1
|
Rehbein CO, McDougle JM, Peñailillo LE, Earp JE. Intramuscular Hamstring Stiffness Affects Anatomically Modeled Localized Muscle Strain During Passive Hip Flexion. J Strength Cond Res 2024; 38:1860-1866. [PMID: 39074240 DOI: 10.1519/jsc.0000000000004898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Rehbein, CO, McDougle, JM, Peñailillo, L, and Earp, JE. Intramuscular hamstring stiffness affects anatomically modeled localized muscle strain during passive hip flexion. J Strength Cond Res 38(11): 1860-1866, 2024-Hamstring strain injuries occur when localized tissue strain capacity is exceeded. Localized strain may be affected by intramuscular variation in stiffness, but research in this area is lacking. The purpose of this study was to determine the effects of intramuscular hamstring stiffness on localized muscle strain during passive hip flexion. Twenty-eight (age 25.0 ± 4.9 years) healthy women ( n = 15) and men ( n = 13) had biceps femoris, semitendinosus, and semimembranosus stiffness measured proximally, medially, and distally during passive hip flexion and extension using shear-wave elastography. Anthropometric and stiffness measurements were entered into an anatomical model of equivalent springs to estimate localized tissue strain and differentiate between the relative contribution to passive strain from each muscular region. In shortened and stretched positions, stiffness was lowest proximally for all muscles (Cohen's d = 0.66-0.79, p < 0.001). In addition, relative strain contribution was greater proximally (37.5-39.4%) compared with middle (31.74-32.2%) or distal (28.6-30.3%) regions ( p < 0.001), with proximal contribution to strain increasing with greater hip flexion. Our results suggest that intramuscular variations in passive hamstring stiffness contribute to inhomogeneous strain throughout the muscle during passive hip flexion. Given the prevalence of proximal stretch-pattern strain injuries, variation in intramuscular stiffness may contribute to risk for such injuries.
Collapse
Affiliation(s)
- Carlos O Rehbein
- Sports Optimization and Rehabilitation Laboratory, University of Connecticut, Storrs, Connecticut
| | - Jacob M McDougle
- Sports Optimization and Rehabilitation Laboratory, University of Connecticut, Storrs, Connecticut
- College of Medicine, University of Saskatchewan, Saskatoon, Canada ; and
| | - Luis E Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jacob E Earp
- Sports Optimization and Rehabilitation Laboratory, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
2
|
Ranger BJ, Moerman KM, Feigin M, Herr HM, Anthony BW. 3D Ultrasound Shear Wave Elastography for Musculoskeletal Tissue Assessment Under Compressive Load: A Feasibility Study. ULTRASONIC IMAGING 2024; 46:251-262. [PMID: 38770999 DOI: 10.1177/01617346241253798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design. In this feasibility study, a clinical linear ultrasound transducer system with integrated shear wave elastography capabilities was utilized to scan both a calibrated phantom and human limbs in a water tank imaging setup. By conducting 2D and 3D scans under varying compressive loads, this study demonstrates the feasibility of volumetric ultrasound shear wave elastography of human limbs. Our preliminary results showcase a potential method for evaluating 3D spatially varying tissue properties, offering future extensions to computational biomechanical modeling of tissue for various clinical scenarios.
Collapse
Affiliation(s)
- Bryan J Ranger
- Department of Engineering, Boston College, Chestnut Hill, MA, USA
| | - Kevin M Moerman
- School of Engineering, University of Galway, Galway, Ireland
| | - Micha Feigin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh M Herr
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian W Anthony
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Kepir E, Demiral F, Akaras E, Paksoy AE, Sevindik Aktas B, Yilmaz Cankaya B, Oztop B, Yagiz G, Owen JA. Hamstring Muscle Stiffness in Athletes with and without Anterior Cruciate Ligament Reconstruction History: A Retrospective Study. J Clin Med 2024; 13:4370. [PMID: 39124637 PMCID: PMC11313014 DOI: 10.3390/jcm13154370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Introduction: Sports requiring sprinting, jumping, and kicking tasks frequently lead to hamstring strain injuries (HSI). One of the structural risk factors of HSI is the increased passive stiffness of the hamstrings. Anterior cruciate ligament (ACL) injury history is associated with a 70% increase in the incidence of HSI, according to a recent meta-analysis. The same report recommended that future research should concentrate on the relationships between the HSI risk factors. Hence, the present study aimed to retrospectively compare changes in the passive stiffness of the hamstrings in athletes with and without ACL reconstruction history. Methods: Using ultrasound-based shear-wave elastography, the mid-belly passive muscle stiffness values of the biceps femoris long head, semimembranosus, and semitendinosus muscles were assessed and compared amongst athletes with and without a history of ACL reconstruction. Results: There were no significant differences in the biceps femoris long head (injured leg (IL): 26.19 ± 5.28 KPa, uninjured contralateral (UL): 26.16 ± 7.41 KPa, control legs (CL): 27.64 ± 5.58 KPa; IL vs. UL: p = 1; IL vs. CL: p = 1; UL vs. CL: p = 1), semimembranosus (IL: 24.35 ± 5.58 KPa, UL: 24.65 ± 8.35 KPa, CL: 22.83 ± 5.67 KPa; IL vs. UL: p = 1; IL vs. CL: p = 1; UL vs. CL, p = 1), or semitendinosus (IL: 22.45 ± 7 KPa, UL: 25.52 ± 7 KPa, CL: 22.54 ± 4.4 KPa; IL vs. UL: p = 0.487; IL vs. CL: p = 1; UL vs. CL, p = 0.291) muscle stiffness values between groups. Conclusions: The passive mid-muscle belly stiffness values of the biceps femoris long head, semitendinosus, and semimembranosus muscles did not significantly differ between previously injured and uninjured athletes; therefore, further assessment for other muscle regions of hamstrings may be necessary. To collect more comprehensive data related to the structural changes that may occur following ACL reconstructions in athletes, a future study should examine the passive stiffness of wider muscle regions from origin to insertion.
Collapse
Affiliation(s)
- Ersagun Kepir
- Institute for Applied Human Physiology, School of Psychology and Sport Sciences, Bangor University, Bangor LL57 2DG, UK;
| | - Furkan Demiral
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Türkiye
| | - Esedullah Akaras
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Erzurum Technical University, 25050 Erzurum, Türkiye
| | - Ahmet Emre Paksoy
- Department of Orthopaedic Surgery, Faculty of Medicine, Ataturk University, 25240 Erzurum, Türkiye
| | | | - Bahar Yilmaz Cankaya
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Türkiye
| | - Bilgehan Oztop
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ataturk University, 25240 Erzurum, Türkiye
| | - Gokhan Yagiz
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC 27858, USA
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Amasya University, 05100 Amasya, Türkiye
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Julian Andrew Owen
- Institute for Applied Human Physiology, School of Psychology and Sport Sciences, Bangor University, Bangor LL57 2DG, UK;
| |
Collapse
|
4
|
Tabaru M, Koda R, Shitara H, Chikuda H, Yamakoshi Y. Examination of rapid adjustment system based on screen score obtained using continuous shear wave elastography. J Med Ultrason (2001) 2024; 51:407-418. [PMID: 38609665 DOI: 10.1007/s10396-024-01439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/13/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Continuous shear wave elastography (C-SWE) can be expected to be applied to portable muscle elasticity diagnosis. To establish diagnostic technology, it will be necessary to improve measurement techniques and quantitative measurement accuracy. METHODS In this study, we investigated two screen scores: the quality index (Q-index), which determines whether the intensity of a power Doppler image is appropriate, and the shear wave propagation direction index (SWDI), which determines the uniformity of shear wave propagation. RESULTS First, we performed numerical simulations with white noise and found that the coefficient of variation of shear wave velocity estimation was less than 5% when the normalized Q-index was greater than 0.27. Furthermore, regarding the SWDI, we clarified the relationship between the standard deviation in shear wave propagation direction and the SWDI. Next, the relationship between the Q-index and coefficient of variation of estimated shear wave velocity was evaluated through experiments using a tissue-mimicking phantom. The results showed that there was a negative correlation between the Q-index and the coefficient of variation, and the fluctuation of the propagation velocity could be inferred from the Q-index. Finally, we showed the results of applying the screen scores to muscle relaxation monitoring and confirmed its usefulness in clinical applications. CONCLUSION By applying the screen scores, we showed improved stability in speed estimation in C-SWE, and demonstrated the possibility of clinical applicability.
Collapse
Affiliation(s)
- Marie Tabaru
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 R2-25, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8503, Japan
| | - Ren Koda
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Hitoshi Shitara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, 371-8511, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma, 371-8511, Japan
| | - Yoshiki Yamakoshi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan.
| |
Collapse
|
5
|
Wearing SC, Hooper SL, Langton CM, Keiner M, Horstmann T, Crevier-Denoix N, Pourcelot P. The Biomechanics of Musculoskeletal Tissues during Activities of Daily Living: Dynamic Assessment Using Quantitative Transmission-Mode Ultrasound Techniques. Healthcare (Basel) 2024; 12:1254. [PMID: 38998789 PMCID: PMC11241410 DOI: 10.3390/healthcare12131254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.
