal biotechnology offers a promising platform for the sustainable production of diverse renewable bioactive compounds. The key distinction from other microbial bioprocesses lies in the critical role that light plays in cultures, as it serves as a source of environmental information to control metabolic processes. Therefore, we can use these criteria to design a bioprocess that aims to stimulate the accumulation of target molecules by controlling light exposure. We study the effect on biochemical and photobiological responses of Golenkinia brevispicula FAUBA-3 to the exposition of different spectral irradiances (specifically, high-fluence PAR of narrow yellow spectrum complemented with low intensity of monochromatic radiations of red, blue, and UV-A) under prestress and salinity stress conditions. High light (HL) intensity coupled to salinity stress affected the photosynthetic activity and photoprotection mechanisms as shown by maximal quantum yield (Fv/Fm) and non-photochemical quenching (NPQmax) reduction, respectively. HL treatments combined with the proper dose of UV-A radiation under salinity stress induced the highest carotenoid content (2.75 mg g dry weight [DW]- 1) composed mainly of lutein and β-carotene, and the highest lipid accumulation (35.3% DW) with the highest polyunsaturated fatty acid content (alpha-linolenic acid (C18:3) and linoleic acid (C18:2)). Our study can guide the strategies for commercial indoor production of G. brevispicula for high-value metabolites.
Collapse
Affiliation(s)
- T A Rearte
- Cátedra de Química Inorgánica y Analítica, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - P S M Celis-Pla
- Laboratory of Aquatic Environmental Research (LACER)/HUB-AMBIENTAL UPLA, Playa Ancha University, Valparaíso, Chile
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - R Abdala-Díaz
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Málaga, Spain
| | - P Castro-Varela
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - S N Marsili
- Cátedra de Química Inorgánica y Analítica, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - C García
- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M C Cerón-García
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain
| | - F L Figueroa
- Universidad de Málaga, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Centro Experimental Grice Hutchinson, Málaga, Spain
| |
Collapse
|
2
|
Kang NS, An SM, Jo CR, Ki H, Kim SY, Jeong HG, Choi G, Hong JW, Cho K. Taxonomic, Physiological, and Biochemical Characterization of Asterarcys quadricellularis AQYS21 as a Promising Sustainable Feedstock for Biofuels and ω-3 Fatty Acids. PLANTS (BASEL, SWITZERLAND) 2024; 13:3008. [PMID: 39519930 PMCID: PMC11548009 DOI: 10.3390/plants13213008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Asterarcys quadricellularis strain AQYS21, a green microalga isolated from the brackish waters near Manseong-ri Black Sand Beach in Korea, shows considerable potential as a source of bioactive compounds and biofuels. Therefore, this study analyzed the morphological, molecular, and biochemical characteristics of this strain; optimized its cultivation conditions; and evaluated its suitability for biodiesel production. Morphological analysis revealed characteristics typical of the Asterarcys genus: spherical to ellipsoidal cells with pyrenoid starch plates and mucilage-embedded coenobia. Additionally, features not previously reported in other A. quadricellularis strains were observed. These included young cells with meridional ribs and an asymmetric spindle-shaped form with one or two pointed ends. Molecular analysis using small-subunit rDNA and tufA sequences confirmed the identification of the strain AQYS21. This strain showed robust growth across a wide temperature range, with optimal conditions at 24 °C and 88 µmol m-2s-1 photon flux density. It was particularly rich in ω-3 α-linolenic acid and palmitic acid. Furthermore, its biodiesel properties indicated its suitability for biodiesel formulations. The biomass of this microalga may serve as a viable feedstock for biodiesel production and a valuable source of ω-3 fatty acids. These findings reveal new morphological characteristics of A. quadricellularis, enhancing our understanding of the species.
Collapse
Affiliation(s)
- Nam Seon Kang
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| | - Sung Min An
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| | - Chang Rak Jo
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| | - Hyunji Ki
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| | - Sun Young Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| | - Hyeon Gyeong Jeong
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| | - Grace Choi
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea;
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kichul Cho
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (N.S.K.); (S.M.A.); (C.R.J.); (H.K.); (S.Y.K.); (H.G.J.); (G.C.)
| |
Collapse
|
3
|
Wan L, Zhou Y, Huang R, Jiao Y, Gao J. Toxicity of Moxifloxacin on the Growth, Photosynthesis, Antioxidant System, and Metabolism of Microcystis aeruginosa at Different Phosphorus Levels. TOXICS 2024; 12:611. [PMID: 39195713 PMCID: PMC11359433 DOI: 10.3390/toxics12080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Moxifloxacin (MOX), a widely used novel antibiotic, may pose ecological risks at its actual environmental concentrations, as has been detected in aquatic systems. However, its ecotoxicity to aquatic organisms and regulatory mechanisms of phosphorus in eutrophic aqueous environments are still limited. This study aimed to analyze its physiological and biochemical parameters, including cellular growth, chlorophyll fluorescence, photosynthetic pigments, oxidative stress biomarkers, and metabolomics to elucidate the toxicity induced by environmental concentrations of MOX in Microcystis aeruginosa at different phosphorus levels. The results revealed that the EC50 values of MOX on M. aeruginosa at different phosphorus concentrations were 8.03, 7.84, and 6.91 μg/L, respectively, indicating MOX toxicity was exacerbated with increasing phosphorus levels. High phosphorus intensified the suppression of chlorophyll fluorescence and photosynthetic pigments, while activating the antioxidant enzyme, indicating severe peroxidation damage. Metabolomic analysis showed MOX induced different discriminating metabolites under different phosphorus levels, and perturbed more biological pathways at higher phosphorus concentrations, such as starch and sucrose metabolism, pyrimidine metabolism, and glycerolipid metabolism. This indicates that phosphorus plays an important role in regulating metabolism in M. aeruginosa exposed to MOX. The findings provide valuable information on the mechanisms involved in cyanobacteria responses to antibiotic stress, and offer a theoretical basis for accurately assessing antibiotic toxicity in eutrophic aqueous environments.
Collapse
Affiliation(s)
- Liang Wan
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China (Y.J.); (J.G.)
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Yan Zhou
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China (Y.J.); (J.G.)
| | - Rong Huang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China (Y.J.); (J.G.)
| | - Yiying Jiao
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China (Y.J.); (J.G.)
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Jian Gao
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China (Y.J.); (J.G.)
