1
|
Chauvin RJ, Newbold DJ, Nielsen AN, Miller RL, Krimmel SR, Metoki A, Wang A, Van AN, Montez DF, Marek S, Suljic V, Baden NJ, Ramirez-Perez N, Scheidter KM, Monk JS, Whiting FI, Adeyemo B, Snyder AZ, Kay BP, Raichle ME, Laumann TO, Gordon EM, Dosenbach NU. Disuse-driven plasticity in the human thalamus and putamen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566031. [PMID: 37987000 PMCID: PMC10659348 DOI: 10.1101/2023.11.07.566031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Motor adaptation in cortico-striato-thalamo-cortical loops has been studied mainly in animals using invasive electrophysiology. Here, we leverage functional neuroimaging in humans to study motor circuit plasticity in the human subcortex. We employed an experimental paradigm that combined two weeks of upper-extremity immobilization with daily resting-state and motor task fMRI before, during, and after the casting period. We previously showed that limb disuse leads to decreased functional connectivity (FC) of the contralateral somatomotor cortex (SM1) with the ipsilateral somatomotor cortex, increased FC with the cingulo-opercular network (CON) as well as the emergence of high amplitude, fMRI signal pulses localized in the contralateral SM1, supplementary motor area and the cerebellum. From our prior observations, it remains unclear whether the disuse plasticity affects the thalamus and striatum. We extended our analysis to include these subcortical regions and found that both exhibit strengthened cortical FC and spontaneous fMRI signal pulses induced by limb disuse. The dorsal posterior putamen and the central thalamus, mainly CM, VLP and VIM nuclei, showed disuse pulses and FC changes that lined up with fmri task activations from the Human connectome project motor system localizer, acquired before casting for each participant. Our findings provide a novel understanding of the role of the cortico-striato-thalamo-cortical loops in human motor plasticity and a potential link with the physiology of sleep regulation. Additionally, similarities with FC observation from Parkinson Disease (PD) questions a pathophysiological link with limb disuse.
Collapse
Affiliation(s)
- Roselyne J. Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Dillan J. Newbold
- Department of Neurology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Ashley N. Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryland L. Miller
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
| | - Samuel R. Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Anxu Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130
| | - Andrew N. Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Division of Computation and Data Science, Washington University School of Medicine, St. Louis, MO 63110
| | - David F. Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vahdeta Suljic
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Noah J. Baden
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Kristen M. Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julia S. Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Forrest I. Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin P. Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E. Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O. Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U.F. Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
2
|
Chen Y, Guo Z, Wang Y, Yin H, Zhang S, Liu W. Structural and functional differences of the thalamus between drug-naïve Parkinson's disease motor subtypes. Front Neurol 2023; 14:1102927. [PMID: 37265464 PMCID: PMC10229767 DOI: 10.3389/fneur.2023.1102927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Objective The thalamus is an integrative hub of motor circuits in Parkinson's disease (PD). This study aimed to investigate the alterations of structure and functional connectivity (FC) of the thalamic subregions in the tremor-dominant (TD) subtype and the postural instability and gait difficulty (PIGD) subtype in PD. Methods A total of 59 drug-naïve patients (24 TD and 35 PIGD) and 37 healthy controls were recruited. The volumes of the thalamus and the thalamic subregions were calculated using FreeSurfer. Functional connectivity (FC) analysis of the resting-state functional MRI (rsfMRI) was conducted on the thalamic subregions. Finally, the altered structure and FC were used for correlation analysis with clinical motor scores and for further motor subtypes differentiation. Results The volumes of the left posterior parietal thalamus (PPtha) in TD patients were significantly lower than those of PIGD patients. Compared with PIGD patients, TD patients exhibited higher FC between the thalamic subregions, the left middle temporal gyrus (MTG), the right dorsolateral superior frontal gyrus (SFGdl), the left middle occipital gyrus (MOG), and the right superior temporal gyrus (STG). Compared with HCs, TD patients showed higher FC between the thalamic subregions and the right SFGdl, as well as the left MOG. Compared with HCs, PIGD patients showed lower FC between the thalamic subregions and the left MTG. In addition, the altered FC was closely related to clinical symptoms and performed high-discriminative power in differentiating the motor subtypes. Conclusion Increased FC between the thalamic subregions and the sensory cortices in TD patients may indicate a better compensatory capacity for impairment of sensory information integration than that in PIGD patients. The altered FC between the thalamus and the MTG was a potential biomarker for the distinction of the PD motor subtypes.
