1
|
L'Orphelin J, Dompmartin A, Dréno B. The Skin Microbiome: A New Key Player in Melanoma, From Onset to Metastatic Stage. Pigment Cell Melanoma Res 2025; 38:e13224. [PMID: 40016867 PMCID: PMC11868406 DOI: 10.1111/pcmr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
The skin microbiome plays a crucial role in maintaining skin health, defending the body against harmful pathogens, and interacting with melanoma. The composition of the skin microbiome can be affected by factors like age, gender, ethnicity, lifestyle, diet, and UV exposure. Certain bacteria like Staphylococcus and Veillonella are important for wound healing, while Cutibacterium acnes can play a role in dermatoses. UV radiation alters the skin microbiome, originates a "UV-resistome" and can lead to skin cancer initiation. Specifically, Staphylococcus epidermidis has shown protective effects against skin cancer, whereas Cutibacterium acnes can induce apoptosis in melanocytes postirradiation. The microbiome also interacts with melanoma treatment, affecting responses to immune checkpoint inhibitors. Strategies like bacteriotherapy, involving the manipulation of the gut microbiome but also the skin microbiome (with the gut-skin axis or through topical treatment) could improve treatment outcomes and show promise in melanoma therapy. Understanding the complex interplay between the skin microbiome, UV exposure, and melanoma development is crucial for developing personalized therapeutic approaches. Investigation into the skin microbiome and its potential role in melanoma progression continues to be an exciting area of research with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Jean‐Matthieu L'Orphelin
- Unicaen, Inserm U1086 AnticipeNormandie UnivCaenFrance
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Anne Dompmartin
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Brigitte Dréno
- Inserm, Cnrs, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001Nantes UniversitéNantesFrance
| |
Collapse
|
2
|
Millman JF, Kondrashina A, Walsh C, Busca K, Karawugodage A, Park J, Sirisena S, Martin FP, Felice VD, Lane JA. Biotics as novel therapeutics in targeting signs of skin ageing via the gut-skin axis. Ageing Res Rev 2024; 102:102518. [PMID: 39389239 DOI: 10.1016/j.arr.2024.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Skin ageing is a phenomenon resulting from the aggregative changes to skin structure and function and is clinically manifested by physical features such as wrinkles, hyperpigmentation, elastosis, telangiectasia, and deterioration of skin barrier integrity. One of the main drivers of skin ageing, UV radiation, negatively influences the homeostasis of cells and tissues comprising the skin by triggering production of immune-mediated reactive oxygen species (ROS) and pro-inflammatory cytokines, as well as a various hormones and neuropeptides. Interestingly, an established link between the gut and the skin coined the 'gut-skin axis' has been demonstrated, with dysbiosis and gut barrier dysfunction frequently observed in certain inflammatory skin conditions and more recently, implicated in skin ageing. Therapeutic use of 'biotics' including prebiotics, probiotics, postbiotics, and synbiotics, which modulate the gut microbiota and production of microbially associated metabolites, influence the activity of the gut mucosal and immune systems and are showing promise as key candidates in addressing signs of skin ageing. In this review we aim to focus on the structure and function of the gut-skin axis and showcase the recent in-vitro and clinical evidence demonstrating the beneficial effects of select biotics in targeting signs of skin ageing and discuss the proposed mechanisms mediated via the gut-skin axis underpinning these effects.
Collapse
Affiliation(s)
- Jasmine F Millman
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia.
| | - Alina Kondrashina
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Clodagh Walsh
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Kizkitza Busca
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Aneesha Karawugodage
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Julia Park
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Sameera Sirisena
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Francois-Pierre Martin
- Health and Happiness (H&H) Group, H&H Research, Avenue Sécheron 15 Bat F2/F3, Geneva 1202, Switzerland
| | - Valeria D Felice
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Jonathan A Lane
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland.
