1
|
Song Y, Yoon B. Prediction of infectious diseases using sentiment analysis on social media data. PLoS One 2024; 19:e0309842. [PMID: 39231189 PMCID: PMC11373815 DOI: 10.1371/journal.pone.0309842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
As the influence and risk of infectious diseases increase, efforts are being made to predict the number of confirmed infectious disease patients, but research involving the qualitative opinions of social media users is scarce. However, social data can change the psychology and behaviors of crowds through information dissemination, which can affect the spread of infectious diseases. Existing studies have used the number of confirmed cases and spatial data to predict the number of confirmed cases of infectious diseases. However, studies using opinions from social data that affect changes in human behavior in relation to the spread of infectious diseases are inadequate. Therefore, herein, we propose a new approach for sentiment analysis of social data by using opinion mining and to predict the number of confirmed cases of infectious diseases by using machine learning techniques. To build a sentiment dictionary specialized for predicting infectious diseases, we used Word2Vec to expand the existing sentiment dictionary and calculate the daily sentiment polarity by dividing it into positive and negative polarities from collected social data. Thereafter, we developed an algorithm to predict the number of confirmed infectious patients by using both positive and negative polarities with DNN, LSTM and GRU. The method proposed herein showed that the prediction results of the number of confirmed cases obtained using opinion mining were 1.12% and 3% better than those obtained without using opinion mining in LSTM and GRU model, and it is expected that social data will be used from a qualitative perspective for predicting the number of confirmed cases of infectious diseases.
Collapse
Affiliation(s)
- Youngchul Song
- Department of Industrial & Systems Engineering, Dongguk University, Jung-gu, Seoul, South Korea
| | - Byungun Yoon
- Department of Industrial & Systems Engineering, Dongguk University, Jung-gu, Seoul, South Korea
| |
Collapse
|
2
|
Ofori SK, Dankwa EA, Estrada EH, Hua X, Kimani TN, Wade CG, Buckee CO, Murray MB, Hedt-Gauthier BL. COVID-19 vaccination strategies in Africa: A scoping review of the use of mathematical models to inform policy. Trop Med Int Health 2024; 29:466-476. [PMID: 38740040 DOI: 10.1111/tmi.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Mathematical models are vital tools to understand transmission dynamics and assess the impact of interventions to mitigate COVID-19. However, historically, their use in Africa has been limited. In this scoping review, we assess how mathematical models were used to study COVID-19 vaccination to potentially inform pandemic planning and response in Africa. METHODS We searched six electronic databases: MEDLINE, Embase, Web of Science, Global Health, MathSciNet and Africa-Wide NiPAD, using keywords to identify articles focused on the use of mathematical modelling studies of COVID-19 vaccination in Africa that were published as of October 2022. We extracted the details on the country, author affiliation, characteristics of models, policy intent and heterogeneity factors. We assessed quality using 21-point scale criteria on model characteristics and content of the studies. RESULTS The literature search yielded 462 articles, of which 32 were included based on the eligibility criteria. Nineteen (59%) studies had a first author affiliated with an African country. Of the 32 included studies, 30 (94%) were compartmental models. By country, most studies were about or included South Africa (n = 12, 37%), followed by Morocco (n = 6, 19%) and Ethiopia (n = 5, 16%). Most studies (n = 19, 59%) assessed the impact of increasing vaccination coverage on COVID-19 burden. Half (n = 16, 50%) had policy intent: prioritising or selecting interventions, pandemic planning and response, vaccine distribution and optimisation strategies and understanding transmission dynamics of COVID-19. Fourteen studies (44%) were of medium quality and eight (25%) were of high quality. CONCLUSIONS While decision-makers could draw vital insights from the evidence generated from mathematical modelling to inform policy, we found that there was limited use of such models exploring vaccination impacts for COVID-19 in Africa. The disparity can be addressed by scaling up mathematical modelling training, increasing collaborative opportunities between modellers and policymakers, and increasing access to funding.
Collapse
Affiliation(s)
- Sylvia K Ofori
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Emmanuelle A Dankwa
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eve Hiyori Estrada
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyi Hua
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| | - Teresia N Kimani
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
- Department of Health Services, Kiambu County, Ministry of Health Kenya, Kiambu County, Kenya
| | - Carrie G Wade
- Countway Library, Harvard School of Medicine, Boston, Massachusetts, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Megan B Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Bethany L Hedt-Gauthier
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Fu Y, Liu Y, Song W, Yang D, Wu W, Lin J, Yang X, Zeng J, Rong L, Xia J, Lei H, Yang R, Zhang M, Liao Y. Early monitoring-to-warning Internet of Things system for emerging infectious diseases via networking of light-triggered point-of-care testing devices. EXPLORATION (BEIJING, CHINA) 2023; 3:20230028. [PMID: 38264687 PMCID: PMC10742204 DOI: 10.1002/exp.20230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 01/25/2024]
Abstract
Early monitoring and warning arrangements are effective ways to distinguish infectious agents and control the spread of epidemic diseases. Current testing technologies, which cannot achieve rapid detection in the field, have a risk of slowing down the response time to the disease. In addition, there is still no epidemic surveillance system, implementing prevention and control measures is slow and inefficient. Motivated by these clinical needs, a sample-to-answer genetic diagnosis platform based on light-controlled capillary modified with a photocleavable linker is first developed, which could perform nucleic acid separation and release by light irradiation in less than 30 seconds. Then, on site polymerase chain reaction was performed in a handheld closed-loop convective system. Test reports are available within 20 min. Because this method is portable, rapid, and easy to operate, it has great potential for point-of-care testing. Additionally, through multiple device networking, a real-time artificial intelligence monitoring system for pathogens was developed on a cloud server. Through data reception, analysis, and visualization, the system can send early warning signals for disease control and prevention. Thus, anti-epidemic measures can be implemented effectively, and deploying and running this system can improve the capabilities for the prevention and control of infectious diseases.
