1
|
Rodrigues RPS, Sousa SS, López-Caneda E, Almeida-Antunes N, González‑Villar AJ, Sampaio A, Crego A. Associative memory in alcohol-related contexts: An fMRI study with young binge drinkers. J Psychopharmacol 2024; 38:972-985. [PMID: 39373255 PMCID: PMC11528936 DOI: 10.1177/02698811241282624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND Alcohol-related cues are known to influence craving levels, a hallmark of alcohol misuse. Binge drinking (BD), a pattern of heavy alcohol use, has been associated with cognitive and neurofunctional alterations, including alcohol attentional bias, memory impairments, as well as disrupted activity in prefrontal- and reward-related regions. However, literature is yet to explore how memories associated with alcohol-related cues are processed by BDs, and how the recall of this information may influence their reward processing. AIMS The present functional magnetic resonance imaging (fMRI) study aimed to investigate the neurofunctional signatures of BD during an associative memory task. METHOD In all, 36 university students, 20 BDs and 16 alcohol abstainers, were asked to memorize neutral objects paired with either alcohol or non-alcohol-related contexts. Subsequently, neutral stimuli were presented, and participants were asked to classify them as being previously paired with alcohol- or non-alcohol-related contexts. RESULTS While behavioral performance was similar in both groups, during the recall of alcohol-related cues, BDs showed increased brain activation in two clusters including the thalamus, globus pallidus and dorsal striatum, and cerebellum and occipital fusiform gyrus, respectively. CONCLUSION These findings suggest that BDs display augmented brain activity in areas responsible for mental imagery and reward processing when trying to recall alcohol-related cues, which might ultimately contribute to alcohol craving, even without being directly exposed to an alcohol-related context. These results highlight the importance of considering how alcohol-related contexts may influence alcohol-seeking behavior and, consequently, the maintenance or increase in alcohol use.
Collapse
|
2
|
Li R, Reiter JL, Chen AB, Chen SX, Foroud T, Edenberg HJ, Lai D, Liu Y. RNA alternative splicing impacts the risk for alcohol use disorder. Mol Psychiatry 2023; 28:2922-2933. [PMID: 37217680 PMCID: PMC10615768 DOI: 10.1038/s41380-023-02111-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Alcohol use disorder (AUD) is a complex genetic disorder characterized by problems arising from excessive alcohol consumption. Identifying functional genetic variations that contribute to risk for AUD is a major goal. Alternative splicing of RNA mediates the flow of genetic information from DNA to gene expression and expands proteome diversity. We asked whether alternative splicing could be a risk factor for AUD. Herein, we used a Mendelian randomization (MR)-based approach to identify skipped exons (the predominant splicing event in brain) that contribute to AUD risk. Genotypes and RNA-seq data from the CommonMind Consortium were used as the training dataset to develop predictive models linking individual genotypes to exon skipping in the prefrontal cortex. We applied these models to data from the Collaborative Studies on Genetics of Alcoholism to examine the association between the imputed cis-regulated splicing outcome and the AUD-related traits. We identified 27 exon skipping events that were predicted to affect AUD risk; six of these were replicated in the Australian Twin-family Study of Alcohol Use Disorder. Their host genes are DRC1, ELOVL7, LINC00665, NSUN4, SRRM2 and TBC1D5. The genes downstream of these splicing events are enriched in neuroimmune pathways. The MR-inferred impacts of the ELOVL7 skipped exon on AUD risk was further supported in four additional large-scale genome-wide association studies. Additionally, this exon contributed to changes of gray matter volumes in multiple brain regions, including the visual cortex known to be involved in AUD. In conclusion, this study provides strong evidence that RNA alternative splicing impacts the susceptibility to AUD and adds new information on AUD-relevant genes and pathways. Our framework is also applicable to other types of splicing events and to other complex genetic disorders.