| |
Collapse
|
3
|
Moraes BDGC, Martins RCR, Fonseca JVDS, Franco LAM, Pereira GCO, Bartelli TF, Cortes MF, Scaccia N, Santos CF, Musqueira PT, Otuyama LJ, Pylro VS, Mariano L, Rocha V, Witkin SS, Sabino E, Guimaraes T, Costa SF. Impact of Exogenous Lactiplantibacillus plantarum on the Gut Microbiome of Hematopoietic Stem Cell Transplantation Patients Colonized by Multidrug-Resistant Bacteria: An Observational Study. Antibiotics (Basel) 2024; 13:1010. [PMID: 39596705 PMCID: PMC11591100 DOI: 10.3390/antibiotics13111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Background:Lactiplantibacillus plantarum can inhibit the growth of multidrug-resistant organisms (MDROs) and modulate the gut microbiome. However, data on hematopoietic stem cell transplantation (HSCT) are scarce. Aim: In an observational study, we assessed the impact of L. plantarum on the modulation of the gut microbiome in HSCT patients colonized by MDROs. Methods: Participants were allocated to an intervention group (IG = 22) who received capsules of L. plantarum (5 × 109 CFU) twice per day until the onset of neutropenia or a control group (CG = 20). The V4 region of the 16S bacterial rRNA gene was sequenced in 87 stool samples from a subset of 33 patients (IG = 20 and CG = 13). The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) program was used to predict metagenome functions. Results:L. plantarum demonstrated an average 86% (±11%) drug-target engagement at 43 (±29) days of consumption and was deemed safe, well-tolerated, and associated with an increase in the abundance of the Lactobacillales (p < 0.05). A significant increase in Lactococcus and a reduction in Turicibacter (p < 0.05) were identified on the second week of L. plantarum use. Although Enterococcus abundance had a greater rise in the CG (p = 0.07), there were no significant differences concerning the Gram-negative MDROs. No serious adverse effects were reported in the IG. We observed a greater, non-significant pyruvate fermentation to propanoate I (p = 0.193) relative abundance in the IG compared with the CG. L. plantarum use was safe and tolerable by HSCT patients. Conclusions: While L. plantarum is safe and may impact Enterococcus and Turicibacter abundance, it showed no impact on Gram-negative MDRO abundance in HSCT patients.
Collapse
Affiliation(s)
- Bruna D. G. C. Moraes
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
- Department of Hematology, Hemotherapy and Cell Therapy Service, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (C.F.S.); (P.T.M.); (L.J.O.); (L.M.); (V.R.)
| | - Roberta C. R. Martins
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| | - Joyce Vanessa da Silva Fonseca
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| | - Lucas A. M. Franco
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| | - Gaspar C. O. Pereira
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| | - Thais F. Bartelli
- Centro Internacional de Pesquisa, CIPE, A.C.Camargo Cancer Center, Rua Taguá 440, São Paulo 01508-010, SP, Brazil;
| | - Marina F. Cortes
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| | - Nazareno Scaccia
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| | - Carolina F. Santos
- Department of Hematology, Hemotherapy and Cell Therapy Service, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (C.F.S.); (P.T.M.); (L.J.O.); (L.M.); (V.R.)
| | - Priscila T. Musqueira
- Department of Hematology, Hemotherapy and Cell Therapy Service, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (C.F.S.); (P.T.M.); (L.J.O.); (L.M.); (V.R.)
| | - Leonardo J. Otuyama
- Department of Hematology, Hemotherapy and Cell Therapy Service, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (C.F.S.); (P.T.M.); (L.J.O.); (L.M.); (V.R.)
| | - Victor S. Pylro
- Department of Biology, Federal University of Lavras, Lavras 37200-000, MG, Brazil;
- Microbial Ecology and Bioinformatics, Biology Department, Federal University of Lavras—UFLA, Lavras 37200-900, MG, Brazil
| | - Livia Mariano
- Department of Hematology, Hemotherapy and Cell Therapy Service, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (C.F.S.); (P.T.M.); (L.J.O.); (L.M.); (V.R.)
| | - Vanderson Rocha
- Department of Hematology, Hemotherapy and Cell Therapy Service, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; (C.F.S.); (P.T.M.); (L.J.O.); (L.M.); (V.R.)
| | - Steven S. Witkin
- Division of Immunology and Infectious Diseases, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA;
| | - Ester Sabino
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| | - Thais Guimaraes
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Silvia Figueiredo Costa
- LIM-46 and LIM49, Department of Infectious Diseases, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470 Jardim America, São Paulo 05403-000, SP, Brazil; (B.D.G.C.M.); (R.C.R.M.); (J.V.d.S.F.); (L.A.M.F.); (G.C.O.P.); (M.F.C.); (N.S.); (E.S.)