Collapse
|
3
|
Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A 2022; 119:e2122552119. [PMID: 36161926 DOI: 10.1073/pnas.2122552119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9-mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Collapse
|
4
|
Functional connectivity of the cortico-subcortical sensorimotor loop is modulated by the severity of nigrostriatal dopaminergic denervation in Parkinson’s Disease. NPJ Parkinsons Dis 2022; 8:122. [PMID: 36171211 PMCID: PMC9519637 DOI: 10.1038/s41531-022-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
To assess if the severity of nigrostriatal innervation loss affects the functional connectivity (FC) of the sensorimotor cortico-striato-thalamic-cortical loop (CSTCL) in Parkinson’s Disease (PD), Resting-State functional MRI and 18F-DOPA PET data, simultaneously acquired on a hybrid PET/MRI scanner, were retrospectively analyzed in 39 PD and 16 essential tremor patients. Correlations between posterior Putamen DOPA Uptake (pPDU) and the FC of the main CSTCL hubs were assessed separately in the two groups, analyzing the differences between the two groups by a group-by-pPDU interaction analysis of the resulting clusters’ FC. Unlike in essential tremor, in PD patients pPDU correlated inversely with the FC of the thalamus with the sensorimotor cortices, and of the postcentral gyrus with the dorsal cerebellum, and directly with the FC of pre- and post-central gyri with both the superior and middle temporal gyri and the paracentral lobule, and of the caudate with the superior parietal cortex. The interaction analysis confirmed the significance of the difference between the two groups in these correlations. In PD patients, the post-central cortex FC, in the clusters correlating directly with pPDU, negatively correlated with both UPDRS motor examination score and Hoehn and Yahr stage, independent of the pPDU, suggesting that these FC changes contribute to motor impairment. In PD, nigrostriatal innervation loss correlates with a decrease in the FC within the sensorimotor network and between the sensorimotor network and the superior temporal cortices, possibly contributing to motor impairment, and with a strengthening of the thalamo-cortical FC, that may represent ineffective compensatory phenomena.
Collapse
|
5
|
Lidauer K, Pulli EP, Copeland A, Silver E, Kumpulainen V, Hashempour N, Merisaari H, Saunavaara J, Parkkola R, Lähdesmäki T, Saukko E, Nolvi S, Kataja EL, Karlsson L, Karlsson H, Tuulari JJ. Subcortical and hippocampal brain segmentation in 5-year-old children: validation of FSL-FIRST and FreeSurfer against manual segmentation. Eur J Neurosci 2022; 56:4619-4641. [PMID: 35799402 PMCID: PMC9543285 DOI: 10.1111/ejn.15761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Developing accurate subcortical volumetric quantification tools is crucial for neurodevelopmental studies, as they could reduce the need for challenging and time‐consuming manual segmentation. In this study, the accuracy of two automated segmentation tools, FSL‐FIRST (with three different boundary correction settings) and FreeSurfer, were compared against manual segmentation of the hippocampus and subcortical nuclei, including the amygdala, thalamus, putamen, globus pallidus, caudate and nucleus accumbens, using volumetric and correlation analyses in 80 5‐year‐olds. Both FSL‐FIRST and FreeSurfer overestimated the volume on all structures except the caudate, and the accuracy varied depending on the structure. Small structures such as the amygdala and nucleus accumbens, which are visually difficult to distinguish, produced significant overestimations and weaker correlations with all automated methods. Larger and more readily distinguishable structures such as the caudate and putamen produced notably lower overestimations and stronger correlations. Overall, the segmentations performed by FSL‐FIRST's default pipeline were the most accurate, whereas FreeSurfer's results were weaker across the structures. In line with prior studies, the accuracy of automated segmentation tools was imperfect with respect to manually defined structures. However, apart from amygdala and nucleus accumbens, FSL‐FIRST's agreement could be considered satisfactory (Pearson correlation > 0.74, intraclass correlation coefficient (ICC) > 0.68 and Dice score coefficient (DSC) > 0.87) with highest values for the striatal structures (putamen, globus pallidus, caudate) (Pearson correlation > 0.77, ICC > 0.87 and DSC > 0.88, respectively). Overall, automated segmentation tools do not always provide satisfactory results, and careful visual inspection of the automated segmentations is strongly advised.