Collapse
Affiliation(s)
- Yu Fu
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhouChina
- Longgang District Central Hospital of ShenzhenShenzhenChina
- National Clinical Research Center for Infectious Diseasethe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhen Third People's HospitalShenzhenChina
| | - Yan Liu
- Institute for Health Innovation and TechnologyNational University of SingaporeSingaporeSingapore
| | - Wenlu Song
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhouChina
| | - Delong Yang
- Department of Burn Surgerythe First People's Hospital of FoshanFoshanChina
| | - Wenjie Wu
- Department of Burn and Plastic SurgeryGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Jingyan Lin
- National Clinical Research Center for Infectious Diseasethe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhen Third People's HospitalShenzhenChina
| | - Xiongtiao Yang
- Longgang District Central Hospital of ShenzhenShenzhenChina
| | - Jian Zeng
- Longgang District Central Hospital of ShenzhenShenzhenChina
| | - Lingzhi Rong
- Longgang District Central Hospital of ShenzhenShenzhenChina
| | - Jiaojiao Xia
- Longgang District Central Hospital of ShenzhenShenzhenChina
| | - Hongyi Lei
- Longgang District Central Hospital of ShenzhenShenzhenChina
| | - Ronghua Yang
- Department of Burn and Plastic SurgeryGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Mingxia Zhang
- National Clinical Research Center for Infectious Diseasethe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhen Third People's HospitalShenzhenChina
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Wang P, Huang J. A data-driven framework to assess population dynamics during novel coronavirus outbreaks: A case study on Xiamen Island, China. PLoS One 2023; 18:e0293803. [PMID: 37948384 PMCID: PMC10637684 DOI: 10.1371/journal.pone.0293803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
The outbreak of the Coronavirus Disease 2019 (COVID-19) has profoundly influenced daily life, necessitating the understanding of the relationship between the epidemic's progression and population dynamics. In this study, we present a data-driven framework that integrates GIS-based data mining technology and a Susceptible, Exposed, Infected and Recovered (SEIR) model. This approach helps delineate population dynamics at the grid and community scales and analyze the impacts of government policies, urban functional areas, and intercity flows on population dynamics during the pandemic. Xiamen Island was selected as a case study to validate the effectiveness of the data-driven framework. The results of the high/low cluster analysis provide 99% certainty (P < 0.01) that the population distribution between January 23 and March 16, 2020, was not random, a phenomenon referred to as high-value clustering. The SEIR model predicts that a ten-day delay in implementing a lockdown policy during an epidemic can lead to a significant increase in the number of individuals infected by the virus. Throughout the epidemic prevention and control period (January 23 to February 21, 2020), residential and transportation areas housed more residents. After the resumption of regular activities, the population was mainly concentrated in residential, industrial, and transportation, as well as road facility areas. Notably, the migration patterns into and out of Xiamen were primarily centered on neighboring cities both before and after the outbreak. However, migration indices from cities outside the affected province drastically decreased and approached zero following the COVID-19 outbreak. Our findings offer new insights into the interplay between the epidemic's development and population dynamics, which enhances the prevention and control of the coronavirus epidemic.
Collapse
Affiliation(s)
- Peng Wang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, China
| | - Jinliang Huang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Zelenkov Y, Reshettsov I. Analysis of the COVID-19 pandemic using a compartmental model with time-varying parameters fitted by a genetic algorithm. EXPERT SYSTEMS WITH APPLICATIONS 2023; 224:120034. [PMID: 37033691 PMCID: PMC10072952 DOI: 10.1016/j.eswa.2023.120034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 05/21/2023]
Abstract
Analyzing the COVID-19 pandemic is a critical factor in developing effective policies to deal with similar challenges in the future. However, many parameters (e.g., the actual number of infected people, the effectiveness of vaccination) are still subject to considerable debate because they are unobservable. To model a pandemic and estimate unobserved parameters, researchers use compartmental models. Most often, in such models, the transition rates are considered as constants, which allows simulating only one epidemiological wave. However, multiple waves have been reported for COVID-19 caused by different strains of the virus. This paper presents an approach based on the reconstruction of real distributions of transition rates using genetic algorithms, which makes it possible to create a model that describes several pandemic peaks. The model is fitted on registered COVID-19 cases in four countries with different pandemic control strategies (Germany, Sweden, UK, and US). Mean absolute percentage error (MAPE) was chosen as the objective function, the MAPE values of 2.168%, 2.096%, 1.208% and 1.703% were achieved for the listed countries, respectively. Simulation results are consistent with the empirical statistics of medical studies, which confirms the quality of the model. In addition to observables such as registered infected, the output of the model contains variables that cannot be measured directly. Among them are the proportion of the population protected by vaccines, the size of the exposed compartment, and the number of unregistered cases of COVID-19. According to the results, at the peak of the pandemic, between 14% (Sweden) and 25% (the UK) of the population were infected. At the same time, the number of unregistered cases exceeds the number of registered cases by 17 and 3.4 times, respectively. The average duration of the vaccine induced immune period is shorter than claimed by vaccine manufacturers, and the effectiveness of vaccination has declined sharply since the appearance of the Delta and Omicron strains. However, on average, vaccination reduces the risk of infection by about 65-70%.
Collapse
Affiliation(s)
- Yuri Zelenkov
- HSE Graduate School of Business, HSE University, 109028, 11 Pokrovsky blv., Moscow, Russian Federation
| | - Ivan Reshettsov
- HSE Graduate School of Business, HSE University, 109028, 11 Pokrovsky blv., Moscow, Russian Federation
| |
Collapse
|
6
|
Batistela CM, Correa DPF, Bueno ÁM, Piqueira JRC. SIRSi-vaccine dynamical model for the Covid-19 pandemic. ISA TRANSACTIONS 2023; 139:391-405. [PMID: 37217378 PMCID: PMC10186248 DOI: 10.1016/j.isatra.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Covid-19, caused by severe acute respiratory syndrome coronavirus 2, broke out as a pandemic during the beginning of 2020. The rapid spread of the disease prompted an unprecedented global response involving academic institutions, regulatory agencies, and industries. Vaccination and nonpharmaceutical interventions including social distancing have proven to be the most effective strategies to combat the pandemic. In this context, it is crucial to understand the dynamic behavior of the Covid-19 spread together with possible vaccination strategies. In this study, a susceptible-infected-removed-sick model with vaccination (SIRSi-vaccine) was proposed, accounting for the unreported yet infectious. The model considered the possibility of temporary immunity following infection or vaccination. Both situations contribute toward the spread of diseases. The transcritical bifurcation diagram of alternating and mutually exclusive stabilities for both disease-free and endemic equilibria were determined in the parameter space of vaccination rate and isolation index. The existing equilibrium conditions for both points were determined in terms of the epidemiological parameters of the model. The bifurcation diagram allowed us to estimate the maximum number of confirmed cases expected for each set of parameters. The model was fitted with data from São Paulo, the state capital of SP, Brazil, which describes the number of confirmed infected cases and the isolation index for the considered data window. Furthermore, simulation results demonstrate the possibility of periodic undamped oscillatory behavior of the susceptible population and the number of confirmed cases forced by the periodic small-amplitude oscillations in the isolation index. The main contributions of the proposed model are as follows: A minimum effort was required when vaccination was combined with social isolation, while additionally ensuring the existence of equilibrium points. The model could provide valuable information for policymakers, helping define disease prevention mitigation strategies that combine vaccination and non-pharmaceutical interventions, such as social distancing and the use of masks. In addition, the SIRSi-vaccine model facilitated the qualitative assessment of information regarding the unreported infected yet infectious cases, while considering temporary immunity, vaccination, and social isolation index.