| |
Collapse
|
4
|
Sánchez-Pellicer P, Eguren-Michelena C, García-Gavín J, Llamas-Velasco M, Navarro-Moratalla L, Núñez-Delegido E, Agüera-Santos J, Navarro-López V. Rosacea, microbiome and probiotics: the gut-skin axis. Front Microbiol 2024; 14:1323644. [PMID: 38260914 PMCID: PMC10800857 DOI: 10.3389/fmicb.2023.1323644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Rosacea is an inflammatory skin disease involving diverse symptoms with a variable clinical progress which can severely impact the patient's quality of life as well as their mental health. The pathophysiological model of rosacea involves an unbalanced immune system predisposed to excessive inflammation, in addition to vascular and nervous alterations, being certain cutaneous microorganisms' triggers of the symptoms onset. The gut-skin axis explains a bidirectional interaction between skin and gut microbiota in some inflammatory skin diseases such as atopic dermatitis, psoriasis, or rosacea. The introduction and consolidation of the next-generation sequencing in recent years has provided unprecedented information about the microbiome. However, the characterization of the gut and skin microbiota and the impact of the gut-skin axis in patients with rosacea has been little explored, in contrast to other inflammatory skin diseases such as atopic dermatitis or psoriasis. Furthermore, the clinical evolution of patients with rosacea is not always adequate and it is common for them to present a sustained symptomatology with frequent flare-ups. In this context, probiotic supplementation could improve the clinical evolution of these patients as happens in other pathologies. Through this review we aim to establish and compile the basics and directions of current knowledge to understand the mechanisms by which the microbiome influences the pathogenesis of rosacea, and how modulation of the skin and gut microbiota could benefit these patients.
Collapse
Affiliation(s)
- Pedro Sánchez-Pellicer
- MiBioPath Research Group, Faculty of Medicine, Catholic University of Murcia (UCAM), Guadalupe, Spain
| | | | | | - Mar Llamas-Velasco
- Department of Dermatology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Laura Navarro-Moratalla
- MiBioPath Research Group, Faculty of Medicine, Catholic University of Murcia (UCAM), Guadalupe, Spain
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Faculty of Medicine, Catholic University of Murcia (UCAM), Guadalupe, Spain
| | - Juan Agüera-Santos
- MiBioPath Research Group, Faculty of Medicine, Catholic University of Murcia (UCAM), Guadalupe, Spain
| | - Vicente Navarro-López
- MiBioPath Research Group, Faculty of Medicine, Catholic University of Murcia (UCAM), Guadalupe, Spain
- Infectious Diseases Unit, Department of Internal Medicine, University Hospital of Vinalopó-Fisabio, Elche, Spain
| |
Collapse
|
5
|
Rios-Carlos M, Cervantes-García D, Córdova-Dávalos LE, Bermúdez-Humarán LG, Salinas E. Unraveling the gut-skin axis in atopic dermatitis: exploiting insights for therapeutic strategies. Gut Microbes 2024; 16:2430420. [PMID: 39601281 DOI: 10.1080/19490976.2024.2430420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Gut microbiota exert functions of high importance in the intestine. Furthermore, there is increasing evidence for its role in immune regulation and maintenance of homeostasis in many physiological processes taking place in distant tissues. In particular, in this review, we explore the impact of metabolites produced by the gut microbiota on the development of atopic dermatitis (AD). Probiotics and prebiotics balance the microbiota and promote the generation of bacterial metabolites, such as short-chain fatty acids and tryptophan derivates, which promote the regulation of the exacerbated AD immune response through regulatory T cells and IL-10 and TGF-β cytokines. Metabolites also have a direct action on keratinocytes once they reach the bloodstream. Besides, probiotics decrease the levels of metabolites associated with AD onset, such as phenols. Understanding all these crosstalk processes between the gut and the skin reveals a number of possibilities, mainly through the manipulation of the gut microbiome, which may represent therapeutic strategies that can contribute to the standard treatments of AD patients to improve their quality of life.