Collapse
Affiliation(s)
- Rudong Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill L Reiter
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andy B Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Steven X Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Morales AM, Gilbert S, Hart E, Jones SA, Boyd SJ, Mitchell SH, Nagel BJ. Alcohol-induced changes in mesostriatal resting-state functional connectivity are linked to sensation seeking in young adults. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:659-667. [PMID: 36799331 PMCID: PMC10149605 DOI: 10.1111/acer.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Studies in animals and humans suggest that greater levels of sensation seeking and alcohol use are related to individual differences in drug-induced dopamine release. However, it remains unclear whether drug-induced alterations in the functional synchrony between mesostriatal regions are related to sensation seeking and alcohol use. METHODS In this within-subject masked-design study, 21-year-old participants (n = 34) underwent functional magnetic resonance imaging to measure ventral tegmental area (VTA) resting-state functional connectivity to the striatum after receiving alcohol (target blood alcohol concentration 0.08 g/dL) or placebo. Participants also completed the UPPS-P Impulsive Behavior Scale to assess sensation seeking, the Young Adult Alcohol Consequences Questionnaire, and self-reported patterns of alcohol and drug use. RESULTS Voxel-wise analyses within the striatum demonstrated that during the alcohol condition (compared with placebo) young adults had less connectivity between the VTA and bilateral caudate (p < 0.05 corrected). However, young adults exhibiting smaller alcohol-induced decreases or increases in VTA-left caudate connectivity reported greater sensation seeking. CONCLUSION These findings provide novel information about how acute alcohol impacts resting-state connectivity, an effect that may be driven by the complex pre and postsynaptic effects of alcohol on various neurotransmitters including dopamine. Further, alcohol-induced differences in VTA connectivity represent a plausible mechanistic substrate underlying sensation seeking.
Collapse
Affiliation(s)
| | - Sydney Gilbert
- Departments of Psychiatry, Oregon Health & Science University
| | - Elijah Hart
- Departments of Psychiatry, Oregon Health & Science University
| | - Scott A. Jones
- Departments of Psychiatry, Oregon Health & Science University
| | - Stephen J. Boyd
- Departments of Anesthesiology and Perioperative Medicine, Oregon Health & Science University
| | - Suzanne H. Mitchell
- Departments of Psychiatry, Oregon Health & Science University
- Departments of Behavioral Neuroscience, Oregon Health & Science University
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Bonnie J. Nagel
- Departments of Psychiatry, Oregon Health & Science University
- Departments of Behavioral Neuroscience, Oregon Health & Science University
| |
Collapse
|
4
|
Adams AR, Li X, Byanyima JI, Vesslee SA, Nguyen TD, Wang Y, Moon B, Pond T, Kranzler HR, Witschey WR, Shi Z, Wiers CE. Peripheral and Central Iron Measures in Alcohol Use Disorder and Aging: A Quantitative Susceptibility Mapping Pilot Study. Int J Mol Sci 2023; 24:4461. [PMID: 36901892 PMCID: PMC10002495 DOI: 10.3390/ijms24054461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Chronic excessive alcohol use has neurotoxic effects, which may contribute to cognitive decline and the risk of early-onset dementia. Elevated peripheral iron levels have been reported in individuals with alcohol use disorder (AUD), but its association with brain iron loading has not been explored. We evaluated whether (1) serum and brain iron loading are higher in individuals with AUD than non-dependent healthy controls and (2) serum and brain iron loading increase with age. A fasting serum iron panel was obtained and a magnetic resonance imaging scan with quantitative susceptibility mapping (QSM) was used to quantify brain iron concentrations. Although serum ferritin levels were higher in the AUD group than in controls, whole-brain iron susceptibility did not differ between groups. Voxel-wise QSM analyses revealed higher susceptibility in a cluster in the left globus pallidus in individuals with AUD than controls. Whole-brain iron increased with age and voxel-wise QSM indicated higher susceptibility with age in various brain areas including the basal ganglia. This is the first study to analyze both serum and brain iron loading in individuals with AUD. Larger studies are needed to examine the effects of alcohol use on iron loading and its associations with alcohol use severity, structural and functional brain changes, and alcohol-induced cognitive impairments.