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Dymova OV, Parshukov VS, Novakovskaya IV, Patova EN. Content of Primary and Secondary Carotenoids in the Cells of Cryotolerant Microalgae Chloromonas reticulata. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1251-1259. [PMID: 39218022 DOI: 10.1134/s0006297924070071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
Snow (cryotolerant) algae often form red (pink) spots in mountain ecosystems on snowfields around the world, but little is known about their physiology and chemical composition. Content and composition of pigments in the cells of the cryotolerant green microalgae Chloromonas reticulata have been studied. Analysis of carotenoids content in the green (vegetative) cells grown under laboratory conditions and in the red resting cells collected from the snow surface in the Subpolar Urals was carried out. Carotenoids such as neoxanthin, violaxanthin, anteraxanthin, zeaxanthin, lutein, and β-carotene were detected. Among the carotenoids, the ketocarotenoid astaxanthin with high biological activity was also found. It was established that cultivation of the algae at low positive temperature (6°C) and moderate illumination (250 μmol quanta/(m2⋅s) contributed to accumulation of all identified carotenoids, including extraplastidic astaxanthin. In addition to the pigments, fatty acids accumulated in the algae cells. The data obtained allow us to consider the studied microalgae as a potentially promising species for production of carotenoids.
Collapse
Affiliation(s)
- Olga V Dymova
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia.
| | - Vitaliy S Parshukov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia
| | - Irina V Novakovskaya
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia
| | - Elena N Patova
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia
| |
Collapse
|
5
|
Yadav K, Saxena A, Gupta M, Saha B, Sarwat M, Rai MP. Comparing Pharmacological Potential of Freshwater Microalgae Carotenoids Towards Antioxidant and Anti-proliferative Activity on Liver Cancer (HUH7) Cell Line. Appl Biochem Biotechnol 2024; 196:2053-2066. [PMID: 37462814 DOI: 10.1007/s12010-023-04635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 04/23/2024]
Abstract
Chemical-based carotenoids have large implications to health as they may cause adverse side effects. Naturally occurring carotenoids mainly from microalgal sources are emerging as excellent substitute to combat cancer diseases. Astaxanthin is the most powerful antioxidant that derived from selected established microalgae with limited yield. Microalgal bioprospecting may provide the high-yielding sources for astaxanthin production. Hence, in the present research, freshwater microalgae Monoraphidium sp. (NCM no. 5585) and Scenedesmus obliquus (NCM no. 5586) were chosen to explore the unique potential of producing astaxanthin. Identification of bioactive metabolites in extracted carotenoid was analyzed through HPLC. Astaxanthin is identified as a major bioactive metabolite in both carotenoid fraction and β carotene only in Scenedesmus obliquus. Antioxidant potential of microalgal carotenoids was obtained by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric-reducing antioxidant power (FRAP) assay. The anti-proliferation activity of the extracted carotenoid from Monoraphidium sp. and Scenedesmus obliquus was evaluated against hepatocellular liver carcinoma cell line HUH7 by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. Higher astaxanthin in Monoraphidium sp. leads to boosted antioxidant and anti-proliferation activity contrary to Scenedesmus obliquus that possess both astaxanthin and β carotene. Though freshwater microalgae have a huge potential to create beneficial metabolites like carotenoids, they are rarely studied in the pharmaceutical industry. This work was the first to investigate the anti-proliferative activity of Monoraphidium sp. and Scenedesmus obliquus carotenoid fraction on the HUH7 hepatocarcinoma cell line.
Collapse
Affiliation(s)
- Kushi Yadav
- Algal Biotechnology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Anjali Saxena
- Organic Synthesis and Medicinal Chemistry Lab, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Biswajit Saha
- Organic Synthesis and Medicinal Chemistry Lab, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Monika Prakash Rai
- Algal Biotechnology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
| |
Collapse
|
6
|
Li Y, Zhao Y, Zhang H, Ding Z, Han J. The Application of Natural Carotenoids in Multiple Fields and Their Encapsulation Technology: A Review. Molecules 2024; 29:967. [PMID: 38474479 DOI: 10.3390/molecules29050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Carotenoids, which are inherent pigments occurring in plants and microorganisms, manifest a diverse array of vivid hues. Owing to their multifarious health advantages, carotenoids have engendered substantial interest among scholars and consumers alike. Presently, carotenoids are extensively employed in the realms of food, nutrition and health commodities, pharmaceuticals, and cosmetics, rendering them an indispensable constituent of our quotidian existence. Therefore, the objective of this review is to present a succinct and methodical examination of the sources, constituents, and factors influencing formation of carotenoids. Particular attention will be given to encapsulation strategies that maintain intrinsic characteristics, as the growing desire for carotenoids is propelled by individuals' escalating standards of living. Moreover, the applications of natural carotenoids in multiple fields, including pharmaceutical, food and feed, as well as cosmetics, are discussed in detail. Finally, this article explores the main challenges hindering the future advancement of carotenoids, aiming at facilitating their effective integration into the circular economy.
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252059, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
7
|
Akter S, AbdElgawad H, Beemster GTS, De Boeck G, Schoelynck J. Synergistic effect of nitrate exposure and heatwaves on the growth, and metabolic activity of microalgae, Chlamydomonas reinhardtii, and Pseudokirchneriella subcapitata. Sci Rep 2024; 14:2764. [PMID: 38308017 PMCID: PMC10837129 DOI: 10.1038/s41598-024-53198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L-1 NO3-l) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs.
Collapse
Affiliation(s)
- Sabiha Akter
- ECOSPHERE, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium.
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Jonas Schoelynck
- ECOSPHERE, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| |
Collapse
|
8
|
Kadri MS, Singhania RR, Anisha GS, Gohil N, Singh V, Patel AK, Patel AK. Microalgal lutein: Advancements in production, extraction, market potential, and applications. BIORESOURCE TECHNOLOGY 2023; 389:129808. [PMID: 37806362 DOI: 10.1016/j.biortech.2023.129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Education and Human Potential Development, National Dong Hwa University, Hualien, 974301, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Alok Kumar Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
9
|
Cheirsilp B, Maneechote W, Srinuanpan S, Angelidaki I. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. BIORESOURCE TECHNOLOGY 2023; 387:129620. [PMID: 37544540 DOI: 10.1016/j.biortech.2023.129620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are promising organisms that are rapidly gaining much attention due to their numerous advantages and applications, especially in biorefineries for various bioenergy and biochemicals. This review focuses on the microalgae contributions to Bio-Circular-Green (BCG) economy, in which zero-waste approaches for sustainable production and biorefineries of microalgal biomass are introduced and their possible integration is discussed. Firstly, overviews of wastewater upcycling and greenhouse gas capture by microalgae are given. Then, a variety of valuable products from microalgal biomass, e.g., pigments, vitamins, proteins/peptides, carbohydrates, lipids, polyunsaturated fatty acids, and exopolysaccharides, are summarized to emphasize their biorefinery potential. Techno-economic and environmental analyses have been used to evaluate sustainability of microalgal biomass production systems. Finally, key issues, future perspectives, and challenges for zero-waste microalgal biorefineries, e.g., cost-effective techniques and innovative integrations with other viable processes, are discussed. These strategies not only make microalgae-based industries commercially feasible and sustainable but also reduce environmental impacts.