Collapse
Affiliation(s)
- Scott C. Wearing
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | - Sue L. Hooper
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christian M. Langton
- Griffith Centre of Rehabilitation Engineering, Griffith University, Southport, QLD 4222, Australia
| | - Michael Keiner
- Department of Exercise and Training Science, German University of Health and Sport, 85737 Ismaning, Bavaria, Germany
| | - Thomas Horstmann
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | | | - Philippe Pourcelot
- INRAE, BPLC Unit, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Yagiz G, Fredianto M, Ulfa M, Ariani I, Agustin AD, Shida N, Moore EWG, Kubis HP. A retrospective comparison of the biceps femoris long head muscle structure in athletes with and without hamstring strain injury history. PLoS One 2024; 19:e0298146. [PMID: 38408057 PMCID: PMC10896514 DOI: 10.1371/journal.pone.0298146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
INTRODUCTION Hamstring strain injuries (HSI) and re-injuries are endemic in high-speed running sports. The biceps femoris long head (BFlh) is the most frequently injured muscle among the hamstrings. Structural parameters of the hamstring muscle are stated to be susceptible to strain injuries at this location. This retrospective study targeted comparing the BFlh's structural parameters between previously injured and uninjured athletes. METHODS Nineteen male athletes with previous BFlh strain injury history and nineteen athletes without former lower extremity injury history were included in this study. Fascicle length, mid-muscle belly and distal musculotendinous (MTJ) passive stiffnesses of the biceps femoris long head (BFlh) were examined via b-mode panoramic ultrasound scanning and ultrasound-based shear-wave elastography. Parameter comparisons of both legs within and between athletes with and without injury history were performed. RESULTS Comparison of the BFlh fascicle length between the injured leg of the injured group and the legs of the controls revealed a trend to shorter fascicle lengths in the injured leg (p = 0.067, d = -0.62). However, the mid-muscle belly passive stiffness of the BFlh was significantly higher in the injured legs (p = 0.009, d = 0.7) compared with the controls. Additionally, the distal MTJ stiffness was much higher in the previously injured legs compared with controls (p < 0.001, d = 1.6). CONCLUSIONS Outcomes support the importance of BFlh properties related to stiffness, and fascicle length for injury susceptibility in athletes. Future prospective studies should determine whether the higher stiffness in the injured athletes is a cause or consequence of the HSI. Physical therapy and rehabilitation programmes after HSI should focus on BFlh muscle properties i.e., elasticity and fascicle length for reducing re-injury and increasing sports performance.
Collapse
Affiliation(s)
- Gokhan Yagiz
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, United States of America
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Amasya University, Amasya, Republic of Türkiye
| | - Meiky Fredianto
- Faculty of Medicine and Health Sciences, Orthopaedics and Traumatology Division, Surgery Department, School of Medicine, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
- Department of Orthopaedic Surgery, Siloam Hospitals Yogyakarta, Yogyakarta, Indonesia
| | - Maria Ulfa
- Faculty of Medicine and Health Sciences, School of Medicine, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
- Master of Hospital Administration, Postgraduate Program, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Indira Ariani
- Department of Radiology, Siloam Hospitals Yogyakarta, Yogyakarta, Indonesia
| | | | - Nami Shida
- Faculty of Health Sciences, Department of Physical Therapy, Tokyo Metropolitan University, Tokyo, Japan
| | - E. Whitney G. Moore
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, United States of America
| | - Hans-Peter Kubis
- Institute for Applied Human Physiology, School of Human and Behavioural Sciences, Bangor University, Bangor, Wales, United Kingdom
| |
Collapse
|
7
|
Pimenta R, Coelho F, Correia JP, Vaz JR. Influence of transducer pressure and examiner experience on muscle active shear modulus measured by shear wave elastography. Radiography (Lond) 2024; 30:185-192. [PMID: 38035432 DOI: 10.1016/j.radi.2023.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION This study examined the effects of ultrasound transducer pressure and examiner experience on the biceps femoris long head and semitendinosus muscle active shear modulus in healthy individuals (n = 28). METHODS Active shear modulus was assessed using shear wave elastography at 20% of knee flexor maximal voluntary isometric contraction. Examiners with different experience levels measured the muscles' shear modulus with three pressure levels: mild, moderate, and hard. RESULTS A main effect of transducer pressure was found for both biceps femoris long head (p < 0.001; η2p = 0.314) and semitendinosus muscles (p < 0.001; η2p = 0.280), whereas differences were found between mild-moderate (biceps femoris long head: p = 0.013, d = 0.23; semitendinosus: p = 0.024, d = 0.25), and mild-hard pressures (biceps femoris long head: p = 0.001, d = 0.47; semitendinosus: p = 0.002, d = 0.47). Examiners performed similar shear modulus measurements in the biceps femoris long head (p = 0.299; η2p = 0.041) and semitendinosus (p = 0.177; η2p = 0.066), although the experienced examiner showed a higher measurement repeatability (biceps femoris long head: ICC = 0.86-0.95, semitendinosus: ICC = 0.89-0.96; vs. biceps femoris long head: ICC = 0.78-0.87, semitendinosus: ICC = 0.66-0.87). CONCLUSION Transducer pressure influences the active shear modulus measurement between mild and moderate or hard pressures. Additionally, examiner experience seems to have no influence on muscle active shear modulus measurement when assessed at the same site (using casts). IMPLICATIONS FOR PRACTICE Future studies assessing active muscle shear modulus should use mild transducer pressure and having experienced examiners in order to improve measurement reliability.
Collapse
Affiliation(s)
- R Pimenta
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada Dafundo, Portugal; Research Center of the Polytechnic Institute of Maia (N2i), Maia Polytechnic Institute (IPMAIA), Castêlo da Maia, 4475-690 Maia, Portugal; Futebol Clube Famalicão - Futebol SAD, Department of Rehabilitation and Performance, Famalicão, Portugal.
| | - F Coelho
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada Dafundo, Portugal
| | - J P Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada Dafundo, Portugal
| | - J R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada Dafundo, Portugal; Egas Moniz - Cooperativa de Ensino Superior, Monte da Caparica, Portugal
| |
Collapse
|
8
|
Horvat U, Kozinc Ž. The Use of Shear-Wave Ultrasound Elastography in the Diagnosis and Monitoring of Musculoskeletal Injuries. Crit Rev Biomed Eng 2024; 52:15-26. [PMID: 38305275 DOI: 10.1615/critrevbiomedeng.2023049807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ultrasound elastography is a valuable method employed to evaluate tissue stiffness, with shear-wave elastography (SWE) recently gaining significance in various settings. This literature review aims to explore the potential of SWE as a diagnostic and monitoring tool for musculoskeletal injuries. In total, 15 studies were found and included in the review. The outcomes of these studies demonstrate the effectiveness of SWE in detecting stiffness changes in individuals diagnosed with Achilles tendinopathy, Achilles tendon rupture, rotator cuff rupture, tendinosis of the long head of the biceps tendon, injury of the supraspinatus muscle, medial tibial stress syndrome, and patellar tendinopathy. Moreover, SWE proves its efficacy in distinguishing variations in tissue stiffness before the commencement and after the completion of rehabilitation in cases of Achilles tendon rupture and patellar tendinopathy. In summary, the findings from this review suggest that SWE holds promise as a viable tool for diagnosing and monitoring specific musculoskeletal injuries. However, while the field of ultrasound elastography for assessing musculoskeletal injuries has made considerable progress, further research is imperative to corroborate these findings in the future.
Collapse
Affiliation(s)
- Urša Horvat
- Univerza na Primorskem, Fakulteta za vede o zdravju, Polje 42, Izola, Slovenija
| | - Žiga Kozinc
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia; University of Primorska, Andrej Marušič Institute, Muzejski trg 2, SI-6000 Koper, Slovenia
| |
Collapse
|
9
|
Albuquerque Brandão MC, de Carvalho Teixeira G, Fernandes de Oliveira L. Acute Effects of Stretching Exercises on Posterior Chain: Analysis of Shear Modulus by Elastography SSI. TRANSLATIONAL SPORTS MEDICINE 2023; 2023:5582277. [PMID: 38654914 PMCID: PMC11023729 DOI: 10.1155/2023/5582277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 04/26/2024]
Abstract
The posterior chain muscles of the lower limb include the hamstrings and triceps surae, along with the Achilles tendon. This study aimed to investigate the acute effects of static stretching exercises commonly used in clinical and training settings on the shear modulus (µ) of these muscles and tendon using Supersonic Shear-Wave Imaging (SSI) elastography. Fifteen healthy adults participated in the study, performing stretching exercises for hamstrings and triceps surae. Shear modulus and joint range of motion (ROM) were measured before and after the stretching protocols. The hip and ankle mean ROM significantly increased by 19.27% and 24.10%, respectively. However, the stretching protocol did not significantly alter in µ of the hamstrings, the gastrocnemius muscles, and the Achilles tendon. K-means clustering analysis identified a group where the subjects with lower initial ROM showed higher amplitude gains and a significant decrease in the semimembranosus stiffness after stretching. These findings suggest that the stretching protocol was effective in improving joint mobility but not sufficient to elicit immediate mechanical changes in muscle and tendon stiffness. Neural adaptations and nonmuscular structures might contribute to increased ROM. The study highlights the importance of considering individual initial ROM and subsequent responses when evaluating the effects of stretching exercises on muscle and tendon properties.