Collapse
Affiliation(s)
- Aiden R. Adams
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Xinyi Li
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Juliana I. Byanyima
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Sianneh A. Vesslee
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065, USA
| | - Brianna Moon
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, South Pavilion, Room 11-155, Philadelphia, PA 19104, USA
| | - Timothy Pond
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, South Pavilion, Room 11-155, Philadelphia, PA 19104, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, South Pavilion, Room 11-155, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Clay JM, Stafford LD, Parker MO. Associations Between Self-reported Inhibitory Control, Stress, and Alcohol (Mis)use During the First Wave of the COVID-19 Pandemic in the UK: a National Cross-sectional Study Utilising Data From Four Birth Cohorts. Int J Ment Health Addict 2023; 21:350-371. [PMID: 34366730 PMCID: PMC8330475 DOI: 10.1007/s11469-021-00599-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
We explored (1) self-reported changes in alcohol use during the pandemic in the UK and (2) the extent to which self-reported inhibitory control and/or stress were associated with any change in drinking behaviour. We used a UK-based cross-sectional online survey administered to four nationally representative birth cohorts (N = 13,453). A significant minority of 30- (29.08%) and 50-year-olds (26.67%) reported drinking more, and between 32.23 and 45.02% of respondents reported feeling more stressed depending on the cohort. Stress was associated with hazardous drinking among 30-year-olds (OR = 3.77, 95% CI 1.15 to 12.28). Impatience was associated with both increased alcohol use (1.14, 95% CI 1.06, 1.24) and hazardous drinking (1.20, 95% CI 1.05, 1.38) among 19-year-olds. Risk-taking was associated with hazardous drinking for 30-year-olds (OR = 1.18, 95% CI 1.05, 1.32). These data highlight concerns for those at risk of alcohol misuse and alcohol-related harm during COVID-19 lockdowns. Supplementary Information The online version contains supplementary material available at 10.1007/s11469-021-00599-8.
Collapse
Affiliation(s)
- James M. Clay
- Department of Psychology, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY UK
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT UK
| | - Lorenzo D. Stafford
- Department of Psychology, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY UK
| | - Matthew O. Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT UK
| |
Collapse
|
6
|
Vamvakopoulou IA, Fonville L, Hayes A, McGonigle J, Elliott R, Ersche KD, Flechais R, Orban C, Murphy A, Smith DG, Suckling J, Taylor EM, Deakin B, Robbins TW, Nutt DJ, Lingford-Hughes AR, Paterson LM. Selective D3 receptor antagonism modulates neural response during negative emotional processing in substance dependence. Front Psychiatry 2022; 13:998844. [PMID: 36339857 PMCID: PMC9627287 DOI: 10.3389/fpsyt.2022.998844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Negative affective states contribute to the chronic-relapsing nature of addiction. Mesolimbic dopamine D3 receptors are well placed to modulate emotion and are dysregulated in substance dependence. Selective antagonists might restore dopaminergic hypofunction, thus representing a potential treatment target. We investigated the effects of selective D3 antagonist, GSK598809, on the neural response to negative emotional processing in substance dependent individuals and healthy controls. Methodology Functional MRI BOLD response was assessed during an evocative image task, 2 h following acute administration of GSK598809 (60 mg) or placebo in a multi-site, double-blind, pseudo-randomised, cross-over design. Abstinent drug dependent individuals (DD, n = 36) comprising alcohol-only (AO, n = 19) and cocaine-alcohol polydrug (PD, n = 17) groups, and matched controls (n = 32) were presented with aversive and neutral images in a block design (contrast of interest: aversive > neutral). Whole-brain mixed-effects and a priori ROI analyses tested for group and drug effects, with identical models exploring subgroup effects. Results No group differences in task-related BOLD signal were identified between DD and controls. However, subgroup