Collapse
Affiliation(s)
- Kristian Lidauer
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Elmo P Pulli
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Anni Copeland
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Venla Kumpulainen
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Niloofar Hashempour
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Harri Merisaari
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Radiology, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland.,Department of Radiology, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Paediatric Neurology, Turku University Hospital and University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Saara Nolvi
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Turku Institute for Advanced Studies, University of Turku, Turku, Finland.,Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Eeva-Leena Kataja
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Linnea Karlsson
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jetro J Tuulari
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland.,Department of Psychiatry, University of Oxford, UK (Sigrid Juselius Fellowship), United Kingdom
| |
Collapse
|
6
|
Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases. Med Image Anal 2022; 78:102419. [DOI: 10.1016/j.media.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
|
7
|
Wang S, Cai H, Cao Z, Li C, Wu T, Xu F, Qian Y, Chen X, Yu Y. More Than Just Static: Dynamic Functional Connectivity Changes of the Thalamic Nuclei to Cortex in Parkinson's Disease With Freezing of Gait. Front Neurol 2021; 12:735999. [PMID: 34721266 PMCID: PMC8553931 DOI: 10.3389/fneur.2021.735999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The thalamus is not only a key relay node of the thalamocortical circuit but also a hub in the regulation of gait. Previous studies of resting-state functional magnetic resonance imaging (fMRI) have shown static functional connectivity (FC) between the thalamus and the cortex are disrupted in Parkinson's disease (PD) patients with freezing of gait (FOG). However, temporal dynamic FC between the thalamus and the cortex has not yet been characterized in these patients. Methods: Fifty PD patients, including 25 PD patients with FOG (PD-FOG) and 25 PD patients without FOG (PD-NFOG), and 25 healthy controls (HC) underwent resting-state fMRI. Seed-voxel-wise static and dynamic FC were calculated between each thalamic nuclei and other voxels across the brain using the 14 thalamic nuclei in both hemispheres as regions of interest. Associations between altered thalamic FC based on significant inter-group differences and severity of FOG symptoms were also examined in PD-FOG. Results: Both PD-FOG and PD-NFOG showed lower static FC between the right lateral posterior thalamic nuclei and right inferior parietal lobule (IPL) compared with HC. Altered FC dynamics between the thalamic nuclei and several cortical areas were identified in PD-FOG, as shown by temporal dynamic FC analyses. Specifically, relative to PD-NFOG or HC, PD-FOG showed greater fluctuations in FC between the left intralaminar (IL) nuclei and right IPL and between the left medial geniculate and left postcentral gyrus. Furthermore, the dynamics of FC between the left pulvinar anterior nuclei and left inferior frontal gyrus were upregulated in both PD-FOG and PD-NFOG. The dynamics of FC between the right ventral lateral nuclei and left paracentral lobule were elevated in PD-NFOG but were maintained in PD-FOG and HC. The quantitative variability of FC between the left IL nuclei and right IPL was positively correlated with the clinical scales scores in PD-FOG. Conclusions: Dynamic FC between the thalamic nuclei and relevant associative cortical areas involved in sensorimotor integration or cognitive function was disrupted in PD-FOG, which was reflected by greater temporal fluctuations. Abnormal dynamic FC between the left IL nuclei of the thalamus and right IPL was related to the severity of FOG.
Collapse
Affiliation(s)
- Shangpei Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zong Cao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chuan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tong Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangcheng Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
8
|
Chen F, Lv X, Fang J, Li T, Xu J, Wang X, Hong Y, Hong L, Wang J, Wang W, Wang C. Body-mind relaxation meditation modulates the thalamocortical functional connectivity in major depressive disorder: a preliminary resting-state fMRI study. Transl Psychiatry 2021; 11:546. [PMID: 34689151 PMCID: PMC8542047 DOI: 10.1038/s41398-021-01637-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Mindfulness-based interventions such as meditation have increasingly been utilized for the treatment of psychological disorders and have been shown to be effective in the treatment of depression and relapse prevention. However, it remains largely unclear the neural mechanism of the therapeutic effects of meditation among depressed individuals. In this study, we investigated how body-mind relaxation meditation (BMRM) can modulate the thalamocortical functional connectivity (FC) in major depressive disorder patients and healthy controls. In the present study, we recruited 21 medication-naive adolescents with major depressive disorder (MDDs) and 24 matched healthy controls (HCs). We designed an audio recording to induce body-mind relaxation meditation. Resting-state fMRI (rs-fMRI) scans were collected before and after the BMRM intervention in both groups. The thalamus subregions were defined according to the Human Brainnetome Atlas, and functional connectivity (FC) was measured and compared to find brain regions that were affected by the BMRM intervention. Before the BMRM intervention, MDDs showed reduced FC of the bilateral precuneus/post cingulate cortex with the left posterior parietal thalamus and left caudal temporal thalamus, as well as an increased FC of the left occipital thalamus with the left medial frontal cortex. Moreover, aberrant FCs in MDDs at baseline were normalized following the BMRM intervention. After the BMRM intervention, both MDDs and HCs showed decreased FC between the left rostral temporal thalamus and the left inferior occipital. Given the small sample used in this study, future studies are warranted to evaluate the generalizability of these findings. Our findings suggest that BMRM is associated with changes in thalamocortical functional connectivity in MDDs. BMRM may act by strengthening connections between the thalamus and the default mode network, which are involved in a variety of high-level functioning, such as attention and self-related processes.