Collapse
Affiliation(s)
- Maria Clara Albuquerque Brandão
- Laboratório de Biomecânica, Programa de Engenharia Biomédica—COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela de Carvalho Teixeira
- Laboratório de Biomecânica, Programa de Engenharia Biomédica—COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Liliam Fernandes de Oliveira
- Laboratório de Biomecânica, Programa de Engenharia Biomédica—COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Götschi T, Snedeker JG, Fitze DP, Sarto F, Spörri J, Franchi MV. Three-dimensional mapping of ultrasound-derived skeletal muscle shear wave velocity. Front Bioeng Biotechnol 2023; 11:1330301. [PMID: 38179131 PMCID: PMC10764491 DOI: 10.3389/fbioe.2023.1330301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction: The mechanical properties of skeletal muscle are indicative of its capacity to perform physical work, state of disease, or risk of injury. Ultrasound shear wave elastography conducts a quantitative analysis of a tissue's shear stiffness, but current implementations only provide two-dimensional measurements with limited spatial extent. We propose and assess a framework to overcome this inherent limitation by acquiring numerous and contiguous measurements while tracking the probe position to create a volumetric scan of the muscle. This volume reconstruction is then mapped into a parameterized representation in reference to geometric and anatomical properties of the muscle. Such an approach allows to quantify regional differences in muscle stiffness to be identified across the entire muscle volume assessed, which could be linked to functional implications. Methods: We performed shear wave elastography measurements on the vastus lateralis (VL) and the biceps femoris long head (BFlh) muscle of 16 healthy volunteers. We assessed test-retest reliability, explored the potential of the proposed framework in aggregating measurements of multiple subjects, and studied the acute effects of muscular contraction on the regional shear wave velocity post-measured at rest. Results: The proposed approach yielded moderate to good reliability (ICC between 0.578 and 0.801). Aggregation of multiple subject measurements revealed considerable but consistent regional variations in shear wave velocity. As a result of muscle contraction, the shear wave velocity was elevated in various regions of the muscle; showing pre-to-post regional differences for the radial assessement of VL and longitudinally for BFlh. Post-contraction shear wave velocity was associated with maximum eccentric hamstring strength produced during six Nordic hamstring exercise repetitions. Discussion and Conclusion: The presented approach provides reliable, spatially resolved representations of skeletal muscle shear wave velocity and is capable of detecting changes in three-dimensional shear wave velocity patterns, such as those induced by muscle contraction. The observed systematic inter-subject variations in shear wave velocity throughout skeletal muscle additionally underline the necessity of accurate spatial referencing of measurements. Short high-effort exercise bouts increase muscle shear wave velocity. Further studies should investigate the potential of shear wave elastography in predicting the muscle's capacity to perform work.
Collapse
Affiliation(s)
- Tobias Götschi
- Orthopaedic Biomechanics Laboratory, Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Orthopaedics, Sports Medical Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jess G. Snedeker
- Orthopaedic Biomechanics Laboratory, Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Daniel P. Fitze
- Department of Orthopaedics, Sports Medical Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Orthopaedics, University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Fabio Sarto
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| | - Jörg Spörri
- Department of Orthopaedics, Sports Medical Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Orthopaedics, University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martino V. Franchi
- Department of Orthopaedics, Sports Medical Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Lin MT, Yang SM, Wu HW, Chen YH, Wu CH. Utility of Ultrasound Elastography to Evaluate Poststroke Spasticity and Therapeutic Efficacy: A Narrative Review. J Med Ultrasound 2023; 31:171-177. [PMID: 38025006 PMCID: PMC10668905 DOI: 10.4103/jmu.jmu_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 12/01/2023] Open
Abstract
Poststroke spasticity (PSS) is a common complication that affects function and daily self-care. Conservative PSS treatments include traditional rehabilitation, botulinum toxin injection, and extracorporeal shock wave therapy. Currently, the Modified Ashworth Scale and Modified Tardieu Scale are widely used tools to clinically evaluate spasticity, but the best tool for PSS assessment remained controversial. Ultrasound elastography (UE), including shear wave and strain image as the emerging method to evaluate soft tissue elasticity, became popular in clinical applications. Spastic biceps and gastrocnemius muscles were reported to be significantly stiffer compared to nonparetic muscles or healthy control using shear wave or strain elastography. More studies investigated the utility, reliability, and validity of UE in patients with PSS, but the contemporary consensus for the utility of UE in the measurement and therapeutic follow-up of PSS remained lacking. Therefore, this narrative review aimed to appraise the literature on the shear wave and strain elastography on PSS and summarize the roles of UE in assessing the therapeutic efficacy of different PSS interventions.
Collapse
Affiliation(s)
- Meng-Ting Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Mei Yang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Hao-Wei Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yen-Hua Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Crawford SK, Hickey J, Vlisides J, Chambers JS, Mosiman SJ, Heiderscheit BC. The effects of hip- vs. knee-dominant hamstring exercise on biceps femoris morphology, strength, and sprint performance: a randomized intervention trial protocol. BMC Sports Sci Med Rehabil 2023; 15:72. [PMID: 37365624 DOI: 10.1186/s13102-023-00680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The hamstrings are an important muscle group that contribute to horizontal force during sprint acceleration and are also the most injured muscle group in running-based sports. Given the significant time loss associated with hamstrings injury and impaired sprinting performance following return to sport, identifying exercises that drive adaptations that are both protective of strain injury and beneficial to sprint performance is important for the strength and conditioning professional. This paper describes the study protocol investigating the effects of a 6-week training program using either the hip-dominant Romanian deadlift (RDL) or the knee-dominant Nordic hamstring exercise (NHE) on hamstring strain injury risk factors and sprint performance. METHODS A permuted block randomized (1:1 allocation) intervention trial will be conducted involving young, physically-active men and women. A target sample size of 32 will be recruited and enrolled participants will undergo baseline testing involving extended-field-of-view ultrasound imaging and shear wave elastography of the biceps femoris long head muscle, maximal hamstrings strength testing in both the RDL and NHE, and on-field sprint performance and biomechanics. Participants will complete the 6-week training intervention using either the RDL or NHE, according to group allocation. Baseline testing will be repeated at the end of the 6-week intervention followed by 2 weeks of detraining and a final testing session. The primary outcome will be regional changes in fascicle length with secondary outcomes including pennation angle, muscle cross sectional area, hamstring strength, and maximal sprint performance and biomechanics. An exploratory aim will determine changes in shear wave velocity. DISCUSSION Despite extensive research showing the benefits of the NHE on reducing hamstring strain injury risk, alternative exercises, such as the RDL, may offer similar or potentially even greater benefits. The findings of this study will aim to inform future researchers and practitioners investigating alternatives to the NHE, such as the RDL, in terms of their effectiveness in reducing rates of hamstring strain injury in larger scale prospective intervention studies. TRIAL REGISTRATION The trial is prospectively registered on ClinicalTrials.gov (NCT05455346; July 15, 2022).
Collapse
Affiliation(s)
- Scott K Crawford
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Kinesiology, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA.
| | - Jack Hickey
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies Research Centre, Australian Catholic University, Fitzroy, VIC, Australia
- Department of Sport Science and Nutrition, Maynooth University, County Kildare, Ireland
| | - Jessica Vlisides
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer S Chambers
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel J Mosiman
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Bryan C Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Zhang X, Zhang L, Sun Y, Li T, Zhou M. Quantitative assessment of biceps brachii muscle stiffness by using Young’s modulus–Angle curve during passive stretching in stroke patients. Front Physiol 2023; 14:907337. [PMID: 36969599 PMCID: PMC10030944 DOI: 10.3389/fphys.2023.907337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Purpose: This study aims to use shear wave elastography (SWE) to dynamically describe the characteristics of biceps brachii muscle stiffness during passive stretching in healthy participants, investigate changes in the Young’s modulus–angle curve under various states of muscle tone in stroke patients, and develop a new method for measuring muscle tone quantitatively.Methods: In total, 30 healthy volunteers and 54 stroke patients were evaluated for elbow flexor muscle tone on both sides using passive motion examination and were divided into groups based on their muscle tone status. The real-time SWE video of the biceps brachii and the Young’s modulus data were recorded during the passive straightening of the elbow. The Young’s modulus–elbow angle curves were created and fitted using an exponential model. The parameters yielded from the model were subjected to further intergroup analysis.Results: The repeatability of the Young’s modulus measurement was generally good. During passive elbow extension, the Young’s modulus of the biceps brachii steadily increased as muscle tone increased, and it increased faster when the modified Ashworth scale (MAS) score got higher. The exponential model’s fitness was generally good. The curvature coefficient was significantly different between the MAS 0 group and the hypertonia groups (MAS 1, 1+, and 2 groups).Conclusion: The passive elastic characteristics of the biceps brachii are consistent with the exponential model. The Young’s modulus–elbow angle curve of the biceps brachii changes in distinct ways depending on the muscle tone status. SWE can be used to quantify muscular stiffness during passive stretching as a new way of muscle tone evaluation, allowing for quantitative muscle tone evaluation and mathematical assessment of muscle mechanical properties in stroke patients.
