1
|
Murach KA, Bagley JR. A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101029. [PMID: 39961420 DOI: 10.1016/j.jshs.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.
Collapse
Affiliation(s)
- Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
2
|
Mattingly ML, Anglin DA, Ruple BA, Scarpelli MC, Bergamasco JG, Godwin JS, Mobley CB, Frugé AD, Libardi CA, Roberts MD. Acute and Chronic Resistance Training, Acute Endurance Exercise, nor Physiologically Plausible Lactate In Vitro Affect Skeletal Muscle Lactylation. Int J Mol Sci 2024; 25:12216. [PMID: 39596281 PMCID: PMC11594461 DOI: 10.3390/ijms252212216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
We examined changes in skeletal muscle protein lactylation and acetylation in response to acute resistance exercise, chronic resistance training (RT), and a single endurance cycling bout. Additionally, we performed in vitro experiments to determine if different sodium lactate treatments affect myotube protein lactylation and acetylation. The acute and chronic RT study (12 college-aged participants) consisted of 10 weeks of unilateral leg extensor RT with vastus lateralis (VL) biopsies taken at baseline, 24 h following the first RT bout, and the morning of the last day of the RT bout. For the acute cycling study (9 college-aged participants), VL biopsies were obtained before, 2 h after, and 8 h after 60 min of cycling. For in vitro experiments, C2C12 myotubes were treated with varying levels of sodium lactate, including LOW (1 mM for 24 h), HIGH (10 mM for 24 h), and PULSE (10 mM for 30 min followed by 1 mM for 23.5-h). Neither acute nor chronic RT significantly affected nuclear or cytoplasmic protein lactylation. However, cytoplasmic protein acetylation was significantly reduced following one RT bout (-15%, p = 0.002) and chronic RT (-16%, p = 0.006). Cycling did not acutely alter post-exercise global protein lactylation or acetylation patterns. Lastly, varying 24 h lactate treatments did not alter nuclear or cytoplasmic protein lactylation or acetylation, cytoplasmic protein synthesis levels, or myotube diameters. These findings continue to support the idea that exercise induces more dynamic changes in skeletal muscle protein acetylation, but not lactylation. However, further human research with more sampling timepoints and a lactylomics approach are needed to determine if, at all, different exercise modalities affect skeletal muscle protein lactylation.
Collapse
Affiliation(s)
| | | | - Bradley A. Ruple
- Geriatric Research Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Maira C. Scarpelli
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | - Joao G. Bergamasco
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | | | | | - Andrew D. Frugé
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| | - Cleiton A. Libardi
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos—UFSCar, São Carlos 13565-905, Brazil; (M.C.S.)
| | | |
Collapse
|
3
|
Burny C, Potočnjak M, Hestermann A, Gartemann S, Hollmann M, Schifferdecker-Hoch F, Markanovic N, Di Sanzo S, Günsel M, Solis-Mezarino V, Voelker-Albert M. Back pain exercise therapy remodels human epigenetic profiles in buccal and human peripheral blood mononuclear cells: an exploratory study in young male participants. Front Sports Act Living 2024; 6:1393067. [PMID: 39478832 PMCID: PMC11521823 DOI: 10.3389/fspor.2024.1393067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Background With its high and increasing lifetime prevalence, back pain represents a contemporary challenge for patients and healthcare providers. Monitored exercise therapy is a commonly prescribed treatment to relieve pain and functional limitations. However, the benefits of exercise are often gradual, subtle, and evaluated by subjective self-reported scores. Back pain pathogenesis is interlinked with epigenetically mediated processes that modify gene expression without altering the DNA sequence. Therefore, we hypothesize that therapy effects can be objectively evaluated by measurable epigenetic histone posttranslational modifications and proteome expression. Because epigenetic modifications are dynamic and responsive to environmental exposure, lifestyle choices-such as physical activity-can alter epigenetic profiles, subsequent gene expression, and health traits. Instead of invasive sampling (e.g., muscle biopsy), we collect easily accessible buccal swabs and plasma. The plasma proteome provides a systemic understanding of a person's current health state and is an ideal snapshot of downstream, epigenetically regulated, changes upon therapy. This study investigates how molecular profiles evolve in response to standardized sport therapy and non-controlled lifestyle choices. Results We report that the therapy improves agility, attenuates back pain, and triggers healthier habits. We find that a subset of participants' histone methylation and acetylation profiles cluster samples according to their therapy status, before or after therapy. Integrating epigenetic reprogramming of both buccal cells and peripheral blood mononuclear cells (PBMCs) reveals that these concomitant changes are concordant with higher levels of self-rated back pain improvement and agility gain. Additionally, epigenetic changes correlate with changes in immune response plasma factors, reflecting their comparable ability to rate therapy effects at the molecular level. We also performed an exploratory analysis to confirm the usability of molecular profiles in (1) mapping lifestyle choices and (2) evaluating the distance of a given participant to an optimal health state. Conclusion This pre-post cohort study highlights the potential of integrated molecular profiles to score therapy efficiency. Our findings reflect the complex interplay of an individual's background and lifestyle upon therapeutic exposure. Future studies are needed to provide mechanistic insights into back pain pathogenesis and lifestyle-based epigenetic reprogramming upon sport therapy intervention to maintain therapeutic effects in the long run.