analysis revealed greater amygdala/insular BOLD signal in PD compared with AO groups. Following drug administration, GSK598809 increased BOLD response across HC and DD groups in thalamus, caudate, putamen, and pallidum, and reduced BOLD response in insular and opercular cortices relative to placebo. Multivariate analyses in a priori ROIs revealed differential effects of D3 antagonism according to subgroup in substantia nigra; GSK598809 increased BOLD response in AO and decreased response in PD groups. Conclusion Acute GSK598809 modulates the BOLD response to aversive image processing, providing evidence that D3 antagonism may impact emotional regulation. Enhanced BOLD response within D3-rich mesolimbic regions is consistent with its pharmacology and with attenuation of substance-related hypodopaminergic function. However, the lack of group differences in task-related BOLD response and the non-specific effect of GSK598809 between groups makes it difficult to ascertain whether D3 antagonism is likely to be normalising or restorative in our abstinent populations. The suggestion of differential D3 modulation between AO and PD subgroups is intriguing, raising the possibility of divergent treatment responses. Further study is needed to determine whether D3 antagonism should be recommended as a treatment target in substance dependence.
Collapse
Affiliation(s)
- Ioanna A. Vamvakopoulou
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Leon Fonville
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Alexandra Hayes
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - John McGonigle
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, United Kingdom
| | - Karen D. Ersche
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Remy Flechais
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Csaba Orban
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, United Kingdom
| | - Dana G. Smith
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - John Suckling
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor M. Taylor
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, United Kingdom
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - David J. Nutt
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Anne R. Lingford-Hughes
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Louise M. Paterson
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Zhou Y, Wang Q, Ren H, Wang X, Liao Y, Yang Z, Hao Y, Wang Y, Li M, Ma Y, Wu Q, Wang Y, Yang D, Xin J, Yang WFZ, Wang L, Liu T. Regional Homogeneity Abnormalities and Its Correlation With Impulsivity in Male Abstinent Methamphetamine Dependent Individuals. Front Mol Neurosci 2022; 14:810726. [PMID: 35126053 PMCID: PMC8811469 DOI: 10.3389/fnmol.2021.810726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Methamphetamine (MA) use affects the brain structure and function. However, no studies have investigated the relationship between changes in regional homogeneity (ReHo) and impulsivity in MA dependent individuals (MADs). The aim of this study was to investigate the changes of brain activity under resting state in MADs and their relationship to impulsivity using ReHo method. Functional magnetic resonance imaging (fMRI) was performed to collect data from 46 MADs and 44 healthy controls (HCs) under resting state. ReHo method was used to investigate the differences in average ReHo values between the two groups. The ReHo values abnormalities of the brain regions found in inter-group comparisons were extracted and correlated with impulsivity. Compared to the HCs, MADs showed significant increased ReHo values in the bilateral striatum, while the ReHo values of the bilateral precentral gyrus and the bilateral postcentral gyrus decreased significantly. The ReHo values of the left precentral gyrus were negatively correlated with the BIS-attention, BIS-motor, and BIS-nonplanning subscale scores, while the ReHo values of the postcentral gyrus were only negatively correlated with the BIS-motor subscale scores in MADs. The abnormal spontaneous brain activity in the resting state of MADs revealed in this study may further improve our understanding of the neuro-matrix of MADs impulse control dysfunction and may help us to explore the neuropathological mechanism of MADs related dysfunction and rehabilitation.