Collapse
Affiliation(s)
- Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Chiang Mai Research Group for Carbon Capture and Storage, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Irini Angelidaki
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| |
Collapse
|
10
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
11
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
12
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
13
|
Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, Chen F, Sun H. Lutein production from microalgae: A review. BIORESOURCE TECHNOLOGY 2023; 376:128875. [PMID: 36921637 DOI: 10.1016/j.biortech.2023.128875] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Lutein production from microalgae is a sustainable and economical strategy to offer the increasing global demands, but is still challenged with low lutein content at the high-cell density for commercial production. This review summarizes the suitable conditions for cell growth and lutein accumulation, and presents recent cultivation strategies to further improve lutein productivity. Light and nitrogen play critical roles in lutein biosynthesis that lead to the efficient multi-stage cultivation by increasing lutein content at the later stage. In addition, metabolic and genetic designs for carbon regulation and lutein biosynthesis are discussed at the molecule level. The in-situ lutein accumulation in fermenters by regulating carbon metabolism is considered as a cost-effective direction. Then, downstream processes are summarized for the efficient lutein recovery. Finally, challenges of current lutein production from microalgae are discussed. Meanwhile, potential solutions are proposed to improve lutein content and drive down costs of microalgal biomass.
Collapse
Affiliation(s)
- Yunlei Fu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yinan Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
14
|
Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants (Basel) 2023; 12:antiox12051030. [PMID: 37237896 DOI: 10.3390/antiox12051030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Biotechnologically produced carotenoids occupy an important place in the scientific research. Owing to their role as natural pigments and their high antioxidant properties, microbial carotenoids have been proposed as alternatives to their synthetic counterparts. To this end, many studies are focusing on their efficient and sustainable production from renewable substrates. Besides the development of an efficient upstream process, their separation and purification as well as their analysis from the microbial biomass confers another important aspect. Currently, the use of organic solvents constitutes the main extraction process; however, environmental concerns along with potential toxicity towards human health necessitate the employment of "greener" techniques. Hence, many research groups are focusing on applying emerging technologies such as ultrasounds, microwaves, ionic liquids or eutectic solvents for the separation of carotenoids from microbial cells. This review aims to summarize the progress on both the biotechnological production of carotenoids and the methods for their effective extraction. In the framework of circular economy and sustainability, the focus is given on green recovery methods targeting high-value applications such as novel functional foods and pharmaceuticals. Finally, methods for carotenoids identification and quantification are also discussed in order to create a roadmap for successful carotenoids analysis.
Collapse
Affiliation(s)
- Harris Papapostolou
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| |
Collapse
|
15
|
Thepsuthammarat K, Reungsang A, Plangklang P. Microalga Coelastrella sp. Cultivation on Unhydrolyzed Molasses-Based Medium towards the Optimization of Conditions for Growth and Biomass Production under Mixotrophic Cultivation. Molecules 2023; 28:molecules28083603. [PMID: 37110836 PMCID: PMC10145047 DOI: 10.3390/molecules28083603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Improving biomass production with the utilization of low-cost substrate is a crucial approach to overcome the hindrance of high cost in developing large-scale microalgae production. The microalga Coelastrella sp. KKU-P1 was mixotrophically cultivated using unhydrolyzed molasses as a carbon source, with the key environmental conditions being varied in order to maximize biomass production. The batch cultivation in flasks achieved the highest biomass production of 3.81 g/L, under an initial pH 5.0, a substrate to inoculum ratio of 100:3, an initial total sugar concentration of 10 g/L, and a sodium nitrate concentration of 1.5 g/L with continuous light illumination at 23.7 W/m2. The photobioreactor cultivation results indicated that CO2 supplementation did not improve biomass production. An ambient concentration of CO2 was sufficient to promote the mixotrophic growth of the microalga as indicated by the highest biomass production of 4.28 g/L with 33.91% protein, 46.71% carbohydrate, and 15.10% lipid. The results of the biochemical composition analysis suggest that the microalgal biomass obtained is promising as a source of essential amino acids and pigments as well as saturated and monounsaturated fatty acids. This research highlights the potential for bioresource production via microalgal mixotrophic cultivation using untreated molasses as a low-cost raw material.
Collapse
Affiliation(s)
- Kamolwan Thepsuthammarat
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Pensri Plangklang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Jaiswal TP, Chakraborty S, Sharma S, Mishra A, Mishra AK, Singh SS. Prospects of a hot spring-originated novel cyanobacterium, Scytonema ambikapurensis, for wastewater treatment and exopolysaccharide-enriched biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53424-53444. [PMID: 36856995 DOI: 10.1007/s11356-023-26032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The present work performs the polyphasic characterization of a novel cyanobacterial species Scytonema ambikapurensis isolated from an Indian hot spring and evaluates its wastewater bioremediation potential. While the physicochemical analyses of the wastewater indicated high load of nutrients and metals, the wastewater bioremediation experiment performed using the test cyanobacterium denoted the removal of 70 and 86% phosphate, 49 and 66% sulfate, 96 and 98% nitrate, 91 and 92% nitrite, 95 and 96% ammonia, 66 and 72% chloride, 79 and 81% zinc, 68 and 80% nickel, 81 and 90% calcium, and 80 and 90% potassium from the autoclaved and un-autoclaved wastewater, respectively, after 20 days of culturing. The kinetics study of zinc and nickel removal from wastewater revealed that the cyanobacterium employed sequential biosorption (by following pseudo-second-order kinetics model) and bioaccumulation methods to remove these two metals. The quality of the autoclaved and un-autoclaved wastewater was further improved by the cyanobacterium through reduction of hardness by 74 and 81%, respectively. In wastewater, the cyanobacterium not only enhanced its biomass, chlorophyll and carbohydrate contents, but also produced small amount of released and high capsular exopolysaccharide (EPS). The FTIR and TGA analyses of capsular EPS unraveled that it was a negatively charged sulfated biomolecule having thermostability up to 240 °C, which suggested its possible use as excellent emulsifying, viscosifying, and biosorption agent. The credibility of this EPS as biosorption agent was ascertained by evaluating its metal chelating ability. Finally, the experimental data denoting the ability of S. ambikapurensis to bioremediate wastewater and simultaneously produce EPS was statistically validated by PCA1-pollutant removal model and the PCA2-cellular constituent model, respectively. Briefly, the study discloses that the cyanobacterium has huge biotechnological and industrial importance as it bioremediates wastewater and simultaneously produces thermostable exopolysaccharide.