Collapse
Affiliation(s)
| | - Mia Potočnjak
- EpiQMAx GmbH, Planegg, Germany
- Moleqlar Analytics GmbH, Munich, Germany
| | | | | | | | | | | | - Simone Di Sanzo
- EpiQMAx GmbH, Planegg, Germany
- Moleqlar Analytics GmbH, Munich, Germany
| | | | | | | |
Collapse
|
4
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
5
|
Agustiningsih D, Wibawa T. Demystifying roles of exercise in immune response regulation against acute respiratory infections: A narrative review. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:139-153. [PMID: 38708320 PMCID: PMC11067861 DOI: 10.1016/j.smhs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 05/07/2024] Open
Abstract
The benefits of physical activity and exercise, especially those classified as moderate-to-vigorous activity (MVPA), have been well-established in preventing non-communicable diseases and mental health problems in healthy adults. However, the relationship between physical activity and exercise and the prevention and management of acute respiratory infection (ARI), a global high-burden disease, has been inconclusive. There have been debates and disagreements among scientific publications regarding the relationship between exercise and immune response against the causative agents of ARI. This narrative review aims to explore the theory that sufficiently explains the correlation between exercise, immune response, and ARI. The potential root causes of discrepancies come from research associated with the "open window" hypothesis. The studies have several limitations, and future improvements to address them are urgently needed in the study design, data collection, exercise intervention, subject recruitment, biomarkers for infection and inflammation, nutritional and metabolism status, and in addressing confounding variables. In conclusion, data support the clinical advantages of exercise have a regulatory contribution toward improving the immune response, which in turn potentially protects humans fromARI. However, the hypothesis related to its negative effect must be adopted cautiously.
Collapse
Affiliation(s)
- Denny Agustiningsih
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
6
|
Fu P, Zhu R, Gao W, Gong L. Effects of resistance training on alleviating hypoxia-induced muscle atrophy: Focus on acetylation of FoxO1. J Cell Mol Med 2024; 28:e18096. [PMID: 38149787 PMCID: PMC10844693 DOI: 10.1111/jcmm.18096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
This study aims to explore the role of FoxO1 and its acetylation in the alleviation of hypoxia-induced muscle atrophy by resistance training. Forty male Sprague-Dawley rats were randomly divided into four groups: normoxic control group (C), normoxic resistance training group (R), hypoxic control group (H) and hypoxic resistance training group (HR). Rats in R and HR groups were trained on an incremental weight-bearing ladder every other day, while those in H and HR groups were kept in an environment containing 12.4% O2 . After 4 weeks, muscles were collected for analysis. Differentiated L6 myoblasts were analysed in vitro after hypoxia exposure and plasmids transfection (alteration in FoxO1 acetylation). The lean body mass loss, wet weight and fibre cross-sectional area of extensor digitorum longus of rats were decreased after 4 weeks hypoxia, and the adverse reactions above was reversed by resistance training. At the same time, the increase in hypoxia-induced autophagy was suppressed, which was accompanied by a decrease in the expression of nuclear FoxO1 and cytoplasmic Ac-FoxO1 by resistance training. The L6 myotube diameter increased and the expression of autophagic proteins were inhibited under hypoxia via intervening by FoxO1 deacetylation. Overall, resistance training alleviates hypoxia-induced muscle atrophy by inhibiting nuclear FoxO1 and cytoplasmic Ac-FoxO1-mediated autophagy.