Collapse
Affiliation(s)
- Marcela Rios-Carlos
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
- Consejo Nacional de Humanidades Ciencias y Tecnologías, Ciudad de México, México
| | - Laura E Córdova-Dávalos
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
| | | | - Eva Salinas
- Department of Microbiology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Mexico
| |
Collapse
|
6
|
Kang X, Li XD, Zhou HY, Wang F, Lin LB. Genome-Wide and 16S rRNA Sequencing-Based Analysis on the Health Effects of Lacticaseibacillus paracasei XLK401 on Chicks. Microorganisms 2023; 11:2140. [PMID: 37763985 PMCID: PMC10538037 DOI: 10.3390/microorganisms11092140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Lacticaseibacillus paracasei, serves as a growth promoter used in the poultry industry, contributeing to broiler development. However, practical studies are needed to determine the probiotic potential and growth-promoting effects of specific L. paracasei strains. This study aims to determine whether L. paracasei XLK401 influences broiler chicken growth and the mechanisms involved. Notably, we identified several bile salt and acid tolerance-related genes (Asp23, atpD, atpA, atpH, and atpF) in L. paracasei XLK401. This bacterium demonstrates robust probiotic properties under acidic conditions (pH 2.0) and 0.3% bile salt conditions. It also contains a variety of antioxidant-related genes (trxA, trxB, and tpx), carbohydrate-related genes, gene-encoding glycosidases (e.g., GH and GT), and three clusters of genes associated with antimicrobial compounds. Supplementation with L. paracasei XLK401 significantly increased the body weight of the chicks. In addition, it significantly increased hepatic antioxidant enzyme activities (GSH-Px, SOD, and T-AOC) while significantly decreasing the levels of oxidative damage factors and inflammatory factors (MDA and IL-6), resulting in improved chick health. Improvements in body weight and health status were associated with significant increases in α-amylase activity and the remodeling of the host gut microbiota by L. paracasei XLK401. Among them, actinobacteria abundance in chicken intestines after feeding them L. paracasei XLK401 was significantly decreased, Bifidobacterium sp. abundance was also significantly decreased, and Subdoligranulum sp. abundance was significantly increased. This suggests that L. paracasei XLK401 can regulate the abundance of certain bacteria without changing the overall microbial structure. In addition, in the correlation analysis, Subdoligranulums sp. were positively correlated with SOD and negatively correlated with IL-1β and MDA. Overall, our study demonstrates that L. paracasei XLK401 effectively promotes healthy chick growth. This is made possible by the modulation of gut microbe abundance and the underlying probiotic effect of L. paracasei XLK401. Based on these findings, we postulate L. paracasei XLK401 as a potential efficient growth promoter in broiler farming.
Collapse
Affiliation(s)
- Xin Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.K.); (X.-D.L.); (H.-Y.Z.)
- Engineering Research Center for Replacement Technology, Feed Antibiotics of Yunnan College, Kunming 650500, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.K.); (X.-D.L.); (H.-Y.Z.)
- Engineering Research Center for Replacement Technology, Feed Antibiotics of Yunnan College, Kunming 650500, China
| | - Huan-Yu Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.K.); (X.-D.L.); (H.-Y.Z.)
- Engineering Research Center for Replacement Technology, Feed Antibiotics of Yunnan College, Kunming 650500, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.K.); (X.-D.L.); (H.-Y.Z.)
- Engineering Research Center for Replacement Technology, Feed Antibiotics of Yunnan College, Kunming 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.K.); (X.-D.L.); (H.-Y.Z.)
- Engineering Research Center for Replacement Technology, Feed Antibiotics of Yunnan College, Kunming 650500, China
| |
Collapse
|
7
|
Updates on the Role of Probiotics against Different Health Issues: Focus on Lactobacillus. Int J Mol Sci 2022; 24:ijms24010142. [PMID: 36613586 PMCID: PMC9820606 DOI: 10.3390/ijms24010142] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This review article is built on the beneficial effects of Lactobacillus against different diseases, and a special focus has been made on its effects against neurological disorders, such as depression, multiple sclerosis, Alzheimer's, and Parkinson's disease. Probiotics are live microbes, which are found in fermented foods, beverages, and cultured milk and, when administered in an adequate dose, confer health benefits to the host. They are known as "health-friendly bacteria", normally residing in the human gut and involved in maintaining homeostatic conditions. Imbalance in gut microbiota results in the pathophysiology of several diseases entailing the GIT tract, skin, immune system, inflammation, and gut-brain axis. Recently, the use of probiotics has gained tremendous interest, because of their profound effects on the management of these disease conditions. Recent findings suggest that probiotics enrichment in different human and mouse disease models showed promising beneficial effects and results in the amelioration of disease symptoms. Thus, this review focuses on the current probiotics-based products, different disease models, variable markers measured during trials, and evidence obtained from past studies on the use of probiotics in the prevention and treatment of different diseases, covering the skin to the central nervous system diseases.