Collapse
Affiliation(s)
- Fangfang Chen
- grid.263488.30000 0001 0472 9649College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060 China
| | - Xueyu Lv
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jiliang Fang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Tao Li
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jinping Xu
- grid.458489.c0000 0001 0483 7922Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xiaoling Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Yang Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Lan Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Weidong Wang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Chao Wang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Basile GA, Bertino S, Bramanti A, Ciurleo R, Anastasi GP, Milardi D, Cacciola A. In Vivo Super-Resolution Track-Density Imaging for Thalamic Nuclei Identification. Cereb Cortex 2021; 31:5613-5636. [PMID: 34296740 DOI: 10.1093/cercor/bhab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022] Open
Abstract
The development of novel techniques for the in vivo, non-invasive visualization and identification of thalamic nuclei has represented a major challenge for human neuroimaging research in the last decades. Thalamic nuclei have important implications in various key aspects of brain physiology and many of them show selective alterations in various neurologic and psychiatric disorders. In addition, both surgical stimulation and ablation of specific thalamic nuclei have been proven to be useful for the treatment of different neuropsychiatric diseases. The present work aimed at describing a novel protocol for histologically guided delineation of thalamic nuclei based on short-tracks track-density imaging (stTDI), which is an advanced imaging technique exploiting high angular resolution diffusion tractography to obtain super-resolved white matter maps. We demonstrated that this approach can identify up to 13 distinct thalamic nuclei bilaterally with very high inter-subject (ICC: 0.996, 95% CI: 0.993-0.998) and inter-rater (ICC:0.981; 95% CI:0.963-0.989) reliability, and that both subject-based and group-level thalamic parcellation show a fair share of similarity to a recent standard-space histological thalamic atlas. Finally, we showed that stTDI-derived thalamic maps can be successfully employed to study structural and functional connectivity of the thalamus and may have potential implications both for basic and translational research, as well as for presurgical planning purposes.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Alessia Bramanti
- Department of Medicine, Surgery and Dentistry "Medical School of Salerno", University of Salerno, 84084 Baronissi, Italy
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy
| | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98124 Messina, Italy
| |
Collapse
|
10
|
Dong GH, Dong H, Wang M, Zhang J, Zhou W, Du X, Potenza MN. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder. Commun Biol 2021; 4:866. [PMID: 34262129 PMCID: PMC8280218 DOI: 10.1038/s42003-021-02395-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
Animal models suggest transitions from non-addictive to addictive behavioral engagement are associated with ventral-to-dorsal striatal shifts. However, few studies have examined such features in humans, especially in internet gaming disorder (IGD), a proposed behavioral addiction. We recruited 418 subjects (174 with IGD; 244 with recreational game use (RGU)). Resting-state fMRI data were collected and functional connectivity analyses were performed based on ventral and dorsal striatal seeds. Correlations and follow-up spectrum dynamic causal model (spDCM) analyses were performed to examine relationships between the ventral/dorsal striatum and middle frontal gyrus (MFG). Longitudinal data were also analysed to investigate changes over time. IGD relative to RGU subjects showed lower ventral-striatum-to-MFG (mostly involving supplementary motor area (SMA)) and higher dorsal-striatum-to-MFG functional connectivity. spDCM revealed that left dorsal-striatum-to-MFG connectivity was correlated with IGD severity. Longitudinal data within IGD and RGU groups found greater dorsal striatal connectivity with the MFG in IGD versus RGU subjects. These findings suggest similar ventral-to-dorsal striatal shifts may operate in IGD and traditional addictions. In order to shed light on the underlying neural mechanisms of internet gaming disorder (IGD), Dong et al collected longitudinal resting-state fMRI data from participants with IGD or those who partake in recreational game use. They demonstrated that, consistent with animal models of addiction, dorsal and ventral striatal functional connectivity shifts appeared to play a potential mechanistic role in IGD.