Collapse
Affiliation(s)
- Pengyu Fu
- Key Laboratory of Physical Fitness and Exercise, Ministry of EducationBeijing Sport UniversityBeijingChina
- Department of Physical EducationNorthwestern Polytechnical UniversityXi'anChina
| | - Rongxin Zhu
- Shanghai Research Institute of Sports ScienceShanghaiChina
| | - Weiyang Gao
- School of Languages and Cultural Communication, English DepartmentXi’an Mingde Institute of TechnologyXi’anChina
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of EducationBeijing Sport UniversityBeijingChina
| |
Collapse
|
7
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
8
|
Khasanova A, Henagan TM. Exercise Is Medicine: How Do We Implement It? Nutrients 2023; 15:3164. [PMID: 37513581 PMCID: PMC10385293 DOI: 10.3390/nu15143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Exercise is well known to have beneficial effects on various disease states. In this paper, we broadly describe the fundamental concepts that are shared among various disease states, including obesity, type 2 diabetes (T2D), cardiovascular disease (CVD), heart failure (HF), cancer, and psychological well-being, and the beneficial effects of exercise training within these concepts. We highlight issues involved in implementing exercise recommendations and describe the potential impacts and challenges to medical professionals and patients. Problems are identified and discussed with respect to the future roles of professionals in the current built environment with its limited infrastructure to support current physical activity recommendations.
Collapse
Affiliation(s)
- Aliya Khasanova
- Department of Family Medicine, Baton Rouge General Family Health Center, Baton Rouge, LA 70806, USA
- Department of Family Medicine, Baton Rouge General Hospital, Baton Rouge, LA 70808, USA
| | - Tara M Henagan
- Department of Family Medicine, Baton Rouge General Family Health Center, Baton Rouge, LA 70806, USA
- Department of Family Medicine, Baton Rouge General Hospital, Baton Rouge, LA 70808, USA
| |
Collapse
|
9
|
Gevaert AB, Wood N, Boen JRA, Davos CH, Hansen D, Hanssen H, Krenning G, Moholdt T, Osto E, Paneni F, Pedretti RFE, Plösch T, Simonenko M, Bowen TS. Epigenetics in the primary and secondary prevention of cardiovascular disease: influence of exercise and nutrition. Eur J Prev Cardiol 2022; 29:2183-2199. [PMID: 35989414 DOI: 10.1093/eurjpc/zwac179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023]
Abstract
Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathanael Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dominique Hansen
- Department of Cardiology, Heart Center Hasselt, Jessa Hospital, Hasselt, Belgium.,BIOMED-REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Sports and Exercise Medicine, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.,Department of Women's Health, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elena Osto
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland.,University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Roberto F E Pedretti
- Cardiovascular Department, IRCCS MultiMedica, Care and Research Institute, Milan, Italy
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Maria Simonenko
- Physiology Research and Blood Circulation Department, Cardiopulmonary Exercise Test SRL, Federal State Budgetary Institution, 'V.A. Almazov National Medical Research Centre' of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Maschari D, Saxena G, Law TD, Walsh E, Campbell MC, Consitt LA. Lactate-induced lactylation in skeletal muscle is associated with insulin resistance in humans. Front Physiol 2022; 13:951390. [PMID: 36111162 PMCID: PMC9468271 DOI: 10.3389/fphys.2022.951390] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Elevated circulating lactate has been associated with obesity and insulin resistance. The aim of the current study was to determine if lactate-induced lysine lactylation (kla), a post-translational modification, was present in human skeletal muscle and related to insulin resistance. Fifteen lean (Body Mass Index: 22.1 ± 0.5 kg/m2) and fourteen obese (40.6 ± 1.4 kg/m2) adults underwent a muscle biopsy and 2-h oral glucose tolerance test. Skeletal muscle lactylation was increased in obese compared to lean females (19%, p < 0.05) and associated with insulin resistance (r = 0.37, p < 0.05) in the whole group. Skeletal muscle lactylation levels were significantly associated with markers of anaerobic metabolism (plasma lactate and skeletal muscle lactate dehydrogenase [LDH], p < 0.05) and negatively associated with markers of oxidative metabolism (skeletal muscle cytochrome c oxidase subunit 4 and Complex I [pyruvate] OXPHOS capacity, p < 0.05). Treatment of primary human skeletal muscle cells (HSkMC) with sodium lactate for 24 h increased protein lactylation and IRS-1 serine 636 phosphorylation in a similar dose-dependent manner (p < 0.05). Inhibition of glycolysis (with 2-deoxy-d-glucose) or LDH-A (with sodium oxamate or LDH-A siRNA) for 24 h reduced HSkMC lactylation which paralleled reductions in culture media lactate accumulation. This study identified the existence of a lactate-derived post-translational modification in human skeletal muscle and suggests skeletal muscle lactylation could provide additional insight into the regulation of skeletal muscle metabolism, including insulin resistance.