Collapse
Affiliation(s)
| | - Diego P F Correa
- Federal University of ABC - UFABC - São Bernardo do Campo, SP, Brazil.
| | - Átila M Bueno
- Polytechnic School of University of São Paulo, São Paulo, SP, Brazil.
| | | |
Collapse
|
7
|
Zaeri N. Artificial intelligence and machine learning responses to COVID-19 related inquiries. J Med Eng Technol 2023; 47:301-320. [PMID: 38625639 DOI: 10.1080/03091902.2024.2321846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/18/2024] [Indexed: 04/17/2024]
Abstract
Researchers and scientists can use computational-based models to turn linked data into useful information, aiding in disease diagnosis, examination, and viral containment due to recent artificial intelligence and machine learning breakthroughs. In this paper, we extensively study the role of artificial intelligence and machine learning in delivering efficient responses to the COVID-19 pandemic almost four years after its start. In this regard, we examine a large number of critical studies conducted by various academic and research communities from multiple disciplines, as well as practical implementations of artificial intelligence algorithms that suggest potential solutions in investigating different COVID-19 decision-making scenarios. We identify numerous areas where artificial intelligence and machine learning can impact this context, including diagnosis (using chest X-ray imaging and CT imaging), severity, tracking, treatment, and the drug industry. Furthermore, we analyse the dilemma's limits, restrictions, and hazards.
Collapse
Affiliation(s)
- Naser Zaeri
- Faculty of Computer Studies, Arab Open University, Kuwait
| |
Collapse
|
8
|
Turker M, Bingol HO. Multi-layer network approach in modeling epidemics in an urban town. THE EUROPEAN PHYSICAL JOURNAL. B 2023; 96:16. [PMID: 36776155 PMCID: PMC9901843 DOI: 10.1140/epjb/s10051-023-00484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACT The last three years have been an extraordinary time with the COVID-19 pandemic killing millions, affecting and distressing billions of people worldwide. Authorities took various measures such as turning school and work to remote and prohibiting social relations via curfews. In order to mitigate the negative impact of the epidemics, researchers tried to estimate the future of the pandemic for different scenarios, using forecasting techniques and epidemics simulations on networks. Intending to better represent the real-life in an urban town in high resolution, we propose a novel multi-layer network model, where each layer corresponds to a different interaction that occurs daily, such as "household", "work" or "school". Our simulations indicate that locking down "friendship" layer has the highest impact on slowing down epidemics. Hence, our contributions are twofold, first we propose a parametric network generator model; second, we run SIR simulations on it and show the impact of layers.
Collapse
Affiliation(s)
- Meliksah Turker
- Department of Computer Engineering, Bogazici University, Istanbul, 34342 Turkey
| | - Haluk O. Bingol
- Department of Computer Engineering, Bogazici University, Istanbul, 34342 Turkey
| |
Collapse
|
9
|
Liu XD, Wang W, Yang Y, Hou BH, Olasehinde TS, Feng N, Dong XP. Nesting the SIRV model with NAR, LSTM and statistical methods to fit and predict COVID-19 epidemic trend in Africa. BMC Public Health 2023; 23:138. [PMID: 36658494 PMCID: PMC9851734 DOI: 10.1186/s12889-023-14992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Compared with other regions in the world, the transmission characteristics of the COVID-19 epidemic in Africa are more obvious, has a unique transmission mode in this region; At the same time, the data related to the COVID-19 epidemic in Africa is characterized by low data quality and incomplete data coverage, which makes the prediction method of COVID-19 epidemic suitable for other regions unable to achieve good results in Africa. In order to solve the above problems, this paper proposes a prediction method that nests the in-depth learning method in the mechanism model. From the experimental results, it can better solve the above problems and better adapt to the transmission characteristics of the COVID-19 epidemic in African countries. METHODS Based on the SIRV model, the COVID-19 transmission rate and trend from September 2021 to January 2022 of the top 15 African countries (South Africa, Morocco, Tunisia, Libya, Egypt, Ethiopia, Kenya, Zambia, Algeria, Botswana, Nigeria, Zimbabwe, Mozambique, Uganda, and Ghana) in the accumulative number of COVID-19 confirmed cases was fitted by using the data from Worldometer. Non-autoregressive (NAR), Long-short term memory (LSTM), Autoregressive integrated moving average (ARIMA) models, Gaussian and polynomial functions were used to predict the transmission rate β in the next 7, 14, and 21 days. Then, the predicted transmission rate βs were substituted into the SIRV model to predict the number of the COVID-19 active cases. The error analysis was conducted using root-mean-square error (RMSE) and mean absolute percentage error (MAPE). RESULTS The fitting curves of the 7, 14, and 21 days were consistent with and higher than the original curves of daily active cases (DAC). The MAPE between the fitted and original 7-day DAC was only 1.15% and increased with the longer of predict days. Both the predicted β and DAC of the next 7, 14, and 21 days by NAR and LSTM nested models were closer to the real ones than other three ones. The minimum RMSEs for the predicted number of COVID-19 active cases in the next 7, 14, and 21 days were 12,974, 14,152, and 12,211 people, respectively when the order of magnitude for was 106, with the minimum MAPE being 1.79%, 1.97%, and 1.64%, respectively. CONCLUSION Nesting the SIRV model with NAR, LSTM, ARIMA methods etc. through functionalizing β respectively could obtain more accurate fitting and predicting results than these models/methods alone for the number of confirmed COVID-19 cases in Africa in which nesting with NAR had the highest accuracy for the 14-day and 21-day predictions. The nested model was of high significance for early understanding of the COVID-19 disease burden and preparedness for the response.