Collapse
Affiliation(s)
- Xinpei Zhang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Li Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Yang Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Tao Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Mouwang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Mouwang Zhou,
| |
Collapse
|
14
|
Preliminary investigation of the effects of sitting with and without short active breaks on muscle stiffness assessed with shear-wave elastography. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-023-01051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Purpose
The purpose of this preliminary study was to compare the effects of 1-h sitting with and without short active breaks on muscle stiffness as measured by shear-wave elastography (SWE).
Methods
The participants (7 females, 3 males; age: 24.9 ± 1.2 years) completed two (with and without active breaks) 1-h sitting exposures on separate days. Active breaks (2–3 min) were performed at 20 min and 40 min time marks and comprised simple stretching and activation exercises. Before, during (30 min) and after (1 h) of sitting, shear modulus of upper trapezius, lumbar region of erector spinae and rectus femoris muscles was measured with SWE.
Results
Statistically significant effects of sitting exposure in erector spinae muscle stiffness were noted (p = 0.041; η2 = 0.38). There were no other statistically significant effects of sitting exposure or condition (with/without breaks).
Conclusions
Although few statistically significant effects were detected, the trends in this preliminary trial suggest that prolonged sitting increases muscle stiffness and warrants further investigation of short active breaks with larger sample sizes.
Collapse
|
15
|
Crawford SK, Thelen D, Yakey JM, Heiderscheit BC, Wilson JJ, Lee KS. Regional shear wave elastography of Achilles tendinopathy in symptomatic versus contralateral Achilles tendons. Eur Radiol 2023; 33:720-729. [PMID: 35760909 PMCID: PMC9771859 DOI: 10.1007/s00330-022-08957-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Ultrasound often corroborates clinical diagnosis of Achilles tendinopathy (AT). Traditional measures assess macromorphological features or use qualitative grading scales, primarily focused within the free tendon. Shear wave imaging can non-invasively quantify tendon elasticity, yet it is unknown if proximal structures are affected by tendon pathology. The purpose of the study was to determine the characteristics of both traditional sonographic measures and regional shear wave speed (SWS) between limbs in patients with AT. METHODS Twenty patients with chronic AT were recruited. Traditional sonographic measures of tendon structure were measured. Regional SWS was collected in a resting ankle position along the entire length of the tendon bilaterally. SWS measures were extracted and interpolated across evenly distributed points corresponding to the free tendon (FT), soleus aponeurosis (SA), and gastrocnemius aponeurosis (GA). Comparisons were made between limbs in both traditional sonographic measures and regional SWS. RESULTS Symptomatic tendons were thicker (10.2 (1.9) vs. 6.8 (1.8) mm; p < 0.001) and had more hyperemia (p = 0.001) and hypoechogenicity (p = 0.002) than the contralateral tendon. Regional SWS in the FT was lower in the symptomatic limb compared to the contralateral limb (11.53 [10.99, 12.07] vs. 10.97 [10.43, 11.51]; p = 0.03). No differences between limbs were found for the SA (p = 0.13) or GA (p = 0.99). CONCLUSIONS Lower SWS was only observed in the FT in AT patients, indicating that alterations in tendon elasticity associated with AT were localized to the FT and did not involve the proximal passive tendon structures. KEY POINTS • Baseline characteristics of a pilot sample of 20 subjects suffering from chronic Achilles tendinopathy showed differences in conventional sonographic measures of tendon thickness, qualitatively assessed hypoechogenicity, hyperemia, and quantitative measures of shear wave speed. • Regional shear wave speeds were lower in the free tendon but not in the proximal regions of the soleus or gastrocnemius aponeuroses in Achilles tendinopathy patients. • Using shear wave imaging to estimate tendon stiffness may prove beneficial for clinical validation studies to address important topics such as return to activity and the effectiveness of rehabilitation protocols.
Collapse
Affiliation(s)
- Scott K Crawford
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Darryl Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Janice M Yakey
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, E3/311, 600 Highland Ave, Madison, WI, 53792, USA
| | - Bryan C Heiderscheit
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - John J Wilson
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth S Lee
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, E3/311, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
16
|
Roots J, Trajano GS, Drovandi C, Fontanarosa D. Variability of Biceps Muscle Stiffness Measured Using Shear Wave Elastography at Different Anatomical Locations With Different Ultrasound Machines. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:398-409. [PMID: 36266142 DOI: 10.1016/j.ultrasmedbio.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Shear wave elastography is an emerging diagnostic tool used to assess for changes in the stiffness of muscle. Each region of the muscle may have a different stiffness; therefore, the anatomical region should be carefully selected. Machine vendors each have unique methods for calculating the returned stiffness values and, consequently, a high level of agreement in measurement between machines (quantified using the intraclass correlation coefficient [ICC] and Bland-Altman analysis) will allow research findings to be translated to the clinic. This study assessed three locations within the biceps muscle (50% and 75% of the distance between the acromioclavicular joint and antecubital fossa, and superior to distal myotendinous junction [MTJ]) of 32 healthy volunteers with two different machines, the Canon Aplio i600 and SuperSonic Imagine Aixplorer (SSI), to compare the reported shear wave velocities and the variability by coefficient of variation (CV) and ICC. There was no difference in the CV between machines, but a significant difference in the CV at muscle regions, with the 75% location having a 40.2% reduction in CV. The 75% location had the highest ICC values with good posterior mean ICCs of 0.84 on the Canon and 0.83 on the SSI. The 50% and MTJ locations had poor ICC values. The 75% location provided the lowest CV and highest ICC and should be used for future stiffness assessments.
Collapse
Affiliation(s)
- Jacqueline Roots
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher Drovandi
- Centre of Data Science, Queensland University of Technology, Brisbane, Queensland, Australia; School of Mathematical Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Campanella W, Corazza A, Puce L, Privitera L, Pedrini R, Mori L, Boccuni L, Turtulici G, Trompetto C, Marinelli L. Shear wave elastography combined with electromyography to assess the effect of botulinum toxin on spastic dystonia following stroke: A pilot study. Front Neurol 2022; 13:980746. [PMID: 36299267 PMCID: PMC9589110 DOI: 10.3389/fneur.2022.980746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Shear wave elastography (SWE) is a method for carrying out a quantitative assessment of the mechanical properties of soft tissues in terms of stiffness. In stroke survivors, the paretic muscles may develop hypertonia due to both neural-mediated mechanisms and structural alterations with consequent muscular fibrous-fatty remodeling. Methods Fourteen adult patients with spastic dystonia following stroke were recruited. Muscle hypertonia was assessed using the modified Ashworth scale (MAS). Muscle activation was measured by surface electromyography (sEMG) with the selected muscle in shortened (spastic dystonia) and stretched (dynamic stretch reflex) positions. SWE was performed on a selected paretic muscle and on the contralateral non-paretic one to calculate shear wave velocities (SWV) along and across muscular fibers. The modified Heckmatt scale (MHS) pattern was also determined. All evaluations were performed shortly before BoNT-A injections (T0) and one month later (T1). Results All SWV on paretic muscles were higher than contralateral non-paretic ones (p < 0.01). After BoNT-A injection, a significant reduction in MAS (p = 0.0018), spastic dystonia (p = 0.0043), and longitudinal SWE measurements, both in shortened (p = 0.001) and in stretched muscular conditions (p = 0.0029), was observed. No significant changes in SWV on non-paretic muscles were observed. Higher SWV resulted along the direction of muscular fibers vs. across them (p = 0.001). No changes resulted from the MHS evaluations after BoNT-A. There was a positive correlation between MHS scores and SWV values while the muscle was in the shortened position, but not with spastic dystonia recorded by sEMG. Conclusions This is the first study evaluating the effect of BoNT-A on muscle hypertonia following stroke, assessed by both SWE and sEMG. These findings support SWE as a useful method to disclose intrinsic muscular remodeling, independently of the effect of spastic dystonia, in particular, while muscles were assessed in a neutral position. SWE measurements of muscle stiffness cannot tell apart neural-mediated and intrinsic muscle hypertonia. Interestingly, when sEMG activity is very limited, as in spastic muscles kept in a shortened position, SWE can provide a measurement of stiffness due almost completely to intrinsic muscle changes. Alongside sEMG, SWE could aid clinicians in the assessment of responses to treatments.