Collapse
Affiliation(s)
- Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sanjay Sharma
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
17
|
Zarekarizi A, Hoffmann L, Burritt DJ. The potential of manipulating light in the commercial production of carotenoids from algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
18
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Ren HY, Song X, Kong F, Song Q, Ren NQ, Liu BF. Lipid production characteristics of a newly isolated microalga Asterarcys quadricellulare R-56 as biodiesel feedstock. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48339-48350. [PMID: 36757593 DOI: 10.1007/s11356-023-25728-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
In this study, a new microalgal strain, Asterarcys quadricellulare R-56, was isolated for biomass and lipid production. The effects of carbon and nitrogen sources and initial pH on the cell growth and lipid accumulation of strain R-56 were investigated. At 10 g L-1 glucose, 0.6 g L-1 sodium nitrate, and pH 7, the highest biomass of 4.18 g L-1 and lipid content of 43.66% were obtained. Microalgae had a broad pH tolerance in the range of 5-11, and the pH of the culture medium was close to neutral at the end of cultivation. The maximum contents of chlorophyll, carbohydrate, and protein under the recommended culture conditions were 19.47 mg mL-1, 21.80%, and 29.94%, respectively. Palmitic and palmitoleic acid contents in strain R-56 accounted for as high as 83.73% of total fatty acids. This study suggested that strain R-56 was a promising lipid producer for high-quality biodiesel production.
Collapse
Affiliation(s)
- Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China. .,School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| |
Collapse
|
20
|
Joshi K, Kumar P, Kataria R. Microbial carotenoid production and their potential applications as antioxidants: A current update. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
21
|
Minhas AK, Gaur S, Adholeya A. Influence of light intensity and photoperiod on the pigment and, lipid production of Dunaliella tertiolecta and Nannochloropsis oculata under three different culture medium. Heliyon 2023; 9:e12801. [PMID: 36816239 PMCID: PMC9929195 DOI: 10.1016/j.heliyon.2023.e12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/17/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Microalgal biomass has the ability to store huge amount of triacylglycerides as fatty ester methyl esters (FAME) and carotenoids which has made algae as potential candidate for biorefinery approach. Essential fatty acid such as palmitic acid, stearic acid, arachidonic acid and eicospentanoic acid have been produced which are known for their various applications. The present study was aimed to evaluate the influence of different light intensities (120 and 250 μE/m2/s) and photoperiod (16:8h and 13:11h light/dark cycle) on the production of lipid, biomass and lutein. Dunaliella tertiolecta and Nannochloropsis oculata was grown for 23 days in F/2, sea salt media (SSM, Distilled water (DW) and SSM (natural seawater media,NSW) under two different light intensities and photoperiod regimes at 25 ᵒC. SSM (NSW) showed maximum accumulation of lipid in D.tertiolecta (34.56 mg/L/d). SSM (DW)- biomass showed 1.5 times higher lutein productivity of 0.253 mg/L/d under 13:11h light/dark cycle at 250 μE/m2/s compared to same medium under 16:8h light/dark cycles at 120 μE/m2/s. Where as in N.oculata, F/2 biomass showed higher lipid and lutein productivity of 15.69 and 0.279 mg/L/d, respectively The laboratory scale cultivation parameters and related media cost showed the suitability of different culture media adaptation to large scale production.
Collapse
|
22
|
Ashokkumar V, Flora G, Sevanan M, Sripriya R, Chen WH, Park JH, Rajesh Banu J, Kumar G. Technological advances in the production of carotenoids and their applications- A critical review. BIORESOURCE TECHNOLOGY 2023; 367:128215. [PMID: 36332858 DOI: 10.1016/j.biortech.2022.128215] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 05/21/2023]
Abstract
Carotenoids are naturally occurring pigments that are widely distributed in algae, fungi, bacteria, and plants. Carotenoids play a significant role in the food, feed, cosmetic, nutraceutical, and pharmaceutical industries. These pigments are effectively considered as a health-promoting compounds, which are widely used in our daily diet to reduce the risk of chronic diseases such as cardiovascular diseases, cancer, acute lung injury, cataracts, neural disorders, etc. In this context, this review paper demonstrates the synthesis of carotenoids and their potential application in the food and pharmaceutical industries. However, the demand for carotenoid production is increasing overtime, and the extraction and production are expensive and technically challenging. The recent developments in carotenoid biosynthesis, and key challenges, bottlenecks, and future perspectives were also discussed to enhance the circular bioeconomy.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory (BBBL), Center for Trandisciplinary Research, Department of Pharmacology, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Combatore, India
| | - R Sripriya
- Department of Zoology, St. Mary's College (Autonomous), Thoothukudi, India
| | - W H Chen
- Department Aeronautical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
23
|
Asterarcys quadricellulare (Chlorophyceae) protects H9c2 cardiomyoblasts from H 2O 2-induced oxidative stress. Mol Cell Biochem 2022:10.1007/s11010-022-04626-7. [PMID: 36583795 PMCID: PMC10359365 DOI: 10.1007/s11010-022-04626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022]
Abstract
Oxidative stress has recently been identified as an important mediator of cardiovascular diseases. The need to find efficient antioxidant molecules is essential in the disease's prevention. Therefore, the present study aimed to evaluate the potential of microalgae bioactive in protecting H9c2 cardiomyoblasts from H2O2-induced oxidative stress. Four microalgal species were investigated for their antioxidant capacity. A qualitative assessment of oxidative stress in H9c2 cardiomyoblasts stained with DCFH-DA, treated with the highly active microalgae extracts, was performed. The protein expression of total caspase-3 was also examined to investigate whether the extract protects H9c2 cardimyoblasts from H2O2-induced apoptosis. High antioxidant activity was observed for the hexanoic extracts after 10 days of cultivation. Asterarcys quadricellulare exhibited the highest antioxidant capacity of 110.59 ± 1.75 mg TE g-1 dry weight and was tested against H9c2 cardiomyoblasts, which were initially subjected to H2O2-induced oxidative stress. This hexanoic extract protected against H2O2 induced oxidative stress with a similar scavenging capacity as N-Acetylcysteine. Furthermore, total caspase-3 was increased following treatment with the hexanoic extract, suggesting that A. quadricellulare also had anti-apoptotic properties. The outcome of our study highlighted the possible use of the local A. quadricellulare strain QUCCCM10 as a natural, safe, and efficient antioxidant to prevent cardiovascular diseases.
Collapse
|
24
|
Pulgarin A, Decker J, Chen J, Giannakis S, Ludwig C, Refardt D, Pick H. Effective removal of the rotifer Brachionus calyciflorus from a Chlorella vulgaris microalgal culture by homogeneous solar photo-Fenton at neutral pH. WATER RESEARCH 2022; 226:119301. [PMID: 36369688 DOI: 10.1016/j.watres.2022.119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this study, a citrate-modified photo-Fenton process was successfully applied to decontaminate a Chlorella vulgaris microalgae culture spiked with the rotifer Brachionus calyciflorus (5 individuals mL-1). The applied treatment (1 mg L-1 Fe2+, 20 mg L-1 H2O2, 17.5 mg L-1 citric acid) had only moderate effects on viability and regrowth of the microalgae since, after a short post-treatment delay of a few days, they reached final cell densities similar to that obtained for microalgae cultures that were not spiked. The decontamination was effective as no regrowth of rotifers was observed in the microalgae cultures after treatment. The efficacy of the citrate-modified photo-Fenton treatment was also studied with a higher starting concentration of 20 rotifers mL-1 and was compared with a solar light/H2O2 treatment. Results show that both treatments had similar efficacies on the rotifer elimination, but that the citrate-modified photo-Fenton treatment had a lower negative impact on the regrowth of microalgae than the solar light/H2O2 treatment. However, when microalgae cultures were spiked with 20 rotifers mL-1, rotifers were only partially inactivated and post-treatment regrowth occurred, which highlights the importance to apply the photo-Fenton process at an early stage of a contamination to achieve full rotifer elimination. In any case, a contamination with 5 rotifers mL-1 is already a significant threat as numbers above 1000 rotifers mL-1 were reached after 14 days and caused the microalgae culture to fail. Overall, our treatment suggests that the citrate-modified solar photo-Fenton process is an environmentally friendly solution to support the maintenance of contaminant-free microalgal cultures.