Collapse
Affiliation(s)
- Xu-Dong Liu
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing, 100124 P. R. China
- Key Laboratory of Computational Intelligence and Intelligent Systems, Beijing University of Technology, Chaoyang District, Beijing, 100124 P. R. China
| | - Wei Wang
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing, 100124 P. R. China
- Key Laboratory of Computational Intelligence and Intelligent Systems, Beijing University of Technology, Chaoyang District, Beijing, 100124 P. R. China
| | - Yi Yang
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing, 100124 P. R. China
| | - Bo-Han Hou
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing, 100124 P. R. China
| | - Toba Stephen Olasehinde
- Institute of Agricultural Economics and Development, Graduate School of Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100098 P. R. China
| | - Ning Feng
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Room 211, 155 Changbai Road, Changping District, Beijing, 102206 P. R. China
| | - Xiao-Ping Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, 102206 Beijing, China
| |
Collapse
|
10
|
Rehman AU, Mian SH, Usmani YS, Abidi MH, Mohammed MK. Modeling Consequences of COVID-19 and Assessing Its Epidemiological Parameters: A System Dynamics Approach. Healthcare (Basel) 2023; 11:healthcare11020260. [PMID: 36673628 PMCID: PMC9858678 DOI: 10.3390/healthcare11020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
In 2020, coronavirus (COVID-19) was declared a global pandemic and it remains prevalent today. A necessity to model the transmission of the virus has emerged as a result of COVID-19's exceedingly contagious characteristics and its rapid propagation throughout the world. Assessing the incidence of infection could enable policymakers to identify measures to halt the pandemic and gauge the required capacity of healthcare centers. Therefore, modeling the susceptibility, exposure, infection, and recovery in relation to the COVID-19 pandemic is crucial for the adoption of interventions by regulatory authorities. Fundamental factors, such as the infection rate, mortality rate, and recovery rate, must be considered in order to accurately represent the behavior of the pandemic using mathematical models. The difficulty in creating a mathematical model is in identifying the real model variables. Parameters might vary significantly across models, which can result in variations in the simulation results because projections primarily rely on a particular dataset. The purpose of this work was to establish a susceptible-exposed-infected-recovered (SEIR) model describing the propagation of the COVID-19 outbreak throughout the Kingdom of Saudi Arabia (KSA). The goal of this study was to derive the essential COVID-19 epidemiological factors from actual data. System dynamics modeling and design of experiment approaches were used to determine the most appropriate combination of epidemiological parameters and the influence of COVID-19. This study investigates how epidemiological variables such as seasonal amplitude, social awareness impact, and waning time can be adapted to correctly estimate COVID-19 scenarios such as the number of infected persons on a daily basis in KSA. This model can also be utilized to ascertain how stress (or hospital capacity) affects the percentage of hospitalizations and the number of deaths. Additionally, the results of this study can be used to establish policies or strategies for monitoring or restricting COVID-19 in Saudi Arabia.
Collapse
Affiliation(s)
- Ateekh Ur Rehman
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
- Correspondence:
| | - Syed Hammad Mian
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Yusuf Siraj Usmani
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mustufa Haider Abidi
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Muneer Khan Mohammed
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
11
|
Mamis K, Farazmand M. Stochastic compartmental models of the COVID-19 pandemic must have temporally correlated uncertainties. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Compartmental models are an important quantitative tool in epidemiology, enabling us to forecast the course of a communicable disease. However, the model parameters, such as the infectivity rate of the disease, are riddled with uncertainties, which has motivated the development and use of stochastic compartmental models. Here, we first show that a common stochastic model, which treats the uncertainties as white noise, is fundamentally flawed since it erroneously implies that greater parameter uncertainties will lead to the eradication of the disease. Then, we present a principled modelling of the uncertainties based on reasonable assumptions on the contacts of each individual. Using the central limit theorem and Doob’s theorem on Gaussian Markov processes, we prove that the correlated Ornstein–Uhlenbeck (OU) process is the appropriate tool for modelling uncertainties in the infectivity rate. We demonstrate our results using a compartmental model of the COVID-19 pandemic and the available US data from the Johns Hopkins University COVID-19 database. In particular, we show that the white noise stochastic model systematically underestimates the severity of the Omicron variant of COVID-19, whereas the OU model correctly forecasts the course of this variant. Moreover, using an SIS model of sexually transmitted disease, we derive an exact closed-form solution for the final distribution of infected individuals. This analytical result shows that the white noise model underestimates the severity of the pandemic because of unrealistic noise-induced transitions. Our results strongly support the need for temporal correlations in modelling of uncertainties in compartmental models of infectious disease.
Collapse
Affiliation(s)
- Konstantinos Mamis
- Department of Mathematics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695-8205, USA
| | - Mohammad Farazmand
- Department of Mathematics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695-8205, USA
| |
Collapse
|
12
|
Silva IR, Zhuang Y, Bhattacharjee D, de Almeida IR. Regression model for the reported infected during emerging pandemics under the stochastic SEIR. COMPUTATIONAL AND APPLIED MATHEMATICS 2023; 42:96. [PMCID: PMC9955534 DOI: 10.1007/s40314-023-02241-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 10/30/2024]
Abstract
The COVID-19 pandemic revealed the necessity of measuring the statistical relationship between the transmission rate of epidemic diseases and the social/behavioral, logistical, and economic variables of the affected region. This paper introduces a regression model to estimate the impact of such covariates on the infectious rate of epidemiological agents. Hidden logistical predictor components, such as weekly seasonality of reported data, can also be accessed with the proposed methodology. For this, we assume that the dynamics of officially reported data of emerging pandemics, related to infected groups, follows a stochastic SEIR model. The main advantage of our method is that it is based on a new three-step algorithm that combines the classical likelihood principle, the minimization of the mean squared error, and a tri-section algorithm to estimate, simultaneously, the coefficients of the covariates and the parameters of the compartmental model. Simulation studies are provided to certify the accuracy of the proposed inference methodology. The model is further applied to analyze the official statistical reports of COVID-19 data in the state of São Paulo, Brazil.
Collapse
|
13
|
Stanovov V, Grabljevec S, Akhmedova S, Semenkin E, Stojanović R, Rozman Č, Škraba A. Identification of COVID-19 spread mechanisms based on first-wave data, simulation models, and evolutionary algorithms. PLoS One 2022; 17:e0279427. [PMID: 36576938 PMCID: PMC9797101 DOI: 10.1371/journal.pone.0279427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The COVID-19 epidemic has shown that efficient prediction models are required, and the well-known SI, SIR, and SEIR models are not always capable of capturing the real dynamics. Modified models with novel structures could help identify unknown mechanisms of COVID-19 spread. OBJECTIVE Our objective is to provide additional insights into the COVID-19 spread mechanisms based on different models' parameterization which was performed using evolutionary algorithms and the first-wave data. METHODS Data from the Our World in Data COVID-19 database was analysed, and several models-SI, SIR, SEIR, SEIUR, and Bass diffusion-and their variations were considered for the first wave of the COVID-19 pandemic. The models' parameters were tuned with differential evolution optimization method L-SHADE to find the best fit. The algorithm for the automatic identification of the first wave was developed, and the differential evolution was applied to model parameterization. The reproduction rates (R0) for the first wave were calculated for 61 countries based on the best fits. RESULTS The performed experiments showed that the Bass diffusion model-based modification could be superior compared to SI, SIR, SEIR and SEIUR due to the component responsible for spread from an external factor, which is not directly dependent on contact with infected individuals. The developed modified models containing this component were shown to perform better when fitting to the first-wave cumulative infections curve. In particular, the modified SEIR model was better fitted to the real-world data than the classical SEIR in 43 cases out of 61, based on Mann-Whitney U tests; the Bass diffusion model was better than SI for 57 countries. This showed the limitation of the classical models and indicated ways to improve them. CONCLUSIONS By using the modified models, the mechanism of infection spread, which is not directly dependent on contacts, was identified, which significantly influences the dynamics of the spread of COVID-19.