Collapse
Affiliation(s)
- Dominic Maschari
- College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| | - Gunjan Saxena
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Timothy D. Law
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, United States
| | - Erin Walsh
- Biological Sciences Department, Ohio University, Athens, OH, United States
| | - Mason C. Campbell
- Biological Sciences Department, Ohio University, Athens, OH, United States
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, United States
- Diabetes Institute, Ohio University, Athens, OH, United States
| |
Collapse
|
11
|
Normand-Gravier T, Solsona R, Sanchez AMJ. The key role of histone H3 trimethylation in skeletal muscle adaptation to exercise. J Physiol 2022; 600:4063-4065. [PMID: 35943178 DOI: 10.1113/jp283661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tom Normand-Gravier
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia (UPVD), Font-Romeu, UR4640, France
| | - Robert Solsona
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia (UPVD), Font-Romeu, UR4640, France
| | - Anthony M J Sanchez
- Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), University of Perpignan Via Domitia (UPVD), Font-Romeu, UR4640, France
| |
Collapse
|
12
|
Chaffer TJ, Broering FE, Sedraoui S. Histone-mediated skeletal muscle adaptations to exercise: insights into a new era of epigenome-based personalized medicine. J Physiol 2022; 600:3903-3904. [PMID: 35908267 DOI: 10.1113/jp283434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tomer Jordi Chaffer
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Quebec, Canada.,Division of Experimental Medicine, McGill University, Quebec, Canada
| | - Felipe E Broering
- Division of Experimental Medicine, McGill University, Quebec, Canada.,Division of Geriatric Medicine, MUHC-Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Sami Sedraoui
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Quebec, Canada.,Division of Experimental Medicine, McGill University, Quebec, Canada
| |
Collapse
|
13
|
McIlvenna LC, Altıntaş A, Patten RK, McAinch AJ, Rodgers RJ, Stepto NK, Barrès R, Moreno-Asso A. Transforming growth factor β1 impairs the transcriptomic response to contraction in myotubes from women with polycystic ovary syndrome. J Physiol 2022; 600:3313-3330. [PMID: 35760527 PMCID: PMC9544746 DOI: 10.1113/jp282954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract Polycystic ovary syndrome (PCOS) is characterised by a hormonal imbalance affecting the reproductive and metabolic health of reproductive‐aged women. Exercise is recommended as a first‐line therapy for women with PCOS to improve their overall health; however, women with PCOS are resistant to the metabolic benefits of exercise training. Here, we aimed to gain insight into the mechanisms responsible for such resistance to exercise in PCOS. We employed an in vitro approach with electrical pulse stimulation (EPS) of cultured skeletal muscle cells to explore whether myotubes from women with PCOS have an altered gene expression signature in response to contraction. Following EPS, 4719 genes were differentially expressed (false discovery rate <0.05) in myotubes from women with PCOS compared to 173 in healthy women. Both groups included genes involved in skeletal muscle contraction. We also determined the effect of two transforming growth factor β (TGFβ) ligands that are elevated in plasma of women with PCOS, TGFβ1 and anti‐Müllerian hormone (AMH), alone and on the EPS‐induced response. While AMH (30 ng/ml) had no effect, TGFβ1 (5 ng/ml) induced the expression of extracellular matrix genes and impaired the exercise‐like transcriptional signature in myotubes from women with and without PCOS in response to EPS by interfering with key processes related to muscle contraction, calcium transport and actin filament. Our findings suggest that while the fundamental gene expression responses of skeletal muscle to contraction is intact in PCOS, circulating factors like TGFβ1 may be responsible for the impaired adaptation to exercise in women with PCOS.