Collapse
Affiliation(s)
- William Campanella
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Angelo Corazza
- Unità di Radiologia Diagnostica ed Interventistica Istituto Ortopedico Galeazzi di Milano, Milan, Italy
| | - Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Privitera
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Riccardo Pedrini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Giovanni Turtulici
- S.C. Radiodiagnostica Ospedale Evangelico Internazionale di Genova, Genova, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Clinical Neurophysiology, Genova, Italy
- *Correspondence: Lucio Marinelli
| |
Collapse
|
18
|
Ličen U, Kozinc Ž. Using Shear-Wave Elastography to Assess Exercise-Induced Muscle Damage: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7574. [PMID: 36236672 PMCID: PMC9571996 DOI: 10.3390/s22197574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Shear-wave elastography is a method that is increasingly used to assess muscle stiffness in clinical practice and human health research. Recently, shear-wave elastography has been suggested and used to assess exercise-induced muscle damage. This review aimed to summarize the current knowledge of the utility of shear-wave elastography for assessment of muscle damage. In general, the literature supports the shear-wave elastography as a promising method for assessment of muscle damage. Increases in shear modulus are reported immediately and up to several days after eccentric exercise, while studies using shear-wave elastography during and after endurance events are showing mixed results. Moreover, it seems that shear modulus increases are related to the decline in voluntary strength loss. We recommend that shear modulus is measured at multiple muscles within a muscle group and preferably at longer muscle lengths. While further studies are needed to confirm this, the disruption of calcium homeostasis seems to be the primary candidate for the underlying mechanism explaining the increases in shear modulus observed after eccentric exercise. It remains to be investigated how well the changes in shear modulus correlate with directly assessed amount of muscle damage (biopsy).
Collapse
Affiliation(s)
- Urška Ličen
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Žiga Kozinc
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| |
Collapse
|
19
|
Bouvier J, Martin C, Fouré A. Effect of hip and knee joint angles on resting hamstring muscles rigidity in men and women. Eur J Appl Physiol 2022; 122:2375-2383. [PMID: 35945385 DOI: 10.1007/s00421-022-05023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Hamstring muscle strains are one of the most common injuries in sports practice, for both men and women. However, sex disparities in the rate of muscle injuries have been observed. As these muscular injuries usually occur at long muscle length, this study aimed to determine the effect of sex on hamstring muscles' resting rigidity under different stretching conditions. METHODS The shear wave speed (SWS) of resting hamstring muscles was measured in 12 men and 12 women in different hip and knee positions (hip extended with knee flexed, hip flexed with knee extended, both joints extended and both joints flexed). RESULTS Combining all the positions, the SWS of the semitendinosus was higher in men than in women (2.96 vs. 2.71 m.s-1). Regardless of sex, a significant rise in SWS was systematically observed when the semimembranosus was stretched (1.86, 2.37, 2.76 and 4.39 m.s-1) but it was neither the case for the semitendinosus (p = 0.82) nor for the biceps femoris (p = 0.50). Finally, differences in SWS among the hamstring muscles were only observed at the longest muscle length, with greater SWS values for the semimembranosus and semitendinosus in comparison with the biceps femoris (4.39 and 4.12 vs. 3.38 m.s-1 respectively). CONCLUSION In conclusion, a sex difference was only observed in the resting semitendinosus rigidity. Independently of sex, the increase in resting hamstring muscles SWS with stretch was muscle specific.
Collapse
Affiliation(s)
- Jérémie Bouvier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Univ Lyon, Université Claude Bernard Lyon 1, 27-29 Boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Cyril Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Univ Lyon, Université Claude Bernard Lyon 1, 27-29 Boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Alexandre Fouré
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Univ Lyon, Université Claude Bernard Lyon 1, 27-29 Boulevard du 11 novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
20
|
Vuorenmaa AS, Siitama EMK, Mäkelä KS. Inter-operator and inter-device reproducibility of shear wave elastography in healthy muscle tissues. J Appl Clin Med Phys 2022; 23:e13717. [PMID: 35793227 PMCID: PMC9512333 DOI: 10.1002/acm2.13717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose The study aimed to assess whether the more limiting factor in reproducibility of shear wave elastography (SWE) would be the operator dependency or the incompatibility of different ultrasound (US) devices. The interrater agreement with less experienced operators was studied. Methods A total of 24 healthy volunteers participated in the study (18 females, 6 males; range of age 27–55 years). SWE of biceps brachii (BB) and tibialis anterior (TA) muscles was performed on both sides from all participants in both longitudinal and transverse orientation of the transducer in respect to muscle fibers. Two operators repeated the SWE with two different US devices from different manufacturers (scanners 1 and 2). Results Intraclass correlation coefficient between the two operators was 0.91 (CI 0.88–0.93) for scanner 1 and 0.81 (CI 0.74–0.86) for scanner 2, respectively. Instead, there were significant differences in the SWE measurements between the two scanners, emphasizing in transverse orientation of the transducer. In the transverse transducer orientation, the mean shear wave velocity (SWV) in TA was 1.45 m/s (standard deviation [SD] ± 0.35 m/s) with scanner 1 and 2.35 m/s (SD ± 0.83 m/s) with scanner 2 (p < 0.001). In BB, the mean transverse SWV was 1.49 m/s (SD ± 0.35 m/s) with scanner 1 and 2.29 m/s (SD ± 0.63 m/s) with scanner 2 (p < 0.001). In longitudinal transducer orientation, the mean SWV in TA was 3.00 m/s (SD ± 0.73 m/s) with scanner 1 and 3.26 m/s (SD ± 0.42 m/s) with scanner 2 (p = 0.050). In BB, the mean longitudinal SWV was 3.60 m/s (SD ± 0.77 m/s) with scanner 1 and 3.96 m/s (SD ± 0.62 m/s) with scanner 2 (p = 0.019). The presented mean values were obtained by operator 1, there were no significant differences in the SWE measurements performed by the two operators. Conclusion The results implicate that the reproducibility of the SWE measurements depends rather on the used US device than on the operator. It is recommendable that clinics collect reference values with their own US device and consider threshold values presented in previous studies only directional.
Collapse
Affiliation(s)
- Anna S Vuorenmaa
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Eetu M K Siitama
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Katri S Mäkelä
- Department of Clinical Neurophysiology, Medical Imaging Center and Hospital Pharmacy, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
21
|
Khowailed IA, Lee Y, Lee H. Assessing the differences in muscle stiffness measured with shear wave elastography and myotonometer during the menstrual cycle in young women. Clin Physiol Funct Imaging 2022; 42:320-326. [PMID: 35596621 DOI: 10.1111/cpf.12763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/15/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
This study assessed the differences in muscle stiffness of the medial gastrocnemius (MG) and tibialis anterior (TA) muscles at rest and contraction during ovulation and follicular phase (menstruation) in women with regular menstrual cycle. Thirty-four young healthy women (mean age 21.3 ± 1.3 years) with regular menstrual cycles participated in this study. Stiffness of the TA and MG muscles at rest and voluntary contraction during ovulation and follicular phase in young women were measured using shear-wave elastography (SWE) and the handheld myotonometer MyotonPRO. The absolute stiffness difference between resting and contraction was expressed as the stiffness increase rate (SIR). The stiffness of the MG and TA at the resting position was not significantly different between the two phases of the menstrual cycle (p > .05). A significantly greater stiffness of both muscles measured using MyotonPRO in the follicular phase than during ovulation was found (p < .05), while stiffness measured by SWE showed a difference only in the TA muscle during contraction (p < .05). In addition, there were no significant differences in the SIR of both muscles between the two phases (p > .05). The results of our study showed a significantly greater stiffness of the MG and TA muscles at the follicular phase than at ovulation during contraction only. As muscle stiffness affects the risk of injury owing to reduced stability during sports activities, these changes in mechanical properties during the menstrual cycle should be noted, and training strategies should be used in female athletes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iman Akef Khowailed
- Doctor of Physical Therapy Program, College of Rehabilitative Sciences, University of St Augustine for Health Sciences, San Marcos, CA, USA
| | - Youngjin Lee
- Department of Radiological Science, Gachon University, Incheon, Korea
| | - Haneul Lee
- Department of Physical Therapy, Gachon University, Incheon, Korea
| |
Collapse
|
22
|
Xu GX, Chen PY, Jiang X, Huang CC. Visualization of Human Skeletal Muscle Anisotropy by Using Dual-Direction Shear Wave Imaging. IEEE Trans Biomed Eng 2022; 69:2745-2754. [PMID: 35192460 DOI: 10.1109/tbme.2022.3152896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Ultrasound (US) shear wave elasticity imaging (SWEI) is a mature technique for diagnosing the elasticity of isotropic tissues. However, the elasticity of anisotropic tissues, such as muscle and tendon, cannot be diagnosed correctly using SWEI because the shear wave velocity (SWV) varies with tissue fiber orientations. Recently, SWEI has been studied for measuring the anisotropic properties of muscles by rotating the transducer; however, this is difficult for clinical practice. METHODS In this study, a novel dual-direction shear wave imaging (DDSWI) technique was proposed for visualizing the mechanical anisotropy of muscles without rotation. Longitudinal and transverse shear waves were created by a specially designed external vibrator and supersonic pushing beam, respectively; the SWVs were then tracked using ultrafast US imaging. Subsequently, the SWV maps of two directions were obtained at the same scanning cross section, and the mechanical anisotropy was represented as the ratio between them at each pixel. RESULTS The performance of DDSWI was verified using a standard phantom, and human experiments were performed on the gastrocnemius and biceps brachii. Experimental results of phantom revealed DDSWI exhibited a high precision of <0.81 % and a low bias of <3.88 % in SWV measurements. The distribution of anisotropic properties in muscle was visualized with the anisotropic ratios of 1.54 and 2.27 for the gastrocnemius and biceps brachii, respectively. CONCLUSION The results highlight the potential of this novel anisotropic imaging in clinical applications because the conditions of musculoskeletal fiber orientation can be easily and accurately evaluated in real time by DDSWI.