Collapse
Affiliation(s)
- Vladimir Stanovov
- Siberian Institute of Applied System Analysis Named After A.N. Antamoshkin, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Krasnoyarsk Krai, Russian Federation
- * E-mail:
| | - Stanko Grabljevec
- Department of Anesthesiology and Perioperative Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Shakhnaz Akhmedova
- Siberian Institute of Applied System Analysis Named After A.N. Antamoshkin, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Krasnoyarsk Krai, Russian Federation
| | - Eugene Semenkin
- Siberian Institute of Applied System Analysis Named After A.N. Antamoshkin, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Krasnoyarsk Krai, Russian Federation
| | - Radovan Stojanović
- Department of Electrical Engineering and Computer Technology, Faculty of Electrical Engineering, University of Montenegro, Podgorica, Montenegro
| | - Črtomir Rozman
- Department of Agricultural Economics, Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | - Andrej Škraba
- Department of Informatics, Cybernetics & Decision Support Systems Laboratory, Faculty of Organizational Sciences, University of Maribor, Kranj, Slovenia
| |
Collapse
|
14
|
Prediction of Omicron Virus Using Combined Extended Convolutional and Recurrent Neural Networks Technique on CT-Scan Images. Interdiscip Perspect Infect Dis 2022; 2022:1525615. [PMID: 36562006 PMCID: PMC9763984 DOI: 10.1155/2022/1525615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
COVID-19 has sparked a global pandemic, with a variety of inflamed instances and deaths increasing on an everyday basis. Researchers are actively increasing and improving distinct mathematical and ML algorithms to forecast the infection. The prediction and detection of the Omicron variant of COVID-19 brought new issues for the health fraternity due to its ubiquity in human beings. In this research work, two learning algorithms, namely, deep learning (DL) and machine learning (ML), were developed to forecast the Omicron virus infections. Automatic disease prediction and detection have become crucial issues in medical science due to rapid population growth. In this research study, a combined Extended CNN-RNN research model was developed on a chest CT-scan image dataset to predict the number of +ve and -ve cases of Omicron virus infections. The proposed research model was evaluated and compared against the existing system utilizing a dataset of 16,733-sample training and testing CT-scan images collected from the Kaggle repository. This research article aims to introduce a combined ML and DL technique based on the combination of an Extended Convolutional Neural Network (ECNN) and an Extended Recurrent Neural Network (ERNN) to diagnose and predict Omicron virus-infected cases automatically using chest CT-scan images. To overcome the drawbacks of the existing system, this research proposes a combined research model that is ECNN-ERNN, where ECNN is used for the extraction of deep features and ERNN is used for exploration using extracted features. A dataset of 16,733 Omicron computer tomography images was used as a pilot assessment for this proposed prototype. The investigational experiment results show that the projected prototype provides 97.50% accuracy, 98.10% specificity, 98.80% of AUC, and 97.70% of F1-score. To the last, the study outlines the advantages being offered by the proposed model with respect to other existing models by comparing different parameters of validation such as accuracy, error rate, data size, time complexity, and execution time.
Collapse
|
15
|
Shi XL, Wei FF, Chen WN. A swarm-optimizer-assisted simulation and prediction model for emerging infectious diseases based on SEIR. COMPLEX INTELL SYST 2022; 9:2189-2204. [PMID: 36405533 PMCID: PMC9667448 DOI: 10.1007/s40747-022-00908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
Mechanism-driven models based on transmission dynamics and statistic models driven by public health data are two main methods for simulating and predicting emerging infectious diseases. In this paper, we intend to combine these two methods to develop a more comprehensive model for the simulation and prediction of emerging infectious diseases. First, we combine a standard epidemic dynamic, the susceptible–exposed–infected–recovered (SEIR) model with population migration. This model can provide a biological spread process for emerging infectious diseases. Second, to determine suitable parameters for the model, we propose a data-driven approach, in which the public health data and population migration data are assembled. Moreover, an objective function is defined to minimize the error based on these data. Third, based on the proposed model, we further develop a swarm-optimizer-assisted simulation and prediction method, which contains two modules. In the first module, we use a level-based learning swarm optimizer to optimize the parameters required in the epidemic mechanism. In the second module, the optimized parameters are used to predicate the spread of emerging infectious diseases. Finally, various experiments are conducted to validate the effectiveness of the proposed model and method.
Collapse
Affiliation(s)
- Xuan-Li Shi
- grid.79703.3a0000 0004 1764 3838School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Feng-Feng Wei
- grid.79703.3a0000 0004 1764 3838School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Wei-Neng Chen
- grid.79703.3a0000 0004 1764 3838School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006 China
| |
Collapse
|
16
|
Phuong J, Riches NO, Calzoni L, Datta G, Duran D, Lin AY, Singh RP, Solomonides AE, Whysel NY, Kavuluru R. Toward informatics-enabled preparedness for natural hazards to minimize health impacts of climate change. J Am Med Inform Assoc 2022; 29:2161-2167. [PMID: 36094062 PMCID: PMC9667167 DOI: 10.1093/jamia/ocac162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 09/14/2023] Open
Abstract
Natural hazards (NHs) associated with climate change have been increasing in frequency and intensity. These acute events impact humans both directly and through their effects on social and environmental determinants of health. Rather than relying on a fully reactive incident response disposition, it is crucial to ramp up preparedness initiatives for worsening case scenarios. In this perspective, we review the landscape of NH effects for human health and explore the potential of health informatics to address associated challenges, specifically from a preparedness angle. We outline important components in a health informatics agenda for hazard preparedness involving hazard-disease associations, social determinants of health, and hazard forecasting models, and call for novel methods to integrate them toward projecting healthcare needs in the wake of a hazard. We describe potential gaps and barriers in implementing these components and propose some high-level ideas to address them.