Collapse
Affiliation(s)
- Adrian Pulgarin
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland
| | - Jérémie Decker
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland
| | - Jiahua Chen
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain.
| | - Christian Ludwig
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland; Paul Scherrer Institute (PSI), Energy and Environment Research Division (ENE), Bioenergy and Catalysis Laboratory (LBK), Chemical Processes and Materials Group (CPM), CH-5232, Villigen PSI, Switzerland
| | - Dominik Refardt
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland
| | - Horst Pick
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Malik S, Ashraf MUF, Shahid A, Javed MR, Khan AZ, Usman M, Manivannan A, Mehmood MA, Ashraf GA. Characterization of a newly isolated self-flocculating microalga Bracteacoccus pseudominor BERC09 and its evaluation as a candidate for a multiproduct algal biorefinery. CHEMOSPHERE 2022; 304:135346. [PMID: 35714954 DOI: 10.1016/j.chemosphere.2022.135346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Microalgae have the highest capability to fix the atmospheric carbon and wastewater-derived nutrients to produce high-value bioproducts including lipids and carotenoids. However, their lower titers and single-product-oriented biomass processing have made the overall process expensive. Hence, increased metabolite titer and processing of the biomass for more than one product are required to ensure the commercial robustness of the algal biorefinery. In this study, a newly isolated algal strain was identified as Bracteacoccus pseudominor BERC09 through phylogenetic analysis based on the 18S rRNA gene sequence. Basic characterization of the strain revealed its promising potential to produce carotenoids and lipids. The lipids and carotenoid biosynthesis pathways of BERC09 were further triggered by manipulating the abiotic factors including nitrogen sources (NaNO3, KNO3, NH4Cl, Urea), nitrogen concentrations (0.06-0.36 gL-1), light intensity (150 μmolm-2s-1 to 300 μmolm-2s-1), and light quality (white and blue). Resultantly, 300 μmolm-2s-1 of blue light yielded 0.768 gL-1 of biomass, 8.4 mgg-1 of carotenoids, and 390 mgg-1 of lipids, and supplementation of 0.36 gL-1 of KNO3 further improved metabolism and yielded 0.814 gL-1 of biomass, 11.86 mgg-1 of carotenoids, and 424 mgg-1 of lipids. Overall, the optimal combination of light and nitrogen concurrently improved biomass, carotenoids, and lipids by 3.5-fold, 6-fold, and 4-fold than control, respectively. Besides, the excellent glycoproteins-based self-flocculation ability of the strain rendered an easier harvesting via gravity sedimentation. Hence, this biomass can be processed in a cascading fashion to use this strain as a candidate for a multiproduct biorefinery to achieve commercial robustness and environmental sustainability.
Collapse
Affiliation(s)
- Sana Malik
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umer Farooq Ashraf
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aqib Zafar Khan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Usman
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Arthi Manivannan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Ghulam Abbas Ashraf
- Department of Physics, Zhejiang Normal University, Zhejiang, 321004, Jinhua, China.
| |
Collapse
|
27
|
Calijuri ML, Silva TA, Magalhães IB, Pereira ASADP, Marangon BB, Assis LRD, Lorentz JF. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. CHEMOSPHERE 2022; 305:135508. [PMID: 35777544 DOI: 10.1016/j.chemosphere.2022.135508] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a potential feedstock for several bioproducts, mainly from its primary and secondary metabolites. Lipids can be converted in high-value polyunsaturated fatty acids (PUFA) such as omega-3, carbohydrates are potential biohydrogen (bioH2) sources, proteins can be converted into biopolymers (such as bioplastics) and pigments can achieve high concentrations of valuable carotenoids. This work comprehends the current practices for the production of such products from microalgae biomass, with insights on technical performance, environmental and economical sustainability. For each bioproduct, discussion includes insights on bioprocesses, productivity, commercialization, environmental impacts and major challenges. Opportunities for future research, such as wastewater cultivation, arise as environmentally attractive alternatives for sustainable production with high potential for resource recovery and valorization. Still, microalgae biotechnology stands out as an attractive topic for it research and market potential.
Collapse
Affiliation(s)
- Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Thiago Abrantes Silva
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iara Barbosa Magalhães
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Alexia Saleme Aona de Paula Pereira
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bianca Barros Marangon
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Letícia Rodrigues de Assis
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Juliana Ferreira Lorentz
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
28
|
Prospects of cyanobacterial pigment production: biotechnological potential and optimization strategies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
30
|
Joaquín-Ovalle FM, Guihurt G, Barcelo-Bovea V, Hani-Saba A, Fontanet-Gómez NC, Ramirez-Paz J, Kashino Y, Torres-Martinez Z, Doble-Cacho K, Delinois LJ, Delgado Y, Griebenow K. Oxidative Stress- and Autophagy-Inducing Effects of PSI-LHCI from Botryococcus braunii in Breast Cancer Cells. BIOTECH 2022; 11:9. [PMID: 35822782 PMCID: PMC9264392 DOI: 10.3390/biotech11020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Botryococcus braunii (B. braunii) is a green microalga primarily found in freshwater, reservoirs, and ponds. Photosynthetic pigments from algae have shown many bioactive molecules with therapeutic potential. Herein, we report the purification, characterization, and anticancer properties of photosystem I light-harvesting complex I (PSI-LHCI) from the green microalga B. braunii UTEX2441. The pigment-protein complex was purified by sucrose density gradient and characterized by its distinctive peaks using absorption, low-temperature (77 K) fluorescence, and circular dichroism (CD) spectroscopic analyses. Protein complexes were resolved by blue native-PAGE and two-dimensional SDS-PAGE. Triple-negative breast cancer MDA-MB-231 cells were incubated with PSI-LHCI for all of our experiments. Cell viability was assessed, revealing a significant reduction in a time- and concentration-dependent manner. We confirmed the internalization of PSI-LHCI within the cytoplasm and nucleus after 12 h of incubation. Cell death mechanism by oxidative stress was confirmed by the production of reactive oxygen species (ROS) and specifically superoxide. Furthermore, we monitored autophagic flux, apoptotic and necrotic features after treatment with PSI-LHCI. Treated MDA-MB-231 cells showed positive autophagy signals in the cytoplasm and nucleus, and necrotic morphology by the permeabilization of the cell membrane. Our findings demonstrated for the first time the cytotoxic properties of B. braunii PSI-LHCI by the induction of ROS and autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Freisa M. Joaquín-Ovalle
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Grace Guihurt
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Vanessa Barcelo-Bovea
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Andraous Hani-Saba
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Nicole C. Fontanet-Gómez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Josell Ramirez-Paz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Yasuhiro Kashino
- Graduate School of Science, University of Hyogo, Kobe 678-1297, Japan;
| | - Zally Torres-Martinez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Katerina Doble-Cacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Louis J. Delinois
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (F.M.J.-O.); (G.G.); (V.B.-B.); (A.H.-S.); (N.C.F.-G.); (J.R.-P.); (Z.T.-M.); (K.D.-C.); (L.J.D.)