Collapse
Affiliation(s)
- Yanan Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People’s Hospital), Changsha, China
| | - Qianjin Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Honghong Ren
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xuyi Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Yang
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhu Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yunfei Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Manyun Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yuejiao Ma
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Qiuxia Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yingying Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Dong Yang
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People’s Hospital), Changsha, China
| | - Jiang Xin
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts & Sciences, Texas Tech University, Lubbock, TX, United States
- *Correspondence: Winson Fu Zun Yang,
| | - Long Wang
- Department of Psychiatry, Sanming City Taijiang Hospital, Sanming, China
- Long Wang,
| | - Tieqiao Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Tieqiao Liu,
| |
Collapse
|
8
|
Flores-Bonilla A, De Oliveira B, Silva-Gotay A, Lucier KW, Richardson HN. Shortening time for access to alcohol drives up front-loading behavior, bringing consumption in male rats to the level of females. Biol Sex Differ 2021; 12:51. [PMID: 34526108 PMCID: PMC8444481 DOI: 10.1186/s13293-021-00395-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background Incentives to promote drinking (“happy hour”) can encourage faster rates of alcohol consumption, especially in women. Sex differences in drinking dynamics may underlie differential health vulnerabilities relating to alcohol in women versus men. Herein, we used operant procedures to model the happy hour effect and gain insight into the alcohol drinking dynamics of male and female rats. Methods Adult male and female Wistar rats underwent operant training to promote voluntary drinking of 10% (w/v) alcohol (8 rats/sex). We tested how drinking patterns changed after manipulating the effort required for alcohol (fixed ratio, FR), as well as the length of time in which rats had access to alcohol (self-administration session length). Rats were tested twice within the 12 h of the dark cycle, first at 2 h (early phase of the dark cycle, “early sessions”) and then again at 10 h into the dark cycle (late phase of the dark cycle, “late sessions”) with an 8-h break between the two sessions in the home cage. Results Adult females consumed significantly more alcohol (g/kg) than males in the 30-min sessions with the FR1 schedule of reinforcement when tested late in the dark cycle. Front-loading of alcohol was the primary factor driving higher consumption in females. Changing the schedule of reinforcement from FR1 to FR3 reduced total consumption. Notably, this manipulation had minimal effect on front-loading behavior in females, whereas front-loading behavior was significantly reduced in males when more effort was required to access alcohol. Compressing drinking access to 15 min to model a happy hour drove up front-loading behavior, generating alcohol drinking patterns in males that were similar to patterns in females (faster drinking and higher intake). Conclusions This strategy could be useful for exploring sex differences in the neural mechanisms underlying alcohol drinking and related health vulnerabilities. Our findings also highlight the importance of the time of testing for detecting sex differences in drinking behavior. Voluntary alcohol drinking is higher in adult female rats compared to adult male rats. This sex difference is most pronounced in the later phase of the dark cycle, and when the operant effort is minimal (when 1 lever press gives 1 reward: fixed ratio 1, FR1). Higher alcohol intake in females is primarily due to “front-loading”, or the rapid consumption of alcohol within the first 5 min of access. Increasing the effort required to obtain alcohol from FR1 to FR3 dampens front-loading drinking behavior, resulting in similar levels of total intake in males and females. Compressing the time of access to 15 min drives up front-loading to such a degree that rats end up consuming more alcohol in total than they do in 30-min sessions. In males, this increase in drinking is large enough that it eliminates the sex difference in total alcohol intake.