Collapse
Affiliation(s)
- Jimmy Phuong
- University of Washington, School of Medicine, Research Information Technologies, Seattle, Washington, USA
- University of Washington, Harborview Injury Prevention and Research Center, Seattle, Washington, USA
| | - Naomi O Riches
- University of Utah School of Medicine, Obstetrics and Gynecology Research Network, Salt Lake City, Utah, USA
| | - Luca Calzoni
- National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health, Bethesda, Maryland, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gora Datta
- Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Deborah Duran
- National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Asiyah Yu Lin
- National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, USA
| | - Ramesh P Singh
- School of Life and Earth Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Anthony E Solomonides
- Department of Communication Design, NorthShore University Health System, Outcomes Research Network, Research Institute, Evanston, Illinois, USA
| | - Noreen Y Whysel
- New York City College of Technology, CUNY, Brooklyn, New York, USA
| | - Ramakanth Kavuluru
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
17
|
Yi J, Zhang H, Mao J, Chen Y, Zhong H, Wang Y. Review on the COVID-19 pandemic prevention and control system based on AI. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2022; 114:105184. [PMID: 35846728 PMCID: PMC9271459 DOI: 10.1016/j.engappai.2022.105184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 05/05/2023]
Abstract
As a new technology, artificial intelligence (AI) has recently received increasing attention from researchers and has been successfully applied to many domains. Currently, the outbreak of the COVID-19 pandemic has not only put people's lives in jeopardy but has also interrupted social activities and stifled economic growth. Artificial intelligence, as the most cutting-edge science field, is critical in the fight against the pandemic. To respond scientifically to major emergencies like COVID-19, this article reviews the use of artificial intelligence in the combat against the pandemic from COVID-19 large data, intelligent devices and systems, and intelligent robots. This article's primary contributions are in two aspects: (1) we summarized the applications of AI in the pandemic, including virus spreading prediction, patient diagnosis, vaccine development, excluding potential virus carriers, telemedicine service, economic recovery, material distribution, disinfection, and health care. (2) We concluded the faced challenges during the AI-based pandemic prevention process, including multidimensional data, sub-intelligent algorithms, and unsystematic, and discussed corresponding solutions, such as 5G, cloud computing, and unsupervised learning algorithms. This article systematically surveyed the applications and challenges of AI technology during the pandemic, which is of great significance to promote the development of AI technology and can serve as a new reference for future emergencies.
Collapse
Affiliation(s)
- Junfei Yi
- College of Electrical and Information Engineering, Hunan university, changsha, 410006, Hunan, China
| | - Hui Zhang
- College of Robotics, Hunan university, changsha, 410006, Hunan, China
| | - Jianxu Mao
- College of Electrical and Information Engineering, Hunan university, changsha, 410006, Hunan, China
| | - Yurong Chen
- College of Electrical and Information Engineering, Hunan university, changsha, 410006, Hunan, China
| | - Hang Zhong
- College of Electrical and Information Engineering, Hunan university, changsha, 410006, Hunan, China
| | - Yaonan Wang
- College of Electrical and Information Engineering, Hunan university, changsha, 410006, Hunan, China
| |
Collapse
|
18
|
Peng HY, Lin YK, Nguyen PA, Hsu JC, Chou CL, Chang CC, Lin CC, Lam C, Chen CI, Wang KH, Lu CY. Determinants of coronavirus disease 2019 infection by artificial intelligence technology: A study of 28 countries. PLoS One 2022; 17:e0272546. [PMID: 36018862 PMCID: PMC9417026 DOI: 10.1371/journal.pone.0272546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives The coronavirus disease 2019 pandemic has affected countries around the world since 2020, and an increasing number of people are being infected. The purpose of this research was to use big data and artificial intelligence technology to find key factors associated with the coronavirus disease 2019 infection. The results can be used as a reference for disease prevention in practice. Methods This study obtained data from the "Imperial College London YouGov Covid-19 Behaviour Tracker Open Data Hub", covering a total of 291,780 questionnaire results from 28 countries (April 1~August 31, 2020). Data included basic characteristics, lifestyle habits, disease history, and symptoms of each subject. Four types of machine learning classification models were used, including logistic regression, random forest, support vector machine, and artificial neural network, to build prediction modules. The performance of each module is presented as the area under the receiver operating characteristics curve. Then, this study further processed important factors selected by each module to obtain an overall ranking of determinants. Results This study found that the area under the receiver operating characteristics curve of the prediction modules established by the four machine learning methods were all >0.95, and the RF had the highest performance (area under the receiver operating characteristics curve is 0.988). Top ten factors associated with the coronavirus disease 2019 infection were identified in order of importance: whether the family had been tested, having no symptoms, loss of smell, loss of taste, a history of epilepsy, acquired immune deficiency syndrome, cystic fibrosis, sleeping alone, country, and the number of times leaving home in a day. Conclusions This study used big data from 28 countries and artificial intelligence methods to determine the predictors of the coronavirus disease 2019 infection. The findings provide important insights for the coronavirus disease 2019 infection prevention strategies.
Collapse
Affiliation(s)
- Hsiao-Ya Peng
- International PhD Program in Biotech and Healthcare Management, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Biostatistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Phung-Anh Nguyen
- Clinical Data Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
- Research Center of Health Care Industry Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Healthcare Information & Management, Ming Chuan University, Taoyuan, Taiwan
| | - Jason C. Hsu
- International PhD Program in Biotech and Healthcare Management, College of Management, Taipei Medical University, Taipei, Taiwan
- Clinical Data Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
- Research Center of Health Care Industry Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| | - Chun-Liang Chou
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Chi Lin
- International PhD Program in Biotech and Healthcare Management, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Carlos Lam
- Emergency Department, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chang-I Chen
- Department of Healthcare Administration, School of Management, Taipei Medical University, Taipei, Taiwan
| | - Kai-Hsun Wang
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Christine Y. Lu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States of America
| |
Collapse
|
19
|
Early Warning of Infectious Diseases in Hospitals Based on Multi-Self-Regression Deep Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8990907. [PMID: 36032546 PMCID: PMC9410942 DOI: 10.1155/2022/8990907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Objective. Infectious diseases usually spread rapidly. This study aims to develop a model that can provide fine-grained early warnings of infectious diseases using real hospital data combined with disease transmission characteristics, weather, and other multi-source data. Methods. Based on daily data reported for infectious diseases collected from several large general hospitals in China between 2012 and 2020, seven common infectious diseases in medical institutions were screened and a multi self-regression deep (MSRD) neural network was constructed. Using a recurrent neural network as the basic structure, the model can effectively model the epidemiological trend of infectious diseases by considering the current influencing conditions while taking into account the historical development characteristics in time-series data. The fitting and prediction accuracy of the model were evaluated using mean absolute error (MAE) and root mean squared error. Results. The proposed approach is significantly better than the existing infectious disease dynamics model, susceptible-exposed-infected-removed (SEIR), as it addresses the concerns of difficult-to-obtain quantitative data such as latent population, overfitting of long time series, and considering only a single series of the number of sick people without considering the epidemiological characteristics of infectious diseases. We also compare certain machine learning methods in this study. Experimental results demonstrate that the proposed approach achieves an MAE of 0.6928 and 1.3782 for hand, foot, and mouth disease and influenza, respectively. Conclusion. The MRSD-based infectious disease prediction model proposed in this paper can provide daily and instantaneous updates and accurate predictions for epidemic trends.