![]() Key points Gene expression responses to in vitro contraction (electrical pulse stimulation, EPS) are altered in myotubes from women with polycystic ovary syndrome (PCOS) compared to healthy controls, with an increased expression of genes related to pro‐inflammatory pathways. Transforming growth factor β1 (TGFβ1) upregulates genes related to extracellular matrix remodelling and reduces the expression of contractile genes in myotubes, regardless of the donor's health status. TGFβ1 alters the gene expression response to EPS, providing a possible mechanism for the impaired exercise adaptations in women with PCOS.
Collapse
Affiliation(s)
- Luke C McIlvenna
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ali Altıntaş
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rhiannon K Patten
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University, Melbourne, Victoria, Australia
| | - Raymond J Rodgers
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,The Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nigel K Stepto
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University, Melbourne, Victoria, Australia
| | - Romain Barrès
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National pour la Recherche Scientifique (CNRS), Valbonne, France
| | - Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Shimizu J, Kawano F. Exercise-induced H3K27me3 facilitates the adaptation of skeletal muscle to exercise in mice. J Physiol 2022; 600:3331-3353. [PMID: 35666835 DOI: 10.1113/jp282917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Exercise mediates H3K27me3 at transcriptionally upregulated loci in skeletal muscle, although the role of H3K27me3 in the adaptation of skeletal muscle to exercise training is unclear. Chromatin immunoprecipitation followed by sequencing analysis demonstrated that H3K27me3, as well as H3K4me3 modifications, is the hallmark of sites showing higher responses to acute exercise. GSK343, a selective inhibitor of the enhancer of zeste homologue 2 (EZH2), enhanced the gene responses to a single bout of exercise and accelerated the adaptive changes during exercise training in association with myonuclear H3K27me3 accumulation. Administration of valemetostat, an EZH1/2 dual inhibitor, repressed myonuclear H3K27me3 accumulation during training and caused the failure in adaptive changes. Exercise-induced H3K27me3 may play a key role in inducing exercise-related effects in the skeletal muscle. ABSTRACT Histone H3 trimethylation at lysine 27 (H3K27me3) is known to act as a transcriptionally repressive histone modification via heterochromatin formation. However, in skeletal muscle, it was also reported that H3K27me3 was enriched at the sites transcriptionally activated by exercise, although the role of H3K27me3 in the adaptation to exercise is unknown. In this study, we first determined the genome-wide enrichment of RNA polymerase II and histone H3 trimethylation at lysine 4 (H3K4me3) and H3K27me3 using chromatin immunoprecipitation followed by sequencing analysis in mouse tibialis anterior muscle. The loci that were transcriptionally upregulated by a single bout of running exercise were marked by both H3K27me3 and H3K4me3, which also correlated with the distribution of RNA polymerase II. The genes that were not responsive to exercise exhibited high H3K4me3 occupancy, similar to the upregulated genes but with fewer H3K27me3. Next, we tested the effects of H3K27 methyltransferase, an enhancer of zeste homologue (EZH) 2-specific inhibitor GSK343. GSK343 administration unexpectedly enhanced the H3K27me3 occupancy at the target loci, leading to the upregulation of gene responses to acute exercise. GSK343 administration also facilitated the phenotypic transformation from IIb to IIa fibres and the upregulation of AMPK phosphorylation and HSP70, PDK4, PGC-1α, and MuRF1 levels. Furthermore, in contrast to the accelerated adaptation to exercise by GSK343, EZH1/2 dual inhibitor valemetostat administration caused the failure in the changes of the aforementioned parameters after exercise training. These results indicate that exercise-induced H3K27me3 plays a key role in inducing exercise-related effects in the skeletal muscle. Abstract figure legend The loci upregulated in response to exercise are characterized by a bivalent modification with histone H3 trimethylation at lysine 27 (H3K27me3) and lysine 4 (H3K4me3) in mouse skeletal muscle. Acute exercise further stimulates both H3K27me3 and H3K4me3 at these loci associated with the upregulation of gene transcription. Lysine methyltransferase EZH2-specific inhibitor GSK343 administration increased H3K27me3 and H3K4me3 occupancies at the target loci after a single bout of exercise. Chronic treatment of GSK343 during exercise training more upregulated H3K27me3 in muscle fibres. In addition, it increased the number of muscle fibres expressing type IIa myosin heavy chain (MyHC) and enhanced the adaptive changes in the related protein levels. In contrast, administration of valemetostat, an EZH1/2 dual inhibitor, decreased H3K27me3 and H3K4me3 occupancies after acute exercise and caused the failure in the exercise-induced effects after training. It was also suggested that EZH1 acted as a modifier of exercise-induced H3K27me3 in skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junya Shimizu