Collapse
|
8
|
Lee H, Kim H, Kim JH, Park SD, Shim JJ, Lee JL. Lactobacillus paracasei HY7015 and Lycopus lucidus Turcz. Extract Promotes Human Dermal Papilla Cell Cytoprotective Effect and Hair Regrowth Rate in C57BL/6 Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238235. [PMID: 36500327 PMCID: PMC9738319 DOI: 10.3390/molecules27238235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Hair loss is a disease that requires accurate diagnosis and type-specific medical treatment. Many hair loss treatments have some side effects, such as hormone-related effects, so there is a need for safe and effective hair loss treatment. In this study, we investigated the effects of Lactobacillus paracasei HY7015 (HY7015) and Lycopus lucidus Turcz. (LT) extract on hair regrowth and protection. In vitro experiments were conducted to assess the effects of HY7015 and/or LT extract on human follicle dermal papilla cells (HFDPC) of cytoprotective functions such as proliferations, antioxidants, anti-inflammatory, and growth factor expressions. In animal experiments, we investigated hair regrowth rate, hair follicle formation and secretion of growth factors in telogenic C57BL/6 mice. We confirmed the cytoprotective effects of HY7015 and LT through regulations of proliferation, SOD and IL-1β in HFDPC. In mouse experiments, oral administration of HY7015 and LT promoted hair regrowth as well as hair follicle maturation in the dermal skin of C57BL/6 mice, and upregulated VEGF and IGF-1 growth factor levels in mouse serum. In summary, our data demonstrate that ingestions of HY7015 and LT can promote hair regrowth by enhancing cytoprotective effects and expressions of growth factors.
Collapse
|
9
|
Skin microbiota analysis in patients with anorexia nervosa and healthy-weight controls reveals microbial indicators of healthy weight and associations with the antimicrobial peptide psoriasin. Sci Rep 2022; 12:15515. [PMID: 36109548 PMCID: PMC9477808 DOI: 10.1038/s41598-022-19676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 12/29/2022] Open
Abstract
Anorexia nervosa (AN), a psychiatric condition defined by low body weight for age and height, is associated with numerous dermatological conditions. Yet, clinical observations report that patients with AN do not suffer from infectious skin diseases like those associated with primary malnutrition. Cell-mediated immunity appears to be amplified in AN; however, this proinflammatory state does not sufficiently explain the lower incidence of infections. Antimicrobial peptides (AMPs) are important components of the innate immune system protecting from pathogens and shaping the microbiota. In Drosophila melanogaster starvation precedes increased AMP gene expression. Here, we analyzed skin microbiota in patients with AN and age-matched, healthy-weight controls and investigated the influence of weight gain on microbial community structure. We then correlated features of the skin microbial community with psoriasin and RNase 7, two highly abundant AMPs in human skin, to clarify whether an association between AMPs and skin microbiota exists and whether such a relationship might contribute to the resistance to cutaneous infections observed in AN. We find significant statistical correlations between Shannon diversity and the highly abundant skin AMP psoriasin and bacterial load, respectively. Moreover, we reveal psoriasin significantly associates with Abiotrophia, an indicator for the healthy-weight control group. Additionally, we observe a significant correlation between an individual's body mass index and Lactobacillus, a microbial indicator of health. Future investigation may help clarify physiological mechanisms that link nutritional intake with skin physiology.
Collapse
|
10
|
Potential anti-ageing effects of probiotic-derived conditioned media on human skin cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:359-374. [PMID: 36651546 DOI: 10.2478/acph-2022-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 01/26/2023]
Abstract
In this study, the protective functions of bacteria-free conditioned media from Bifidobacterium and Lactobacillus species against ultraviolet radiation-induced skin ageing and associated cellular damage were investigated. The effects of ultraviolet radiation-induced reactive oxygen species production were suppressed by all conditioned media; particularly, the loss of cell viability and downregulation of collagen gene expression were significantly reversed by the conditioned media from B. longum and B. lactis. Further exa mination of potential anti-pigmentation effects revealed that the B. lactis-derived conditioned media significantly inhibited tyrosinase activity and alpha-melanocyte-stimulating hormone-induced melanin production in human epidermal melanocytes. Further, the conditioned media suppressed the phosphorylation of extracellular signal- related kinase, which functions as an upstream regulator of melanogenesis. Therefore, B. lactis-derived conditioned media can potentially protect against cellular damage involved in skin-ageing processes.