Collapse
|
20
|
Sioofy Khoojine A, Mahsuli M, Shadabfar M, Hosseini VR, Kordestani H. A proposed fractional dynamic system and Monte Carlo-based back analysis for simulating the spreading profile of COVID-19. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:3427-3437. [PMID: 35371394 PMCID: PMC8965551 DOI: 10.1140/epjs/s11734-022-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/05/2022] [Indexed: 05/04/2023]
Abstract
This paper presents a dynamic system for estimating the spreading profile of COVID-19 in Thailand, taking into account the effects of vaccination and social distancing. For this purpose, a compartmental network is built in which the population is divided into nine mutually exclusive nodes, including susceptible, insusceptible, exposed, infected, vaccinated, recovered, quarantined, hospitalized, and dead. The weight of edges denotes the interaction between the nodes, modeled by a series of conversion rates. Next, the compartmental network and corresponding rates are incorporated into a system of fractional partial differential equations to define the model governing the problem concerned. The fractional degree corresponding to each compartment is considered the node weight in the proposed network. Next, a Monte Carlo-based optimization method is proposed to fit the fractional compartmental network to the actual COVID-19 data of Thailand collected from the World Health Organization. Further, a sensitivity analysis is conducted on the node weights, i.e., fractional orders, to reveal their effect on the accuracy of the fit and model predictions. The results show that the flexibility of the model to adapt to the observed data is markedly improved by lowering the order of the differential equations from unity to a fractional order. The final results show that, assuming the current pandemic situation, the number of infected, recovered, and dead cases in Thailand will, respectively, reach 4300, 4.5 × 10 6 , and 36,000 by the end of 2021.
Collapse
Affiliation(s)
- Arash Sioofy Khoojine
- Faculty of Economics and Business Administration, Yibin University, Yibin, 644000 China
| | - Mojtaba Mahsuli
- Department of Civil Engineering, Center for Infrastructure Sustainability and Resilience Research, Sharif University of Technology, Tehran, 145888-9694 Iran
| | - Mahdi Shadabfar
- Department of Civil Engineering, Center for Infrastructure Sustainability and Resilience Research, Sharif University of Technology, Tehran, 145888-9694 Iran
| | | | - Hadi Kordestani
- School of Civil Engineering, Shandong Jianzhu University, Jinan, 250101 China
| |
Collapse
|
21
|
Hassan A, Prasad D, Rani S, Alhassan M. Gauging the Impact of Artificial Intelligence and Mathematical Modeling in Response to the COVID-19 Pandemic: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7731618. [PMID: 35309167 PMCID: PMC8931177 DOI: 10.1155/2022/7731618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/17/2022] [Indexed: 12/23/2022]
Abstract
While the world continues to grapple with the devastating effects of the SARS-nCoV-2 virus, different scientific groups, including researchers from different parts of the world, are trying to collaborate to discover solutions to prevent the spread of the COVID-19 virus permanently. Henceforth, the current study envisions the analysis of predictive models that employ machine learning techniques and mathematical modeling to mitigate the spread of COVID-19. A systematic literature review (SLR) has been conducted, wherein a search into different databases, viz., PubMed and IEEE Explore, fetched 1178 records initially. From an initial of 1178 records, only 50 articles were analyzed completely. Around (64%) of the studies employed data-driven mathematical models, whereas only (26%) used machine learning models. Hybrid and ARIMA models constituted about (5%) and (3%) of the selected articles. Various Quality Evaluation Metrics (QEM), including accuracy, precision, specificity, sensitivity, Brier-score, F1-score, RMSE, AUC, and prediction and validation cohort, were used to gauge the effectiveness of the studied models. The study also considered the impact of Pfizer-BioNTech (BNT162b2), AstraZeneca (ChAd0x1), and Moderna (mRNA-1273) on Beta (B.1.1.7) and Delta (B.1.617.2) viral variants and the impact of administering booster doses given the evolution of viral variants of the virus.
Collapse
Affiliation(s)
- Afshan Hassan
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Devendra Prasad
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Shalli Rani
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Musah Alhassan
- University of Development Studies, Electrical Engineering Department, School of Engineering, Nyankpala Campus, Ghana
| |
Collapse
|
22
|
Li G, Chen K, Yang H. A new hybrid prediction model of cumulative COVID-19 confirmed data. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 157:1-19. [PMID: 34744323 PMCID: PMC8560186 DOI: 10.1016/j.psep.2021.10.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Establishing an accurate and efficient prediction model is of great significance for governments and other social organizations to formulate prevention and control policies and curb the explosive spread of the pandemic. To improve prediction accuracy of cumulative COVID-19 confirmed data, a new hybrid prediction model based on gradient-based optimizer variational mode decomposition (GVMD), extreme learning machine (ELM), and autoregressive integrated moving average (ARIMA), named GVMD-ELM-ARIMA, is proposed. To solve the problem of selecting the k value and the penalty factor α in variational mode decomposition (VMD), this paper proposes gradient-based optimizer variational mode decomposition (GVMD), which realizes the self-adaptive determination of k value and α value. Firstly, GVMD decomposes the cumulative COVID-19 confirmed data into some intrinsic mode functions (IMFs) and a residual component (IMFr). Secondly, IMFs are predicted by ELM. Then, IMFr is predicted by ARIMA. Finally, the final prediction results are obtained by reconstructing the prediction result of IMFs and IMFr. The cumulative COVID-19 confirmed data of the United States, India and Russia is used to verify its effectiveness. Taking the United States as an example, compared with the average MAPE, RMSE and MAE of the single model, the average MAPE of the hybrid model is reduced by 47.27%, the average RMSE is reduced by 44.50%, and the average MAE is reduced by 55.34%. Compared with GVMD-ELM-ELM, GVMD-ELM-ARIMA proposed in this paper reduces the MAPE by 60%, the RMSE by 56.85%, and the MAE by 61.61%. The experimental results show that GVMD-ELM-ARIMA has best prediction accuracy, and it provides a new method for predicting the cumulative COVID-19 confirmed data.
Collapse
Affiliation(s)
- Guohui Li
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
| | - Kang Chen
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
| | - Hong Yang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
| |
Collapse
|
23
|
Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.