| |
Collapse
|
31
|
Obtaining Fat-Soluble Pigments—Carotenoids from the Biomass of Chlorella Microalgae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to use a directed mode of cultivation of the microalgae Chlorella for biomass production, followed by the subsequent extraction of carotenoids. The effect of a stress inducer of carotenogenesis (hydrogen peroxide) and a growth stimulator (pyridoxine, vitamin B6) on the accumulation of photosynthetic pigments by the biomass of the microalga C. vulgarisBIN in the process of directed cultivation was studied. It was revealed that the combination of these additives in the culture medium increases the content of chlorophylls and carotenoids in the biomass twofold compared to the control sample. The preliminary activation of the biomass by high-speed ultra-homogenization (a rotor rotation range from 6000 to 12,000 rpm) was also investigated. Using ultrasound extraction, the pigment complex was isolated from the activated biomass. The saponification and subsequent neutralization of carotenoids were carried out in an inert medium. The resulting sample contained carotenoids in the amount of 52 ± 3 mg/mL. The chemical profile of the carotenoids in the biomass of the microalga Chlorella vulgaris BIN was also established. The major carotenoid was lutein (45%), followed by fucoxanthin (12%) and β-carotene (4.3%). The oil extract of the carotenoids may be used for the further production of a microencapsulated product with the aim of targeted delivery to the lower parts of the gastrointestinal tract.
Collapse
|
32
|
Microalga Biofertilizer Triggers Metabolic Changes Improving Onion Growth and Yield. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seeking the development of nature-friendly agronomic techniques, the use of natural sources to promote plant growth and increase agricultural yield has gained relevance. In this context, the use of biofertilizers or biostimulants obtained from microalgae has been studied, as these microorganisms have in their composition a great diversity of bioactive molecules. This study aimed to evaluate the effect of microalga Asterarcys quadricellulare (CCAP 294/1) on organic onion production, verifying its action on metabolism, growth and yield of two cultivars. Thus, two experiments were carried out: (i) foliar applications on onion plants grown in pots in a greenhouse; (ii) foliar applications on field-grown onion under an organic system. Both experiments were undertaken using solutions with spray-dried microalga biomass at concentrations of 0.05, 0.15, 0.25 and 0.4 g L−1. Biometric variables, yield of bulbs and biochemical variables were evaluated indicating that the use of A. quadricellulare promoted plant growth and increases in bulb caliber and yield of both onion cultivars. The microalga biomass stimulated plant metabolism by increases in contents of chlorophyll, carotenoids, amino acids, and the nitrate reductase enzyme activity in leaves, also free amino acids and total sugar contents in bulbs, highlighting the biomass concentration of 0.25 g L−1.
Collapse
|
33
|
Uma VS, Usmani Z, Sharma M, Diwan D, Sharma M, Guo M, Tuohy MG, Makatsoris C, Zhao X, Thakur VK, Gupta VK. Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-26. [PMID: 35250414 PMCID: PMC8889523 DOI: 10.1007/s11101-022-09805-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Algal biomass is a promising feedstock for sustainable production of a range of value-added compounds and products including food, feed, fuel. To further augment the commercial value of algal metabolites, efficient valorization methods and biorefining channels are essential. Algal extracts are ideal sources of biotechnologically viable compounds loaded with anti-microbial, anti-oxidative, anti-inflammatory, anti-cancerous and several therapeutic and restorative properties. Emerging technologies in biomass valorisation tend to reduce the significant cost burden in large scale operations precisely associated with the pre-treatment, downstream processing and waste management processes. In order to enhance the economic feasibility of algal products in the global market, comprehensive extraction of multi-algal product biorefinery is envisaged as an assuring strategy. Algal biorefinery has inspired the technologists with novel prospectives especially in waste recovery, carbon concentration/sequestration and complete utilisation of the value-added products in a sustainable closed-loop methodology. This review critically examines the latest trends in the algal biomass valorisation and the expansive feedstock potentials in a biorefinery perspective. The recent scope dynamics of algal biomass utilisation such as bio-surfactants, oleochemicals, bio-stimulants and carbon mitigation have also been discussed. The existing challenges in algal biomass valorisation, current knowledge gaps and bottlenecks towards commercialisation of algal technologies are discussed. This review is a comprehensive presentation of the road map of algal biomass valorisation techniques towards biorefinery technology. The global market view of the algal products, future research directions and emerging opportunities are reviewed.
Collapse
Affiliation(s)
- V. S. Uma
- Radiological and Environmental Safety Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research (IGCAR), Govt of India, Kalpakkam, Tamil Nadu India
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Deepti Diwan
- School of Medicine, Washington University, Saint Louis, MO USA
| | - Monika Sharma
- Department of Botany, Sri Avadh Raj Singh Smarak Degree College, Gonda, UP India
| | - Miao Guo
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Maria G. Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, Ryan Institute and MaREI, National University of Ireland, H91 TK33 Galway, Ireland
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Xiaobin Zhao
- Future Business Cambridge, Cambond Limited, Centre Kings Hedges Road, Cambridge, CB4 2HY UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), 248007 Dehradun, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
| |
Collapse
|
34
|
Yildirim O, Tunay D, Ozkaya B. Reuse of sea water reverse osmosis brine to produce Dunaliella salina based β-carotene as a valuable bioproduct: A circular bioeconomy perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114024. [PMID: 34741952 DOI: 10.1016/j.jenvman.2021.114024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Due to population growth and global warming, the use of the sea water reverse osmosis process to obtain freshwater is increasing rapidly. A sustainable method with low environmental impact is limited for the management of brine with a high salt content, which is released as a result of the process. Some microalgae species can grow in salty environments and produce β-carotene. This study aims to evaluate the commercial potential of β-carotene production from microalgae grown in sea water reverse osmosis brine from a bioeconomy perspective. Synthetic media are often used for the production of β-carotene from algae, the use of sea water reverse osmosis brine is not common and the commercial potential of this application has not been evaluated before. In terms of the development of the β-carotene market, the strengths and weaknesses of the process, opportunities, and threats are thoroughly examined in this report. Also, with the use of sea water reverse osmosis, a daily 750 tons of algal β-carotene can be produced. The biotechnological production of microalgal β-carotene and the reuse of salt water within the scope of circular bioeconomy are seen as a sustainable solution due to the fact that the strengths of the process are dominant, and the market value of natural β-carotene is increasing day by day.