- Graduate School of Health Sciences, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano, 390-1295, Japan
| |
Collapse
|
15
|
Militello R, Pinto G, Illiano A, Luti S, Magherini F, Amoresano A, Modesti PA, Modesti A. Modulation of Plasma Proteomic Profile by Regular Training in Male and Female Basketball Players: A Preliminary Study. Front Physiol 2022; 13:813447. [PMID: 35360242 PMCID: PMC8964093 DOI: 10.3389/fphys.2022.813447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Monitoring fatigue and recovery during training periods contributes to identifying the best training methods to achieve sports performance. To date, little is known about sex-related differences in sports adaptations. The aim of the present study is to identify sex-related sports adaptation proteins in female basketball players and male basketball players using proteomics approach on plasma samples withdrawn from athletes during in-season training period but far from a competition. A cohort of 20 professional basketball players, 10 female (BF) and 10 male (BM), and 20 sedentary male (10 CM) and female (10 CF) as control, of comparable age and BMI, were involved in this study. Protein profiles of plasma samples obtained from BM, BF, CM, and CF were analyzed by two-dimensional electrophoresis (2-DE). Differentially expressed proteins were identified by mass spectrometry. The computational 2-DE gel image analysis pointed out 33 differentially expressed protein spots (ANOVA p-value < 0.05) and differences between male and female basketball players are more evident among the players than controls. The expression profile of 54.5% of the total proteins is affected by sports activity. Furthermore, 14 proteins are differentially expressed in basket female players in comparison with their relative controls while seven are differentially expressed in basket male players in comparison with their controls. In conclusion, we identify in female athletes a reduction in proteins related to transcription regulation, most of these modulate chronic inflammation confirming the anti-inflammatory effect of regular training in female muscle metabolism. In male and female athletes, we found a decrease in Transthyretin involved in muscle homeostasis and regeneration and Dermcidin a stress-induced myokine linked to inflammatory and it will be interesting to fully understand the role of its different isoforms in male and female skeletal muscle contraction.
Collapse
Affiliation(s)
- Rosamaria Militello
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Gabriella Pinto
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Department of Chemical Sciences, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| | - Anna Illiano
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Department of Chemical Sciences, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Francesca Magherini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | | | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| |
Collapse
|
16
|
Differential Expression of Genes Associated with Chromatin Modifications in Skeletal Muscle during Aerobic Training Program. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Skeletal muscle plasticity in exercise can be modulated by epigenomic events such as gene silencing, histone modifications and DNA methylation. In this context, our objective was to analyze the expression of genes associated with chromatin modifications in human muscle biopsies of vastus lateralis after a 20 week training program. Methods: Using data from DNA microarray experiments registered in the NCBI GEO DataSet database GSE117070, we calculated the Z ratio values as the criterion to evaluate the differential expression of genes associated with chromatin modification during aerobic training in skeletal muscle. Using the web interface GENEMANIA, we built a co-expression interaction network with the overexpressed genes. We compared Z-score values obtained from pre-trained and post-trained samples through nonparametric tests. Results: We found 10 overexpressed genes after the 20 week training program, namely, EZH1, KMT2A, KMT2D, KDM4C, KDM6A, CREBBP, HDAC10, HDAC4, DNMT3L, and H2AX. The most relevant biological processes obtained from the network included chromatin organization (FDR 9.04×10-9) and histone modification (FDR 9.04×10-9). Conclusions: In skeletal muscle, after aerobic training, there is overexpression of genes associated with the modification of the chromatin through alterations in histones and DNA, resulting in epigenetic transcriptional changes.