Collapse
|
23
|
Li YP, Liu CL, Zhang ZJ. Feasibility of Using a Portable MyotonPRO Device to Quantify the Elastic Properties of Skeletal Muscle. Med Sci Monit 2022; 28:e934121. [PMID: 35087016 PMCID: PMC8805342 DOI: 10.12659/msm.934121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/30/2021] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND The aims of this study were to (1) calculate the correlation between different tensile force levels and corresponding muscle stiffness both in vitro and in vivo; (2) determine whether muscle stiffness assessed using a MyotonPRO myotonometer can be used to accurately estimate muscle activity level; and (3) evaluate the inter-operator reliability of MyotonPRO-based measurement in assessing biceps brachii muscle (BBM) stiffness. MATERIAL AND METHODS In Experiment I, muscle stiffness, as measured using the MyotonPRO, was obtained at 0 N, 2 N, 4 N, 6 N, 8 N, and 10 N of applied force on 6 fresh medial gastrocnemius muscle specimens. In Experiment II, 11 healthy subjects were recruited. BBM stiffness, assessed by the same device, was obtained at different tensile force levels, from 0 to 50% of maximal voluntary contraction (MVC). For the reliability test, the score for each subject was quantified by 2 operators (I and II), thrice, at 30-minute intervals on the same day. RESULTS A strong correlation was found between the different tensile force levels, which corresponded to muscle stiffness in vitro (r=0.71-0.95, all P<0.05). In vivo, muscle stiffness increased linearly with an increase of the tensile force levels from 0 to 50% of MVC (r=0.99, P=0.00) and there was a significant difference in BBM stiffness among the incremental isometric tasks (F [1.76, 17.60]=91.52, P=0.00). The inter-operator reliability for the measurement of BBM stiffness was good (ICC=0.86). CONCLUSIONS Our findings indicate that muscle stiffness measured using the MyotonPRO is strongly related to muscle activity level and that the MyotonPRO is a feasible tool for quantifying BBM stiffness as well as for quantifying changes in MVC levels.
Collapse
Affiliation(s)
- Ya-Peng Li
- Rehabilitation Therapy Center, Orthopedic Hospital of Henan Province, Luoyang, Henan, PR China
| | - Chun-Long Liu
- Clinical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhi-Jie Zhang
- Rehabilitation Therapy Center, Orthopedic Hospital of Henan Province, Luoyang, Henan, PR China
| |
Collapse
|
24
|
Romano A, Staber D, Grimm A, Kronlage C, Marquetand J. Limitations of Muscle Ultrasound Shear Wave Elastography for Clinical Routine-Positioning and Muscle Selection. SENSORS 2021; 21:s21248490. [PMID: 34960581 PMCID: PMC8706081 DOI: 10.3390/s21248490] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Shear wave elastography (SWE) is a clinical ultrasound imaging modality that enables non-invasive estimation of tissue elasticity. However, various methodological factors—such as vendor-specific implementations of SWE, mechanical anisotropy of tissue, varying anatomical position of muscle and changes in elasticity due to passive muscle stretch—can confound muscle SWE measurements and increase their variability. A measurement protocol with a low variability of reference measurements in healthy subjects is desirable to facilitate diagnostic conclusions on an individual-patient level. Here, we present data from 52 healthy volunteers in the areas of: (1) Characterizing different limb and truncal muscles in terms of inter-subject variability of SWE measurements. Superficial muscles with little pennation, such as biceps brachii, exhibit the lowest variability whereas paravertebral muscles show the highest. (2) Comparing two protocols with different limb positioning in a trade-off between examination convenience and SWE measurement variability. Repositioning to achieve low passive extension of each muscle results in the lowest SWE variability. (3) Providing SWE shear wave velocity (SWV) reference values for a specific ultrasound machine/transducer setup (Canon Aplio i800, 18 MHz probe) for a number of muscles and two positioning protocols. We argue that methodological issues limit the current clinical applicability of muscle SWE.
Collapse
Affiliation(s)
- Alyssa Romano
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Deborah Staber
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Alexander Grimm
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Cornelius Kronlage
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
| | - Justus Marquetand
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (A.R.); (D.S.); (A.G.); (C.K.)
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany
- MEG-Center, University of Tübingen, 72074 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-298-0442
| |
Collapse
|
25
|
Measuring and Modelling Nonlinear Elasticity of Ex Vivo Mouse Muscles. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5579232. [PMID: 34840699 PMCID: PMC8612782 DOI: 10.1155/2021/5579232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Elastography is a noninvasive imaging technique that provides information on soft tissue stiffness. Young's modulus is typically used to characterize soft tissues' response to the applied force, as soft tissues are often considered linear elastic, isotropic, and quasi-incompressible materials. This approximation is reasonable for small strains, but soft tissues undergo large deformations also for small values of force and exhibit nonlinear elastic behavior. Outside the linear regime, the elastic modulus is dependent on the strain level and is different for any kind of tissue. The aim of this study was to characterize, ex vivo, the mechanical response of two different mice muscles to an external force. A system for transverse force-controlled uniaxial compression enabled obtaining the stress-strain (σ-ε) curve of the samples. The strain-dependent Young's modulus (SYM) model was adopted to reproduce muscle compression behavior and to predict the elastic modulus for large deformations. After that, a recursive linear model was employed to identify the initial linear region of the σ-ε curve. Results showed that both muscle types exhibited a strain hardening effect and that the SYM model provided good fitting of the entire σ-ε curves. The application of the recursive linear model allowed capturing the initial linear region in which the approximation of these tissues as linear elastic materials is reasonable. The residual analysis displayed that even if the SYM model better summarizes the muscle behavior on the entire region, the linear model is more precise when considering only the initial part of the σ-ε curve.
Collapse
|
26
|
The Relation of Body Mass Index to Muscular Viscoelastic Properties in Normal and Overweight Individuals. ACTA ACUST UNITED AC 2021; 57:medicina57101022. [PMID: 34684059 PMCID: PMC8537384 DOI: 10.3390/medicina57101022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
Background: The body mass index (BMI) is closely related to fat tissue, which may have direct or indirect effects on muscle function. Previous studies have evaluated BMI and muscle viscoelastic properties in vivo in older people or individual sexes; however, the relationship between BMI and muscular viscoelastic properties is still unknown. Aims: The purpose of this study was to determine the correlation of BMI with muscular viscoelastic properties, and to compare these properties in a young sedentary population with normal and overweight individuals. Methods: A total of 172 healthy sedentary individuals (mean age, 26.00 ± 5.45 years) were categorized by sex (male and female) and BMI classification (normal (BMI, 18.50-24.99 kg/m2), overweight (BMI = 25.00-29.99 kg/m2)). Body weight was evaluated using an electronic scale, while height was measured using a standard stadiometer. BMI was calculated by dividing the weight in kilograms by the square of height in meters. The viscoelastic properties (tone, stiffness, and elasticity) of the biceps brachii (BB) and biceps femoris (BF) muscles were measured bilaterally using the MyotonPRO device at rest. Results: The bilateral BF tone and stiffness, right BB stiffness, and elasticity showed weak correlations with BMI in all participants. Furthermore, the bilateral BF tone and stiffness, right BB stiffness and elasticity, and left BB stiffness were weakly positively correlated with male sex. Only the right BB elasticity was weakly positively correlated with BMI in females (p < 0.05). No correlation with BMI was determined for other viscoelastic properties (p > 0.05). The overweight group showed increased bilateral BF stiffness and tone, right BB stiffness, and reduced bilateral BB elasticity compared to the normal-weight group (p < 0.05), while other viscoelastic properties were similar (p > 0.05). Greater bilateral BB tone, BF tone and stiffness, and lower BF elasticity were observed in males than in females (p < 0.05), but other viscoelastic properties were not significantly different (p < 0.05). No effect of BMI-sex interactions was found on viscoelastic properties (p > 0.05). Conclusions: The BB and BF viscoelastic properties were weakly correlated with BMI. Males showed greater muscle tone and stiffness, and lower elasticity. The overweight individuals showed increased stiffness and tone, particularly in lower extremities, and reduced elasticity in upper extremities. The effect of BMI-sex interactions on the viscoelastic properties was not clear. Higher BMI (increased mechanical load) might cause the human body to develop different muscular viscoelastic adaptations in the extremities.