Collapse
Affiliation(s)
- Oznur Yildirim
- Yildiz Technical University, Department of Environmental Engineering, Davutpasa, Istanbul, Turkey.
| | - Dogukan Tunay
- Yildiz Technical University, Department of Environmental Engineering, Davutpasa, Istanbul, Turkey
| | - Bestami Ozkaya
- Yildiz Technical University, Department of Environmental Engineering, Davutpasa, Istanbul, Turkey
| |
Collapse
|
35
|
Safety assessment of Asterarcys quadricellulare, a microalga, with applications in poultry and livestock feed. Regul Toxicol Pharmacol 2022; 129:105126. [DOI: 10.1016/j.yrtph.2022.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
|
36
|
Suarez-Montes D, Borrell YJ, Gonzalez JM, Rico JM. Isolation and identification of microalgal strains with potential as carotenoids producers from a municipal solid waste landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149755. [PMID: 34525767 DOI: 10.1016/j.scitotenv.2021.149755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Derived from their great capacity of adaptation, microalgae have several industrial applications, including pigment production for nutraceutical sector. However, the scarcity of studies on the diversity and life histories from several environments, highlight the need for more research on new species and habitats. Based on this, the present study assessed the microalgal diversity in water bodies of a municipal solid waste (MSW) landfill in Asturias (Spain). A total of 14 strains were successfully isolated and scaled up in liquid monocultures. They were identified through a combination of morphologic features with molecular assignation by DNA barcoding via the 18S and ITS1-5.8S-ITS2 genes. The results of the genetic procedures (BLAST assignments and the 18S and ITS1-5.8S-ITS2 genealogies) showed that 10 of the 14 assayed isolates were identified at the species level. The available genetic data were not sufficient for species classifications of the remaining isolates. It is possible that some might be new species not previously studied or described. Indeed, a new species, Coelastrella cogersae, was proposed in this study. Moreover, 3 of the 14 isolates (including the newly proposed species) exhibited caretogenic activity under specific conditions during the culture. These results are a great step forward in both the screening of lesser-known environments and the discovery of new sources of bioactive compounds. The study could be of great value to the nutraceutical industries and markets.
Collapse
Affiliation(s)
- David Suarez-Montes
- Neoalgae Micro Seaweed Products, C/ Carmen Leal Mata 191, 33211 Gijón, Spain; Department of Organisms and Systems Biology, University of Oviedo, C/ Catedrático Valentín Andrés Álvarez s/n, 33006 Oviedo, Spain.
| | - Yaisel Juan Borrell
- Department of Functional Biology, University of Oviedo, C/ Catedrático Valentín Andrés Álvarez s/n, 33006 Oviedo, Spain
| | | | - Jose Manuel Rico
- Department of Organisms and Systems Biology, University of Oviedo, C/ Catedrático Valentín Andrés Álvarez s/n, 33006 Oviedo, Spain
| |
Collapse
|
37
|
Nakashima Y, Gotoh K, Mizuguchi S, Setoyama D, Takata Y, Kanno T, Kang D. Attenuating Effect of Chlorella Extract on NLRP3 Inflammasome Activation by Mitochondrial Reactive Oxygen Species. Front Nutr 2021; 8:763492. [PMID: 34692754 PMCID: PMC8531207 DOI: 10.3389/fnut.2021.763492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the pathogenesis of a wide variety of human diseases. Although many drugs and inhibitors have been developed to treat NLRP3-associated diseases, only limited clinical data support their efficacy and safety. Chlorella, a unicellular green alga that is widely and safely used as a food supplement, contains various antioxidants. In this study, we obtained a fat-soluble extract from Chlorella (CE) and demonstrated that it reduced NLRP3 inflammasome activation by inhibiting mitochondrial reactive oxygen species and caspase-1 activation. In addition, CE supplementation attenuated lipopolysaccharide-induced interleukin 1β transcription through activation of hypoxia-inducible factor 1α in vitro and in vivo. As Chlorella is a safe and useful food supplement, it may be a practical pharmacological approach for treating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yurie Takata
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kanno
- Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
39
|
Rajput A, Singh DP, Khattar JS, Swatch GK, Singh Y. Evaluation of growth and carotenoid production by a green microalga Scenedesmus quadricauda PUMCC 4.1.40. under optimized culture conditions. J Basic Microbiol 2021; 62:1156-1166. [PMID: 34491598 DOI: 10.1002/jobm.202100285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Microalgae are a potential source of a wide range of food and novel value-added products. The versatility of microalgae to produce different kind of pigments is gaining interest as a sustainable source of natural carotenoids. Currently, commercial production of carotenoids from selected microalgae requires special culture conditions which are difficult to maintain. The present study has been undertaken to optimize culture conditions for growth and carotenoid production by a new isolate Scenedesmus quadricauda PUMCC 4.1.40. The results revealed that test organism produced 1.54 mg dry biomass/ml with a content of 40 μg carotenoids/mg dry biomass during stationary phase. The growth and carotenoid production was increased by 2.4-fold under combined optimized culture conditions. The optimized conditions were growth medium, Chu-10; pH 8.5; temperature, 30°C; nitrogen, 20 mM nitrate; phosphate, 0.22 mM; NaCl, 0.42 mM and blue light. Separation and identification of four important carotenoids through high-performance thin-layer chromatography (HPTLC) followed by purification using flash chromatography and quantification by HPLC revealed 23.8, 19.0, 6.5, and 4.0 μg astaxanthin, β-carotene, lutein, and canthaxanthin /mg dry biomass, respectively. The amount of total carotenoids (98 μg/mg dry biomass) containing 40% valuable astaxanthin and β-carotene produced under optimized conditions was significantly higher than control cultures. This justifies that S. quadricauda is a promising candidate for scale-up production of carotenoid.