Collapse
|
17
|
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022; 10:biomedicines10010126. [PMID: 35052805 PMCID: PMC8773693 DOI: 10.3390/biomedicines10010126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, and these epigenetic modifications, which are influenced by environmental and genetic factors, trigger those alterations in the transcriptional responses. DNA methylation and histone modifications are the most significant epigenetic changes described in gene transcription, linked to the skeletal muscle transcriptional response to exercise, and mediating the exercise adaptations. Nevertheless, other alterations in the epigenetics markers, such as epitranscriptomics, modifications mediated by miRNAs, and lactylation as a novel epigenetic modification, are emerging as key events for gene transcription. Here, we provide an overview and update of the impact of exercise on epigenetic modifications, including the well-described DNA methylations and histone modifications, and the emerging modifications in the skeletal muscle. In addition, we describe the effects of exercise on epigenetic markers in other metabolic tissues; also, we provide information about how systemic metabolism or its metabolites influence epigenetic modifications in the skeletal muscle.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| | - David Izquierdo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Álvaro Torres-Martos
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 85M, Canada
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz, Center Munich, Neuherberg, 85764 Munich, Germany
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| |
Collapse
|
18
|
Beleza J, Stevanović-Silva J, Coxito P, Costa RC, Ascensão A, Torrella JR, Magalhães J. Building-up fit muscles for the future: Transgenerational programming of skeletal muscle through physical exercise. Eur J Clin Invest 2021; 51:e13515. [PMID: 33580562 DOI: 10.1111/eci.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
'Special issue - In Utero and Early Life Programming of Aging and Disease'. Skeletal muscle (SM) adaptations to physical exercise (PE) have been extensively studied due, not only to the relevance of its in situ plasticity, but also to the SM endocrine-like effects in noncontractile tissues, such as brain, liver or adipocytes. Regular PE has been considered a pleiotropic nonpharmacological strategy to prevent and counteract the deleterious consequences of several metabolic, cardiovascular, oncological and neurodegenerative disorders. Additionally, PE performed by parents seems to have a direct impact in the offspring through the transgenerational programming of different tissues, such as SM. In fact, SM offspring programming mechanisms seems to be orchestrated, at least in part, by epigenetic machinery conditioning transcriptional or post-transcriptional processes. Ultimately, PE performed in the early in life is also a critical window of opportunity to positively modulate the juvenile and adult phenotype. Parental PE has a positive impact in several health-related offspring outcomes, such as SM metabolism, differentiation, morphology and ultimately in offspring exercise volition and endurance. Also, early-life PE counteracts conceptional-related adverse effects and induces long-lasting healthy benefits throughout adulthood. Additionally, epigenetics mechanisms seem to play a key role in the PE-induced SM adaptations. Despite the undoubtedly positive role of parental and early-life PE on SM phenotype, a strong research effort is still needed to better understand the mechanisms that positively regulate PE-induced SM programming.
Collapse
Affiliation(s)
- Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M. Potential Physiological and Cellular Mechanisms of Exercise That Decrease the Risk of Severe Complications and Mortality Following SARS-CoV-2 Infection. Sports (Basel) 2021; 9:121. [PMID: 34564326 PMCID: PMC8472997 DOI: 10.3390/sports9090121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unmasked mankind's vulnerability to biological threats. Although higher age is a major risk factor for disease severity in COVID-19, several predisposing risk factors for mortality are related to low cardiorespiratory and metabolic fitness, including obesity, cardiovascular disease, diabetes, and hypertension. Reaching physical activity (PA) guideline goals contribute to protect against numerous immune and inflammatory disorders, in addition to multi-morbidities and mortality. Elevated levels of cardiorespiratory fitness, being non-obese, and regular PA improves immunological function, mitigating sustained low-grade systemic inflammation and age-related deterioration of the immune system, or immunosenescence. Regular PA and being non-obese also improve the antibody response to vaccination. In this review, we highlight potential physiological, cellular, and molecular mechanisms that are affected by regular PA, increase the host antiviral defense, and may determine the course and outcome of COVID-19. Not only are the immune system and regular PA in relation to COVID-19 discussed, but also the cardiovascular, respiratory, renal, and hormonal systems, as well as skeletal muscle, epigenetics, and mitochondrial function.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| | - Ian Cotgreave
- Division of Biomaterials and Health, Department of Pharmaceutical and Chemical Safety, Research Institutes of Sweden, 151 36 Södertälje, Sweden;
| | - Maria Furberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden; (M.F.); (N.A.)