Collapse
|
27
|
Olchowy A, Więckiewicz M, Malysa A, Olchowy C. Determination of Reference Values of the Masseter Muscle Stiffness in Healthy Adults Using Shear Wave Elastography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179371. [PMID: 34501961 PMCID: PMC8430510 DOI: 10.3390/ijerph18179371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022]
Abstract
Shear wave elastography (SWE) is an objective and reliable method for the assessment of muscles and internal organs. Every organ exhibits its own stiffness characteristics and hence requires individual reference values. We aimed to determine the reference values of stiffness of the masseter muscle in healthy adult individuals using SWE. We analyzed the data of 140 participants (74 men, 66 women) with a median age of 50 years. The overall mean elasticity was 10.67 ± 1.77 kPa. The average values were lower by 2.25 kPa (9.15%) in women compared to men (9.48 ± 1.47 kPa vs. 11.73 ± 1.27 kPa; p < 0.0001). The values of stiffness increased with age, with a correlation coefficient of about 0.35 and a p < 0.0001. Age was a significant influencing factor of masseter muscle stiffness. The left and right masseters had similar stiffness. We conclude that stiffness values are significantly lower in women than in men with a difference of 9%. Age significantly influences the stiffness of masseter muscle, and the values of stiffness increase significantly with age, particularly in men. However, further studies are required to determine the precise ranges of stiffness accounting for age and sex in healthy subjects and people with disorders and conditions of the masticatory system.
Collapse
Affiliation(s)
- Anna Olchowy
- Department of Experimental Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.O.); (M.W.); (A.M.)
| | - Mieszko Więckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.O.); (M.W.); (A.M.)
| | - Andrzej Malysa
- Department of Experimental Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.O.); (M.W.); (A.M.)
| | - Cyprian Olchowy
- Department of Oral Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
28
|
Korta Martiartu N, Nakhostin D, Ruby L, Frauenfelder T, Rominger MB, Sanabria SJ. Speed of sound and shear wave speed for calf soft tissue composition and nonlinearity assessment. Quant Imaging Med Surg 2021; 11:4149-4161. [PMID: 34476195 DOI: 10.21037/qims-20-1321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Background The purpose of this study was threefold: (I) to study the correlation of speed-of-sound (SoS) and shear-wave-speed (SWS) ultrasound (US) in the gastrocnemius muscle, (II) to use reproducible tissue compression to characterize tissue nonlinearity effects, and (III) to compare the potential of SoS and SWS for tissue composition assessment. Methods Twenty gastrocnemius muscles of 10 healthy young subjects (age range, 23-34 years, two females and eight males) were prospectively examined with both clinical SWS (GE Logiq E9, in m/s) and a prototype system that measures SoS (in m/s). A reflector was positioned opposite the US probe as a timing reference for SoS, with the muscle in between. Reproducible tissue compression was applied by reducing probe-reflector distance in 5 mm steps. The Ogden hyperelastic model and the acoustoelastic theory were used to characterize SoS and SWS variations with tissue compression and extract novel metrics related to tissue nonlinearity. The body fat percentage (BF%) of the subjects was estimated using bioelectrical impedance analysis. Results A weak negative correlation was observed between SWS and SoS (r=-0.28, P=0.002). SWS showed an increasing trend with increasing tissue compression (P=0.10) while SoS values decayed nonlinearly (P<0.001). The acoustoelastic modeling showed a weak correlation for SWS (r=-0.36, P<0.001) but a very strong correlation for SoS (r=0.86, P<0.001), which was used to extract the SoS acoustoelastic parameter. SWS showed higher variability between both calves [intraclass correlation coefficient (ICC) =0.62, P=0.08] than SoS (ICC =0.91, P<0.001). Correlations with BF% were strong and positive for SWS (r=0.60, P<0.001), moderate and negative for SoS (r=-0.43, P=0.05), and moderate positive for SoS acoustoelastic parameter (r=0.48, P=0.03). Conclusions SWS and SoS provide independent information about tissue elastic properties. SWS correlated stronger with BF% than SoS, but measurements were less reliable. SoS enabled the extraction of novel metrics related to tissue nonlinearity with potential complementary information.
Collapse
Affiliation(s)
- Naiara Korta Martiartu
- Zurich Ultrasound Research and Translation (ZURT), Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zürich, Switzerland
| | - Dominik Nakhostin
- Zurich Ultrasound Research and Translation (ZURT), Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zürich, Switzerland
| | - Lisa Ruby
- Zurich Ultrasound Research and Translation (ZURT), Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zürich, Switzerland
| | - Thomas Frauenfelder
- Zurich Ultrasound Research and Translation (ZURT), Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zürich, Switzerland
| | - Marga B Rominger
- Zurich Ultrasound Research and Translation (ZURT), Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zürich, Switzerland
| | - Sergio J Sanabria
- Zurich Ultrasound Research and Translation (ZURT), Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zürich, Switzerland.,Deusto Institute of Technology, University of Deusto/IKERBASQUE, Basque Foundation for Science, Bilbao, Basque Country, Spain
| |
Collapse
|
29
|
Héroux ME, Whitaker RM, Maas H, Herbert RD. Negligible epimuscular myofascial force transmission between the human rectus femoris and vastus lateralis muscles in passive conditions. Eur J Appl Physiol 2021; 121:3369-3377. [PMID: 34468860 DOI: 10.1007/s00421-021-04801-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE There have been contradictory reports of the effects of epimuscular myofascial force transmission in humans. This study investigated the transmission of myofascial force to the human vastus lateralis muscle by determining whether vastus lateralis slack angle changed with hip angle. Since the distance between the origin and insertion of the vastus lateralis muscle does not change when hip angle changes, any change in vastus lateralis slack angle with hip position can be attributed to epimuscular myofascial force transmission. METHODS Nineteen young adults were tested in hip flexed ([Formula: see text]) and neutral ([Formula: see text]) positions. Ultrasound images of the vastus lateralis muscle were obtained as the knee was passively flexed at [Formula: see text]/s. The knee angle at which vastus lateralis muscle fascicles began to lengthen was used to identify muscle slack angle. RESULTS Overall, there was a negligible effect of hip position on vastus lateralis slack angle ([Formula: see text] [[Formula: see text] to 1.9]; mean [95% confidence interval]). However, a small and variable effect was noted in 3/19 participants. CONCLUSION This result indicates that, over the range of joint angles tested here, there is little or no epimuscular myofascial force transmission between the vastus lateralis muscle and neighbouring bi-articular structures under passive conditions. More broadly, this result provides additional evidence that epimuscular myofascial force transmission tends to be small and variable under passive conditions in healthy human muscle.
Collapse
Affiliation(s)
- Martin E Héroux
- Neuroscience Research Australia, Margaret Ainsworth Building, Sydney, NSW, 2031, Australia. .,University of New South Wales, 2031, Randwick, NSW, Australia.
| | - Rachelle M Whitaker
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robert D Herbert
- Neuroscience Research Australia, Margaret Ainsworth Building, Sydney, NSW, 2031, Australia.,University of New South Wales, 2031, Randwick, NSW, Australia
| |
Collapse
|
30
|
He K, Zhou X, Zhu Y, Wang B, Fu X, Yao Q, Chen H, Wang X. Muscle elasticity is different in individuals with diastasis recti abdominis than healthy volunteers. Insights Imaging 2021; 12:87. [PMID: 34185190 PMCID: PMC8241952 DOI: 10.1186/s13244-021-01021-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Objective To determine the value of shear wave elastography (SWE) in assessing abdominal wall muscles, including rectus abdominis (RA), external oblique muscle (EO), internal oblique muscle, and transversus abdominis (TrA) in patients with diastasis recti abdominis (DRA) and healthy controls.
Methods From October 2018 to December 2019, 36 postpartum DRA patients and 24 nulliparous healthy women were identified. Inter-rectus distance (IRD) measurements were taken by B-mode ultrasound. Shear wave speed (SWS) values were acquired by one operator at ten specific locations. Clinical and ultrasound variables, including demographics, IRD, muscle thickness, and muscle SWS, were compared between the two groups using Student’s t test or Fisher's exact test. Pearson correlation analyses were conducted for the variables of IRD, muscle thickness, and SWS in the 36 DRA patients. Results The maximum diameter of recti abdominus separation was located at the umbilicus in DRA patients (4.59 ± 1.14 cm). The SWS value was significantly lower in the RA (p = 0.003) and higher in the TrA muscle (p < 0.001) in DRA patients compared with the age-matched controls. However, SWS in both muscles (RA and TrA) showed a statistically positive correlation with IRD (p < 0.05). In addition, the SWS value in EO statistically decreased in DRA patients compared with the healthy controls (1.65 ± 0.15 vs. 1.79 ± 0.14, p = 0.001). Conclusions The application of SWE to abdominal wall muscles in DRA patients is feasible. The correlation between SWS value and IRD in RA should be interpreted with caution.