Collapse
|
24
|
Shi Y, Huang R, Cui H. Prediction and Analysis of Tourist Management Strategy Based on the SEIR Model during the COVID-19 Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10548. [PMID: 34639848 PMCID: PMC8508590 DOI: 10.3390/ijerph181910548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Tourism destinations are now facing a dilemma choice of controlling the epidemic or developing the economy. This paper takes Macao, a typical international tourist city, as an example to study the strategy of tourist source control during the COVID-19 period. According to the published epidemic data of Macao, this study has established an improved SEIR (Susceptible-Exposed-Infected-Recovered) model, formulated six control strategies against the current epidemic, and used the model above to simulate the time required for all confirmed cases to recover and discharge under different strategies. By taking into consideration the gross revenue of Macao's gambling industry from 2017 to 2019, the impact of different strategies on the economy is predicted and three control strategies are found to be feasible. This study shows that an effective way to break through the above dilemma is to design the tourist management strategy by screening the source of passengers and controlling the upper limit of capacity of destination. These findings provide a scientific basis for tourism destinations in formulating public policies. The improved SEIR model is more consistent with the actual conversion rule of patients in the current COVID-19 epidemic, and it can be applied to further public health related research.
Collapse
Affiliation(s)
- Yongdong Shi
- School of Business, Macau University of Science and Technology, Macao 999078, China; (Y.S.); (R.H.)
| | - Rongsheng Huang
- School of Business, Macau University of Science and Technology, Macao 999078, China; (Y.S.); (R.H.)
| | - Hanwen Cui
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| |
Collapse
|
25
|
Li T, Luo J, Huang C. Understanding small Chinese cities as COVID-19 hotspots with an urban epidemic hazard index. Sci Rep 2021; 11:14663. [PMID: 34282250 PMCID: PMC8290012 DOI: 10.1038/s41598-021-94144-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple small- to middle-scale cities, mostly located in northern China, became epidemic hotspots during the second wave of the spread of COVID-19 in early 2021. Despite qualitative discussions of potential social-economic causes, it remains unclear how this unordinary pattern could be substantiated with quantitative explanations. Through the development of an urban epidemic hazard index (EpiRank) for Chinese prefectural districts, we came up with a mathematical explanation for this phenomenon. The index is constructed via epidemic simulations on a multi-layer transportation network interconnecting local SEIR transmission dynamics, which characterizes intra- and inter-city population flow with a granular mathematical description. Essentially, we argue that these highlighted small towns possess greater epidemic hazards due to the combined effect of large local population and small inter-city transportation. The ratio of total population to population outflow could serve as an alternative city-specific indicator of such hazards, but its effectiveness is not as good as EpiRank, where contributions from other cities in determining a specific city's epidemic hazard are captured via the network approach. Population alone and city GDP are not valid signals for this indication. The proposed index is applicable to different epidemic settings and can be useful for the risk assessment and response planning of urban epidemic hazards in China. The model framework is modularized and the analysis can be extended to other nations.
Collapse
Affiliation(s)
- Tianyi Li
- grid.10784.3a0000 0004 1937 0482Department of Decision Sciences and Managerial Economics, CUHK Business School, Hong Kong, China
| | - Jiawen Luo
- grid.5801.c0000 0001 2156 2780Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - Cunrui Huang
- grid.12981.330000 0001 2360 039XDepartment of Health Policy and Management, School of Public Health, Sun Yat-sen University, Guangzhou, China ,Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China ,grid.207374.50000 0001 2189 3846School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Born B, Dietrich AM, Müller GJ. The lockdown effect: A counterfactual for Sweden. PLoS One 2021; 16:e0249732. [PMID: 33831093 PMCID: PMC8031244 DOI: 10.1371/journal.pone.0249732] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/23/2021] [Indexed: 01/02/2023] Open
Abstract
While most countries imposed a lockdown in response to the first wave of COVID-19 infections, Sweden did not. To quantify the lockdown effect, we approximate a counterfactual lockdown scenario for Sweden through the outcome in a synthetic control unit. We find, first, that a 9-week lockdown in the first half of 2020 would have reduced infections and deaths by about 75% and 38%, respectively. Second, the lockdown effect starts to materialize with a delay of 3-4 weeks only. Third, the actual adjustment of mobility patterns in Sweden suggests there has been substantial voluntary social restraint, although the adjustment was less strong than under the lockdown scenario. Lastly, we find that a lockdown would not have caused much additional output loss.
Collapse
Affiliation(s)
- Benjamin Born
- Frankfurt School of Finance & Management, CEPR, and CESifo, Frankfurt, Germany
- University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
27
|
Mohammad Masum AK, Khushbu SA, Keya M, Abujar S, Hossain SA. COVID-19 in Bangladesh: A Deeper Outlook into The Forecast with Prediction of Upcoming Per Day Cases Using Time Series. PROCEDIA COMPUTER SCIENCE 2020; 178:291-300. [PMID: 33520018 PMCID: PMC7837051 DOI: 10.1016/j.procs.2020.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A global pandemic on March 11th of 2020, which was initially renowned by the World Health Organization (WHO) revealed the coronavirus (the COVID-19 epidemic). Coronavirus was flown in -December 2019 in Wuhan, Hubei region in China. Currently, the situation is enlarged by the infection in more than 200 countries all over the world. In this situation it was rising into huge forms in Bangladesh too. Modulated with a public dataset delivered by the IEDCR health authority, we have produced a sustainable prognostic method of COVID-19 outbreak in Bangladesh using a deep learning model. Throughout the research, we forecasted up to 30 days in which per day actual prediction was confirmed, death and recoveries number of people. Furthermore, we illustrated that long short-term memory (LSTM) demands the actual output trends among time series data analysis with a controversial study that exceeds random forest (RF) regression and support vector regression (SVR), which both are machine learning (ML) models. The current COVID-19 outbreak in Bangladesh has been considered in this paper. Here, a well-known recurrent neural network (RNN) model in order to referred by the LSTM network that has forecasted COVID-19 cases on per day infected scenario of Bangladesh from May 15th of 2020 till June 15th of 2020. Added with a comparative study that drives into the LSTM, SVR, RF regression which is processed by the RMSE transmission rate. In all respects, in Bangladesh the gravity of COVID-19 has become excessive nowadays so that depending on this situation public health sectors and common people need to be aware of this situation and also be able to get knowledge of how long self-lockdown will be maintained. So far, to the best of our knowledge LSTM based time series analysis forecasting infectious diseases is a well-done formula.
Collapse
Affiliation(s)
| | | | | | - Sheikh Abujar
- Daffodil International University, Dhaka, Bangladesh
| | | |
Collapse
|