Collapse
|
11
|
Mahiddine FY, You I, Park H, Kim MJ. Commensal Lactobacilli Enhance Sperm Qualitative Parameters in Dogs. Front Vet Sci 2022; 9:888023. [PMID: 35847639 PMCID: PMC9278085 DOI: 10.3389/fvets.2022.888023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Although several methods have been developed to improve male fertility and sperm quality, subfertility remains a primary clinical issue in male reproduction worldwide. The aim of this study was to determine the effects of the oral administration of three commensal Lactobacillus spp. on healthy normozoospermic dogs and the qualitative parameters of their sperm. Three weeks of supplementation induced a significant decrease of two phyla, Proteobacteria and Tenericutes, and an increase of phylum Firmicutes. At the species level, the number of Fusobacterium perfoetens and Anaerobiospirillum succiniciproducens decreased, while Limosilactobacillus reuteri increased. Parallel to these results, qualitative sperm parameters such as total and progressive motility, acrosome integrity, and other kinematic parameters were significantly enhanced after commensal lactobacilli supplementation. In addition, we showed that Firmicutes were positively correlated with sperm qualitative parameters, while Proteobacteria, F. perfoetens, and A. succiniciproducens were negatively correlated. Considering the similarities between the gut microbiome of dogs and humans, these results provide more insight into how gut microbiota regulation could improve male sperm quality in both species.
Collapse
Affiliation(s)
| | - Inhwan You
- Department of Research and Development, Mjbiogen Corp., Seoul, South Korea
| | - Heekee Park
- Department of Research and Development, Mjbiogen Corp., Seoul, South Korea
| | - Min Jung Kim
- Department of Research and Development, Mjbiogen Corp., Seoul, South Korea
| |
Collapse
|
12
|
Bazukyan IL, Rostomyan AV, Hovhannisyan AG, Aleksanyan TM, Hakobyan LL, Dallakyan AM, Haertlé T. The effects of UV, gamma- and X-ray irradiation on the growth, antibacterial activity and radio-protective of Lactobacillus rhamnosus. Lett Appl Microbiol 2022; 75:1151-1159. [PMID: 35775865 DOI: 10.1111/lam.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Ionizing radiation is widely applied in food production as preservation technology and for correction of gut microbiome of cancer patients, rescuers, astronauts etc. Lactic acid bacteria can be used with the same reason. The main goal of this study was to investigate the effect of irradiation on some activities of Lactobacillus rhamnosus MDC 9661 and its effect on survival of irradiated rats. The results indicate that both UV (during 45 min) and X-ray irradiations (with 2 Sv) decreased the CFU and the antibacterial activity of the strain. Higher than 700 Sv dose of X-ray irradiation resulted in the total inhibition of antibacterial activity with the total reduction of CFU less than 10 cells ml-1 , while irradiated with 1000 Sv dose L. rhamnosus MDC 9661 did not lose its proteolytic activity. It was also shown that L. rhamnosus MDC 9661 was not immunogenic in the organism of the rats and cannot lead to the development of autoimmune responses. L. rhamnosus MDC 9661 demonstrated the necessary properties for probiotics and can be effectively used for the correction of the gut microbiome of all target groups. The co-aggregation of the cells is one of the mechanisms for resistance of lactic acid bacteria to irradiation.
Collapse
Affiliation(s)
- I L Bazukyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology
| | - A V Rostomyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology
| | - A G Hovhannisyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology
| | - T M Aleksanyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology
| | - L L Hakobyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology
| | - A M Dallakyan
- National Burn Center CJSC, Ministry of Health of the, Republic of Armenia
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
13
|
Long X, Wang P, Zhou Y, Wang Q, Ren L, Li Q, Zhao X. Preventive effect of Lactobacillus plantarum HFY15 on carbon tetrachloride (CCl 4 )-induced acute liver injury in mice. J Food Sci 2022; 87:2626-2639. [PMID: 35534088 DOI: 10.1111/1750-3841.16171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 01/15/2023]
Abstract