Collapse
Affiliation(s)
- Kai He
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Xiuling Zhou
- Department of Ultrasound, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Yulan Zhu
- Department of Rehabilitation, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Bo Wang
- Department of Ultrasound, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Xiaojian Fu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Hao Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China.
| | - Xiaohong Wang
- Department of Ultrasound, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
31
|
Vatovec R, Marušič J, Marković G, Šarabon N. Effects of Nordic hamstring exercise combined with glider exercise on hip flexion flexibility and hamstring passive stiffness. J Sports Sci 2021; 39:2370-2377. [PMID: 34074227 DOI: 10.1080/02640414.2021.1933350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Eccentric training proved to be effective in hamstring injury prevention; however, little is known about effects of eccentric hamstring training at long muscle length on hamstring flexibility. Hence, the aim was to evaluate the effect of eccentric training at long muscle lengths on flexibility and passive properties of the hamstring muscles. 34 physically active young adults were randomized to either the control or intervention group (6 weeks of eccentric hamstring training at long muscle length; control group resumed with their usual activities). Maximal passive hip flexion range of motion (ROM), passive hamstring stiffness, shear modulus and tendon length of the biceps femoris long head (BFlh) were measured pre- and post-intervention. A significant time × group effect was observed for maximal passive hip ROM. Post-hoc testing revealed a significant increase in the intervention group (+11.2%; p < 0.001; d = 1.55). Additionally, a significant time effect was shown for shear modulus in a relaxed position (p < 0.001). No significant interaction was shown for other parameters. Results indicate that eccentric hamstring training at long muscle length elicits large gains in hamstring flexibility, which are most likely not related to changes in passive hamstring stiffness or BFlh distal tendon length.
Collapse
Affiliation(s)
- Rok Vatovec
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Jan Marušič
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Goran Marković
- University of Zagreb, Faculty of Kinesiology, Zagreb, Croatia.,Motus Melior Ltd., Zagreb, Croatia
| | - Nejc Šarabon
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia.,S2P, Science to Practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia
| |
Collapse
|
32
|
McGillivray MK, Haldane C, Doherty C, Berger MJ. Evaluation of muscle strength following peripheral nerve surgery: A scoping review. PM R 2021; 14:383-394. [PMID: 33751851 DOI: 10.1002/pmrj.12586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022]
Abstract
Peripheral nerve injury (PNI) can result in devastating loss of function, often with poor long-term prognosis. Increased use of peripheral nerve surgical techniques (eg, nerve transfer, nerve grafting, and nerve repair) has resulted in improved muscle strength and other functional outcomes in patients with PNI. Muscle strength has largely been evaluated with the British Medical Research Council (MRC) scale. MRC is convenient to use in clinical settings, but more robust measures of muscle function are necessary to fully elucidate patient recovery. This scoping review aims to examine alternative instruments used to assess muscle function in studies of peripheral nerve surgery for PNI of the upper and lower limbs. A scoping review was conducted using Ovid MEDLINE, CINAHL, EMBASE, and PubMed databases in May and December of 2020, yielding a total of 20 studies pertaining to the review question. Studies pertaining to handheld dynamometry, grip and pinch dynamometry, Rotterdam Intrinsic Hand Myometers, isokinetic dynamometry, ultrasonography, and electromyography were reviewed. We provide a synopsis of each method and current clinical applications and discuss potential benefits, disadvantages, and areas of future research.
Collapse
Affiliation(s)
- Meghan K McGillivray
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chloe Haldane
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Doherty
- Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael J Berger
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,Division of Physical Medicine & Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Sowinski DR, McGarry MDJ, Van Houten EEW, Gordon-Wylie S, Weaver JB, Paulsen KD. Poroelasticity as a Model of Soft Tissue Structure: Hydraulic Permeability Reconstruction for Magnetic Resonance Elastography in Silico. FRONTIERS IN PHYSICS 2021; 8:617582. [PMID: 36340954 PMCID: PMC9635531 DOI: 10.3389/fphy.2020.617582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Magnetic Resonance Elastography allows noninvasive visualization of tissue mechanical properties by measuring the displacements resulting from applied stresses, and fitting a mechanical model. Poroelasticity naturally lends itself to describing tissue - a biphasic medium, consisting of both solid and fluid components. This article reviews the theory of poroelasticity, and shows that the spatial distribution of hydraulic permeability, the ease with which the solid matrix permits the flow of fluid under a pressure gradient, can be faithfully reconstructed without spatial priors in simulated environments. The paper describes an in-house MRE computational platform - a multi-mesh, finite element poroelastic solver coupled to an artificial epistemic agent capable of running Bayesian inference to reconstruct inhomogenous model mechanical property images from measured displacement fields. Building on prior work, the domain of convergence for inference is explored, showing that hydraulic permeabilities over several orders of magnitude can be reconstructed given very little prior knowledge of the true spatial distribution.
Collapse
Affiliation(s)
- Damian R. Sowinski
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | | | | | - Scott Gordon-Wylie
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - John B Weaver
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth-Hitchcock Medical Center, Department of Radiology, Lebanon, NH, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth-Hitchcock Medical Center, Center for Surgical Innovation, Lebanon, NH, United States
| |
Collapse
|
34
|
Farrow M, Biglands J, Alfuraih AM, Wakefield RJ, Tan AL. Novel Muscle Imaging in Inflammatory Rheumatic Diseases-A Focus on Ultrasound Shear Wave Elastography and Quantitative MRI. Front Med (Lausanne) 2020; 7:434. [PMID: 32903395 PMCID: PMC7434835 DOI: 10.3389/fmed.2020.00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, imaging has played an increasing role in the clinical management of patients with rheumatic diseases with respect to aiding diagnosis, guiding therapy and monitoring disease progression. These roles have been underpinned by research which has enhanced our understanding of disease pathogenesis and pathophysiology of rheumatology conditions, in addition to their key role in outcome measurement in clinical trials. However, compared to joints, imaging research of muscles is less established, despite the fact that muscle symptoms are very common and debilitating in many rheumatic diseases. Recently, it has been shown that even though patients with rheumatoid arthritis may achieve clinical remission, defined by asymptomatic joints, many remain affected by lingering constitutional systemic symptoms like fatigue, tiredness, weakness and myalgia, which may be attributed to changes in the muscles. Recent improvements in imaging technology, coupled with an increasing clinical interest, has started to ignite new interest in the area. This perspective discusses the rationale for using imaging, particularly ultrasound and MRI, for investigating muscle pathology involved in common inflammatory rheumatic diseases. The muscles associated with rheumatic diseases can be affected in many ways, including myositis-an inflammatory muscle condition, and myopathy secondary to medications, such as glucocorticoids. In addition to non-invasive visual assessment of muscles in these conditions, novel imaging techniques like shear wave elastography and quantitative MRI can provide further useful information regarding the physiological and biomechanical status of the muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom
| | - John Biglands
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abdulrahman M Alfuraih
- Radiology and Medical Imaging Department, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Richard J Wakefield
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
35
|
Dankel SJ, Razzano BM. The impact of acute and chronic resistance exercise on muscle stiffness: a systematic review and meta-analysis. J Ultrasound 2020; 23:473-480. [PMID: 32533552 DOI: 10.1007/s40477-020-00486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Ultrasound is commonly used to measure changes in skeletal muscle morphology in response to both acute and chronic resistance exercise, but little is known on how muscle stiffness changes via ultrasound elastography, which was the purpose of this systematic review and meta-analysis. METHODS The online data bases of Pubmed, Scopus, and Web of Science were each searched up until February 2020 and the data were analyzed using a random effects model. RESULTS A total of eight studies (four acute and four chronic) met the inclusion criteria for the quantitative analysis. Following a single bout of exercise, muscle stiffness was increased within the first hour [ES: 1.52 (95% CI 0.14, 2.91); p = 0.031], but was no longer elevated when measured 2 days post-exercise [ES: 0.76 (95% CI - 0.32, 1.83); p = 0.16] or ≥ 7 days post-exercise [ES: 0.20 (95% CI - 0.53, 0.94); p = 0.58]. There was no impact of long-term resistance training on changes in muscle stiffness [ES: - 0.04 (95% CI - 0.24, 0.15); p = 0.653]. CONCLUSION The primary findings from this meta-analysis indicate that muscle stiffness increases acutely following a single bout of resistance exercise, but does not change long-term with chronic resistance training when measured via ultrasound shear elastography. Given the small number of studies included in this review, future studies may wish to examine changes in muscle stiffness in response to both acute and chronic resistance exercise.
Collapse
Affiliation(s)
- Scott Justin Dankel
- Department of Health and Exercise Science, Rowan University, Glassboro, New Jersey, United States.
| | - Brenna M Razzano
- Department of Health and Exercise Science, Rowan University, Glassboro, New Jersey, United States
| |
Collapse
|