Collapse
Affiliation(s)
- Alka Rajput
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Davinder P Singh
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | | | - Gurdeep K Swatch
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Yadvinder Singh
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
40
|
Eze CN, Ogbonna IO, Aoyagi H, Ogbonna JC. Comparison of growth, protein and carotenoid contents of some freshwater microalgae and the effects of urea and cultivation in a photobioreactor with reflective broth circulation guide on Desmodesmus subspicatus LC172266. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [PMCID: PMC8211972 DOI: 10.1007/s43153-021-00120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chijioke Nwoye Eze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Present Address: Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | | | - Hideki Aoyagi
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
41
|
Lafarga T, Sánchez‐Zurano A, Morillas‐España A, Acién‐Fernández FG. Extremophile microalgae as feedstock for high‐value carotenoids: A review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomás Lafarga
- Department of Chemical Engineering University of Almería Almería 04120 Spain
| | - Ana Sánchez‐Zurano
- Department of Chemical Engineering University of Almería Almería 04120 Spain
| | | | | |
Collapse
|
42
|
Ferdous UT, Yusof ZNB. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Front Pharmacol 2021; 12:593116. [PMID: 33746748 PMCID: PMC7973026 DOI: 10.3389/fphar.2021.593116] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness of these medications is mostly restricted to several deleterious side effects. Therefore, to alleviate these side effects, antioxidant supplementation is often warranted, reducing reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the growth of cancer cells while protecting the normal cells simultaneously. Moreover, antioxidant supplementation alone or in combination with chemotherapeutics hinders further tumor development, prevents chemoresistance by improving the response to chemotherapy drugs, and enhances cancer patients' quality of life by alleviating side effects. Preclinical and clinical studies have been revealed the efficacy of using phytochemical and dietary antioxidants from different sources in treating chemo and radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context, algae, both micro and macro, can be considered as alternative natural sources of antioxidants. Algae possess antioxidants from diverse groups, which can be exploited in the pharmaceutical industry. Despite having nutritional benefits, investigation and utilization of algal antioxidants are still in their infancy. This review article summarizes the prospective anticancer effect of twenty-three antioxidants from microalgae and their potential mechanism of action in cancer cells, as well as usage in cancer therapy. In addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
43
|
Satpati GG, Pal R. Co-Cultivation of Leptolyngbya tenuis (Cyanobacteria) and Chlorella ellipsoidea (Green alga) for Biodiesel Production, Carbon Sequestration, and Cadmium Accumulation. Curr Microbiol 2021; 78:1466-1481. [PMID: 33661421 DOI: 10.1007/s00284-021-02426-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/11/2021] [Indexed: 01/20/2023]
Abstract
The co-cultivation approach using cyanobacteria-Leptolyngbya tenuis and green alga-Chlorella ellipsoidea demonstrated in the present study showed additive and synergistic effects on biomass yield, biomass productivity, lipid yield, lipid productivity, CO2 fixation, and cadmium bioremediation efficiency. The results of co-culture in batch mode revealed about 2-3 times increase in biomass and two times increase in total lipid, when compared to the pure culture batches. The results revealed that co-cultures exhibited significantly high CO2 fixation rate of 2.63 ± 0.09 g/L/d, which is 1.5-2 times better than monocultures (P < 0.05). To explore the bioaccumulation of cadmium by co-cultures and pure cultures, different concentrations of cadmium nitrate was used in flask trials. Cadmium accumulation was observed in the order: co-culture (74%, 0.37 mg/L) > Chlorella (58%, 0.29 mg/L) > Leptolyngbya (50%, 0.25 mg/L) (P < 0.05). In addition, fatty acid composition, CHNS analysis, biodiesel characterization, and biochemical compositions were also determined using co-culture method. The maximum biomass yield, productivity, lipid content, and CO2 fixation rate in cadmium induced co-culture were 3.95 ± 0.13 g/L, 258.88 ± 15.75 mg/L/d, 41.43 ± 0.71%, and 3.21 ± 0.20 g/L/d, respectively which is 1.2, 1.3, 2.3, and 1.2 times higher than the control (P < 0.05). Cadmium induced changes in growth and lipid yield using co-culture suggests cost-effective and eco-friendly production of biodiesel and carbon mitigation.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19 Rajkumar Chakraborty Sarani, Kolkata, 700009, West Bengal, India.
| | - Ruma Pal
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
44
|
Lloyd C, Tan KH, Lim KL, Valu VG, Fun SMY, Chye TR, Mak HM, Sim WX, Musa SL, Ng JJQ, Bte Nordin NS, Bte Md Aidzil N, Eng ZYW, Manickavasagam P, New JY. Identification of microalgae cultured in Bold's Basal medium from freshwater samples, from a high-rise city. Sci Rep 2021; 11:4474. [PMID: 33627771 PMCID: PMC7904821 DOI: 10.1038/s41598-021-84112-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed at exploring microalgal heterogeneity from fresh water samples collected from inland water bodies in the heavily built city of Singapore. Culturable pure isolates (n = 94) were subject to an in-house microalgal DNA extraction method and LSU rDNA sequencing. Isolates were analysed for their predominance and distribution. A total of 17 different algal genera were identified (H = 2.8, EH = 0.6), of which Scenedesmus spp. and Chlorella spp. constituted 27.5% and 21.3% of isolates respectively, followed by Micractinium spp. (18.8%) and Chlamydomonas spp. (12.5%). We also report 16 new microalgal strains from this region. The data is important from an ecological and biotechnological perspective.
Collapse
Affiliation(s)
- Charmaine Lloyd
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore. .,School of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, 3122, Australia.
| | - Kai Heng Tan
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Kar Leong Lim
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Vimala Gana Valu
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Sarah Mei Ying Fun
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Teng Rong Chye
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Hui Min Mak
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Wei Xiong Sim
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Sarah Liyana Musa
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Joscelyn Jun Quan Ng
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Nazurah Syazana Bte Nordin
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Nurhazlyn Bte Md Aidzil
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Zephyr Yu Wen Eng
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Punithavathy Manickavasagam
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| | - Jen Yan New
- School of Life Sciences and Chemical Technology - Microalgal Research Group, Ngee Ann Polytechnic, Clementi, Singapore
| |
Collapse
|
45
|
Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules 2021; 26:molecules26040943. [PMID: 33579001 PMCID: PMC7916812 DOI: 10.3390/molecules26040943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
Collapse
|
46
|
Pailliè-Jiménez ME, Stincone P, Brandelli A. Natural Pigments of Microbial Origin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.590439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
47
|
Rebelo BA, Farrona S, Ventura MR, Abranches R. Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1039. [PMID: 32824217 PMCID: PMC7463686 DOI: 10.3390/plants9081039] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023]
Abstract
Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed.
Collapse
Affiliation(s)
- Bárbara A. Rebelo
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway, H19 TK33 Galway, Ireland;
| | - M. Rita Ventura
- Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| |
Collapse
|
48
|
El-Bialy HAA, Abd El-Khalek HH. A comparative study on astaxanthin recovery from shrimp wastes using lactic fermentation and green solvents:an applied model on minced Tilapia. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1789388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Heba Abd Alla El-Bialy
- National Center for Radiation Research and Technology (NCRRT), Radiation Microbiology Department Atomic Energy Authority, Cairo, Egypt
| | - Hanan Hassan Abd El-Khalek
- National Center for Radiation Research and Technology (NCRRT), Radiation Microbiology Department Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|