Carbon tetrachloride (CCl4 ) is the main chemical causing liver damage. In this experiment, the effect of Lactobacillus plantarum HFY15 treatment on CCl4 -induced acute liver injury was investigated using mice. Fifty adult mice were randomized into five study groups, each group with 10 ml kg-1 saline, 50 mg kg-1 silymarin, and 109 CFU kg-1 L. plantarum HFY15 and LDSB per day, and all the mice expect the normal group were injected 0.8% CCl4 (10 ml kg-1 ) on the 14th day. Following the 16 h induction of the liver injury, various biochemical markers were assessed for blood and liver tissue. After L. plantarum HFY15 treatment, the content of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in serum decreased by 67.7%, 65.0%, 41.9%, 59.5%, and 51.5%, respectively, and the level of antioxidant enzymes (total superoxide dismutation [T-SOD], catalase [CAT], glutathione [GSH]) increased by more than twofold. Pro-inflammatory cytokine interleukin-6 (IL-6), interferon-γ (INF-γ), and tumor necrosis factor-α (TNF-α) decreased by more than 45% in serum and live. What is more, L. plantarum HFY15 increased the expression of antiapoptosis genes Bcl-2 by eightfold, inhibiting the expression of proapoptotic genes Caspase-3 and Bax by about threefold. Lactobacillus plantarum HFY15 has obvious protective effects on CCl4 -induced liver injury by inhibiting oxidation, reducing the release of inflammatory factors, and exerting suppressive effect on apoptotic process in the CCl4 -induced liver injury. Lactobacillus plantarum HFY15 can be developed as edible lactic acid bacteria for preventing liver toxicity. PRACTICAL APPLICATION: L. plantarum HFY15 can alleviate liver injury caused by carbon tetrachloride toxicity through antioxidant, anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Pan Wang
- Department of Traumatology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing, P. R. China
| | - Yujing Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Qiang Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Lixuan Ren
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Qin Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| |
Collapse
|
14
|
Abstract
Skin aging usually results from intrinsic or extrinsic stress. Photodamage promotes skin damage and stimulates the skin, manifesting as wrinkles, dryness, roughness, and loss of elasticity. We have previously found that blackberry (Rubus fruticosus B) fermented by Lactobacillus plantarum JBMI F5, designated BB-1000, showed an in vitro and in vivo anti-skin-aging activity. In the present study, we have further evaluated the anti-aging effect of BB-1000 via a randomized, double-blind, and placebo-controlled clinical trial. The trial included 102 volunteers aged 35 to 59 years who have dry skin and wrinkles. Subjects took BB-1000 or a placebo orally at 800 mg/day for 12 weeks. Skin hydration and degree of wrinkles around the eyes were measured at weeks 6 and 12. Skin hydration had no significant effect in both groups at weeks 6 and 12. Otherwise, volunteers in the BB-1000 group had a significant reduction in eye wrinkle grade at week 12. These findings suggest that BB-1000 may be considered a candidate anti-aging agent for preventing skin wrinkles as a nutricosmetic agent.
Collapse
|
15
|
Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res 2022; 260:127044. [DOI: 10.1016/j.micres.2022.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
|
16
|
Jo CS, Myung CH, Yoon YC, Ahn BH, Min JW, Seo WS, Lee DH, Kang HC, Heo YH, Choi H, Hong IK, Hwang JS. The Effect of Lactobacillus plantarum Extracellular Vesicles from Korean Women in Their 20s on Skin Aging. Curr Issues Mol Biol 2022; 44:526-540. [PMID: 35723322 PMCID: PMC8928950 DOI: 10.3390/cimb44020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles, which are highly conserved in most cells, contain biologically active substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin is the most external organ and is in direct contact with the external environment. Photoaging and skin damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin's ability to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research on the interactions between the bacteria and the skin is in progress. Although several studies have investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro. Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition, our study offers important evidence on the depigmentation effect of LpEVs.
Collapse
Affiliation(s)
- Chan Song Jo
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (C.S.J.); (C.H.M.)
| | - Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (C.S.J.); (C.H.M.)
| | - Yeo Cho Yoon
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
| | - Beom Hee Ahn
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
| | - Jin Woo Min
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea;
| | - Won Sang Seo
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea;
| | - Dong Hwan Lee
- Clinical Business Division, Korea Dermatology Research Institute, GFC Co., Ltd., Sungnam 13517, Gyeonggi-do, Korea;
| | - Hee Cheol Kang
- Human & Microbiome Communicating Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea; (Y.C.Y.); (B.H.A.); (W.S.S.); (H.C.K.)
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwasung 18471, Gyeonggi-do, Korea;
| | - Yun Hoe Heo
- R&D Complex, HK Kolmar Co., Ltd., Seoul 30004, Korea; (Y.H.H.); (H.C.); (I.K.H.)
| | - Hyeong Choi
- R&D Complex, HK Kolmar Co., Ltd., Seoul 30004, Korea; (Y.H.H.); (H.C.); (I.K.H.)
| | - In Ki Hong
- R&D Complex, HK Kolmar Co., Ltd., Seoul 30004, Korea; (Y.H.H.); (H.C.); (I.K.H.)