Collapse
Affiliation(s)
- Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China. .,Institute of Psychological Research, Hangzhou Normal University, Hangzhou, P.R. China. .,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, P.R. China.
| | - Haohao Dong
- Department of Psychology, Nanjing University, Nanjing, P.R. China
| | - Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China.,Institute of Psychological Research, Hangzhou Normal University, Hangzhou, P.R. China
| | - Jialin Zhang
- School of Psychology, Beijing Normal University, Beijing, China
| | - Weiran Zhou
- Institute of Psychological Research, Hangzhou Normal University, Hangzhou, P.R. China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
11
|
Park J, Park KM, Jo G, Lee H, Choi BS, Shin KJ, Ha S, Park S, Lee HJ, Kim HY. An investigation of thalamic nuclei volumes and the intrinsic thalamic structural network based on motor subtype in drug naïve patients with Parkinson's disease. Parkinsonism Relat Disord 2020; 81:165-172. [PMID: 33160215 DOI: 10.1016/j.parkreldis.2020.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION This study aimed to investigate the alterations in thalamic nuclei volumes and the intrinsic thalamic structural network in patients with de novo Parkinson's disease (PD) based on their predominant symptoms. METHODS We enrolled 65 patients with de novo PD (44 patients with tremor-dominant [TD] subtype and 21 patients with postural instability and gait disturbance [PIGD] subtype) and 20 healthy controls. All subjects underwent three-dimensional T1-weighted magnetic resonance imaging. The thalamic nuclei were segmented using the FreeSurfer program. RESULTS We obtained volumetric differences in the thalamic nuclei of each subtype of PD in comparison of healthy control. Volumes of the right and left suprageniculate nuclei were significantly increased, whereas that of the left parafascicular nucleus was decreased in patients with the TD subtype. Volumes of the right and left suprageniculate nuclei and right ventromedial nucleus were significantly increased, whereas those of the right and left parafascicular nuclei volumes were decreased in patients with the PIGD subtype. The measures of the intrinsic thalamic global network were not different between patients with TD PD and healthy controls. However, in patients with the PIGD subtype, the global and local efficiencies were significantly increased compared to healthy controls. Moreover, although there were no differences in thalamic volume and intrinsic thalamic global network between patients with the TD and PIGD variants, we identified significant differences in the intrinsic thalamic local network between the two groups. CONCLUSIONS Alterations in thalamic nuclei volumes and the intrinsic thalamic network in patients with PD differed based on their predominant symptoms. These findings might be related to the underlying pathogenesis and suggest that PD is a heterogeneous syndrome.
Collapse
Affiliation(s)
- Jinse Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Geunyeol Jo
- Department of Physical Medicine and Rehabilitation, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hyungon Lee
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Byeong Sam Choi
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyoung Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Samyeol Ha
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Seongho Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea.
| |
Collapse
|
12
|
Bi XA, Wu H, Xie Y, Zhang L, Luo X, Fu Y. The exploration of Parkinson's disease: a multi-modal data analysis of resting functional magnetic resonance imaging and gene data. Brain Imaging Behav 2020; 15:1986-1996. [PMID: 32990896 DOI: 10.1007/s11682-020-00392-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is the most universal chronic degenerative neurological dyskinesia and an important threat to elderly health. At present, the researches of PD are mainly based on single-modal data analysis, while the fusion research of multi-modal data may provide more meaningful information in the aspect of comprehending the pathogenesis of PD. In this paper, 104 samples having resting functional magnetic resonance imaging (rfMRI) and gene data are from Parkinson's Progression Markers Initiative (PPMI) and Alzheimer's Disease Neuroimaging Initiative (ADNI) database to predict pathological brain areas and risk genes related to PD. In the experiment, Pearson correlation analysis is adopted to conduct fusion analysis from the data of genes and brain areas as multi-modal sample characteristics, and the clustering evolution random forest (CERF) method is applied to detect the discriminative genes and brain areas. The experimental results indicate that compared with several existing advanced methods, the CERF method can further improve the diagnosis of PD and healthy control, and can achieve a significant effect. More importantly, we find that there are some interesting associations between brain areas and genes in PD patients. Based on these associations, we notice that PD-related brain areas include angular gyrus, thalamus, posterior cingulate gyrus and paracentral lobule, and risk genes mainly include C6orf10, HLA-DPB1 and HLA-DOA. These discoveries have a significant contribution to the early prevention and clinical treatments of PD.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China. .,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China.
| | - Hao Wu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Yiming Xie
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Lixia Zhang
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Xun Luo
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Yu Fu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | | |
Collapse
|