Collapse
Affiliation(s)
- Annabelle Flores-Bonilla
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Barbara De Oliveira
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Andrea Silva-Gotay
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kyle W Lucier
- Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Heather N Richardson
- Neuroscience and Behavior Program, The University of Massachusetts Amherst, Amherst, MA, 01003, USA. .,Department of Psychological and Brain Sciences, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Bouna-Pyrrou P, Muehle C, Kornhuber J, Weinland C, Lenz B. Body mass index and serum levels of soluble leptin receptor are sex-specifically related to alcohol binge drinking behavior. Psychoneuroendocrinology 2021; 127:105179. [PMID: 33780690 DOI: 10.1016/j.psyneuen.2021.105179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Binge drinking is a highly prevalent behavior in adolescents and young adults and a risk factor to develop alcohol use disorder. Body mass index (BMI) and blood levels of leptin peptide and its soluble receptor have been implicated in alcohol use disorder; however, their role in binge drinking remains to be investigated. METHOD We studied associations of BMI, serum levels of soluble leptin receptor (ObRe) and leptin as well as the free leptin index with binge drinking in 93 male and 99 female young adults. RESULTS In men, binge drinkers showed significantly higher BMI (kg/m2) than non-binge drinkers (23.67 vs. 22.08) and higher BMI correlated significantly with more severe binge drinking episodes (ρ = 0.251). In women, we found significantly higher ObRe (ng/ml) / BMI (kg/m2) values in binge drinkers than in non-binge drinkers (0.52 vs. 0.44) and ObRe/BMI values correlated significantly with more severe binge drinking episodes (ρ = 0.210). CONCLUSION This study confirms that higher BMI associates with binge drinking in men and shows for the first time a role of ObRe/BMI in binge drinking in women. Our data emphasize the importance of further research in the field of metabolic markers and implications in neurobiological processes of binge drinking.
Collapse
Affiliation(s)
- Polyxeni Bouna-Pyrrou
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany.
| | - Christiane Muehle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Christian Weinland
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany; Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
10
|
Han J, Keedy S, Murray CH, Foxley S, de Wit H. Acute effects of alcohol on resting-state functional connectivity in healthy young men. Addict Behav 2021; 115:106786. [PMID: 33421747 DOI: 10.1016/j.addbeh.2020.106786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/10/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
Alcohol abuse and dependence remain significant public health issues, and yet the brain circuits that are involved in the rewarding effects of alcohol are poorly understood. One promising way to study the effects of alcohol on neural activity is to examine its effects on functional connectivity between brain areas involved in reward and other functions. Here, we compared the effects of two doses of alcohol (0.4 and 0.8 g/kg) to placebo on resting-state functional connectivity in brain circuits related to reward in 19 healthy young men without histories of alcohol problems. The higher, but not the lower, dose of alcohol, significantly increased connectivity from reward-related regions to sensory and motor cortex, and between seeds associated with cognitive control. Contrary to expectation, alcohol did not significantly change connectivity for the ventral striatum at either dose. These findings reveal unrecognized effects of alcohol on connectivity from reward-related regions to visual and sensory cortical areas.
Collapse
|
11
|
Abstract
The survival of an organism depends on the ability to make adaptive decisions to achieve the needs of the organism: where to get food, who to mate with, and how to evade predators. Decision-making is a term used to describe a collection of behavioral and/or computational functions that guide the selection of an option amongst a set of alternatives. Some of these functions may include calculating the costs and benefits of a particular action, evaluating differences in value of each of the alternative outcomes and the likelihood of receiving a particular outcome, using past experiences to generate predictions or expectations about action-outcome associations, and/or integration of past experiences to make novel inferences that can be used in new environments. There is considerable interest in understanding the neurobiological mechanisms that mediate these decision-making functions and recent advances in behavioral approaches, neuroscience techniques, and neuroimaging measures have begun to develop mechanistic links between biology, reward, and decision making. This multidisciplinary work holds great promise for elucidating the biological mechanisms mediating decision-making deficits in normal and abnormal states. The multidisciplinary studies included in this Collection provide new insights into the neuroscience of decision making and reward.
Collapse
|
12
|
Smith LC, Kimbrough A. Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sci 2020; 10:E578. [PMID: 32825739 PMCID: PMC7565429 DOI: 10.3390/brainsci10090578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques. Network-based approaches can be applied to imaging data to create neural networks that model the functional and structural connectivity of the brain. These networks can be used to changes to brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can be further used to identify key brain regions or neural "hubs" involved in alcohol drinking. Here, we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss clinical and preclinical studies using network-based approaches related to substance use disorders and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network approaches can be applied alone and in combination with other approaches to better understand alcohol drinking.
Collapse
Affiliation(s)
- Lauren C. Smith
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
| | - Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|