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea; (C.S.J.); (C.H.M.)
| |
Collapse
|
17
|
Forssten SD, Ouwehand AC. Contribution of the Microbiota to Healthy Aging. COMPREHENSIVE GUT MICROBIOTA 2022:69-84. [DOI: 10.1016/b978-0-12-819265-8.00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Łoś-Rycharska E, Gołębiewski M, Sikora M, Grzybowski T, Gorzkiewicz M, Popielarz M, Gawryjołek J, Krogulska A. A Combined Analysis of Gut and Skin Microbiota in Infants with Food Allergy and Atopic Dermatitis: A Pilot Study. Nutrients 2021; 13:nu13051682. [PMID: 34063398 PMCID: PMC8156695 DOI: 10.3390/nu13051682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota in patients with food allergy, and the skin microbiota in atopic dermatitis patients differ from those of healthy people. We hypothesize that relationships may exist between gut and skin microbiota in patients with allergies. The aim of this study was to determine the possible relationship between gut and skin microbiota in patients with allergies, hence simultaneous analysis of the two compartments of microbiota was performed in infants with and without allergic symptoms. Fifty-nine infants with food allergy and/or atopic dermatitis and 28 healthy children were enrolled in the study. The skin and gut microbiota were evaluated using 16S rRNA gene amplicon sequencing. No significant differences in the α-diversity of dermal or fecal microbiota were observed between allergic and non-allergic infants; however, a significant relationship was found between bacterial community structure and allergy phenotypes, especially in the fecal samples. Certain clinical conditions were associated with characteristic bacterial taxa in the skin and gut microbiota. Positive correlations were found between skin and fecal samples in the abundance of Gemella among allergic infants, and Lactobacillus and Bacteroides among healthy infants. Although infants with allergies and healthy infants demonstrate microbiota with similar α-diversity, some differences in β-diversity and bacterial species abundance can be seen, which may depend on the phenotype of the allergy. For some organisms, their abundance in skin and feces samples may be correlated, and these correlations might serve as indicators of the host's allergic state.
Collapse
Affiliation(s)
- Ewa Łoś-Rycharska
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
- Correspondence: (E.Ł.-R.); (M.G.)
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Correspondence: (E.Ł.-R.); (M.G.)
| | - Marcin Sikora
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (T.G.); (M.G.)
| | - Marta Gorzkiewicz
- Department of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (T.G.); (M.G.)
| | - Maria Popielarz
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| | - Julia Gawryjołek
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| | - Aneta Krogulska
- Department of Pediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.P.); (J.G.); (A.K.)
| |
Collapse
|
19
|
Kim E, Kim HB, Yang SM, Kim D, Kim HY. Real-time PCR assay for detecting Lactobacillus plantarum group using species/subspecies-specific genes identified by comparative genomics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Abstract
Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People's Hospital, Lishui, Zhejiang, China
| | - Shaochang Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Silva JA, Marchesi A, Wiese B, Nader-Macias MEF. Screening of autochthonous vaginal beneficial lactobacilli strains by their growth at high temperatures for technological applications. Antonie van Leeuwenhoek 2020; 113:1393-1409. [PMID: 32725571 DOI: 10.1007/s10482-020-01431-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
The pharmaceutical industry shows an emerging interest in formulas that contain live and beneficial microorganisms, also known as probiotics or pharmabiotics, which in many cases, are host-specific. The resistance to higher temperature is an essential feature of these microorganisms when working on the design of products for vaginal formula. In order to obtain a high number of viable cells and a prolonged shelf life in the designed product, it is required to apply technological procedures using high temperatures or abrupt changes of them, which result in conditions that are different from the optimal growth temperature and can affect the metabolic capabilities of the bacteria when administered to the host in order to reestablish the ecological mucosa. The aim of this work was to evaluate the behavior of 30 different species and strains of autochthonous beneficial vaginal lactobacilli (BVL) when exposed to high temperatures, determine their survival capabilities and analyze their pre-adaptation to those temperatures, in order that they still maintain their viability after technological processes and further conservation. BVL were exhibited to temperatures higher than optimal, with the purpose of evaluating their growth kinetics and parameters. Later, they were exposed to higher temperatures, and then, returned to their optimal, to determine if they were able to grow again. The strains that showed higher resistance were selected, and their viability and beneficial properties studied further. The growth kinetics of strains exposed to higher temperatures showed different patterns, which provided evidence that the thermal adaptation is strain-dependent and is not related to any particular species and/or metabolic group in which the strains were taxonomically classified. The pre-adaptive step allowed the growth of some of the strains, preserving their viability and probiotic properties after the high temperatures were applied. The results shows that BVL can be exposed to high temperatures used in different technological processes that are applied for pharmabiotic formulations, such as spray dried or vacuum rotary evaporation, and/or during the conservation period. The results obtained indicate that some specific BVL strains resist high temperatures and grow afterwards at optimal conditions.
Collapse
Affiliation(s)
| | | | - Birgitt Wiese
- Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | | |
Collapse
|