| | - Michael Svensson
- Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
20
|
Ohsawa I, Kawano F. Chronic exercise training activates histone turnover in mouse skeletal muscle fibers. FASEB J 2021; 35:e21453. [PMID: 33749947 DOI: 10.1096/fj.202002027rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Epigenetic regulation of skeletal muscle adaptation to exercise is a recent topic for which there is limited information. This study investigated whether exercise training activates histone turnover in the skeletal muscle fibers of mice. Experiments using a tetracycline-inducible H2B-GFP expression model demonstrated that 4 weeks of running training, but not 2 weeks of training, significantly promoted the incorporation of H2B-GFP into nucleosomes and the dissociation of histone H3.3 at both transcriptionally upregulated and nonresponsive loci. Muscle-specific PGC-1α-b-overexpressing mice crossed with H2B-GFP mice showed a slight increase in H2B-GFP incorporation at transcriptionally active loci, but not in the dissociation of H3.3 from nucleosomes. Gene expression responses to a single bout of running were significantly enhanced in 4-week trained mice when compared with those in 2-week trained mice. The most drastic increase in the gene response was found in the expression of Hspa1a and Hspa1b, in which the magnitude of upregulation in response to running was significantly enhanced from 8-fold in 2 week trained mice to 97- and 121-fold in 4 week trained mice, respectively. It was also found that the HSP70 level increased during the training period. In a myonuclear immunohistochemical analysis of chromatin remodelers, we further found that the level of SPT16, an H2A-H2B-specific chaperone, was upregulated after running training. These results revealed that 4 weeks of running training activated histone turnover in skeletal muscle fibers. They also suggested that histone turnover led to loosening of the nucleosomes and enhanced gene responses to exercise.
Collapse
Affiliation(s)
- Ikumi Ohsawa
- Graduate School of Health Sciences, Matsumoto University, Matsumoto City, Nagano, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto City, Nagano, Japan
| |
Collapse
|
21
|
van Ingen MJA, Kirby TJ. LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 2021; 9:690577. [PMID: 34368139 PMCID: PMC8335485 DOI: 10.3389/fcell.2021.690577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle demonstrates a high degree of adaptability in response to changes in mechanical input. The phenotypic transformation in response to mechanical cues includes changes in muscle mass and force generating capabilities, yet the molecular pathways that govern skeletal muscle adaptation are still incompletely understood. While there is strong evidence that mechanotransduction pathways that stimulate protein synthesis play a key role in regulation of muscle mass, there are likely additional mechano-sensitive mechanisms important for controlling functional muscle adaptation. There is emerging evidence that the cell nucleus can directly respond to mechanical signals (i.e., nuclear mechanotransduction), providing a potential additional level of cellular regulation for controlling skeletal muscle mass. The importance of nuclear mechanotransduction in cellular function is evident by the various genetic diseases that arise from mutations in proteins crucial to the transmission of force between the cytoskeleton and the nucleus. Intriguingly, these diseases preferentially affect cardiac and skeletal muscle, suggesting that nuclear mechanotransduction is critically important for striated muscle homeostasis. Here we discuss our current understanding for how the nucleus acts as a mechanosensor, describe the main cytoskeletal and nuclear proteins involved in the process, and propose how similar mechanoresponsive mechanisms could occur in the unique cellular environment of a myofiber. In addition, we examine how nuclear mechanotransduction fits into our current framework for how mechanical stimuli regulates skeletal muscle mass.
Collapse
Affiliation(s)
- Maria J A van Ingen
- Biomolecular Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
22
|
Abstract
Histone variants regulate chromatin accessibility and gene transcription. Given their distinct properties and functions, histone varint substitutions allow for profound alteration of nucleosomal architecture and local chromatin landscape. Skeletal myogenesis driven by the key transcription factor MyoD is characterized by precise temporal regulation of myogenic genes. Timed substitution of variants within the nucleosomes provides a powerful means to ensure sequential expression of myogenic genes. Indeed, growing evidence has shown H3.3, H2A.Z, macroH2A, and H1b to be critical for skeletal myogenesis. However, the relative importance of various histone variants and their associated chaperones in myogenesis is not fully appreciated. In this review, we summarize the role that histone variants play in altering chromatin landscape to ensure proper muscle differentiation. The temporal regulation and cross talk between histones variants and their chaperones in conjunction with other forms of epigenetic regulation could be critical to understanding myogenesis and their involvement in myopathies.
Collapse
Affiliation(s)
- Nandini Karthik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|