1
|
Osikov MV, Korobkin EA, Fedosov AA, Sineglazova AV. The Role of Changes in the Redox Status in the Pathogenesis of Chronic Lymphocytic Leukemia. DOKL BIOCHEM BIOPHYS 2024; 519:564-570. [PMID: 39480632 DOI: 10.1134/s1607672924701217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 11/02/2024]
Abstract
Chronic lymphocytic leukemia is a hemoblastosis of CD5+ B lymphocytes with lymphocytosis, damage to the lymphatic organs, occurring in the older age group, the etiology and pathogenesis of which are not fully understood. Oxidative stress is an important factor in the regulation of stem cells and the activation of intracellular survival signaling pathways in chronic lymphocytic leukemia cells. The aim of the study was to analyze the current data on the role of redox status changes in the pathogenesis of chronic lymphocytic leukemia. A review of published relevant studies 2018-2023, scientific articles in scientific electronic bibliographic databases PubMed and Social Sciences Citation Index, devoted to the pathogenesis of chronic lymphocytic leukemia and the role of free-radical oxidation processes in it was carried out. In chronic lymphocytic leukemia, oxidative stress with a systemic excess of reactive oxygen species, an imbalance in the effectiveness of antioxidant defense is caused mainly by activation of oxidative phosphorylation in mitochondria, low levels of NADPH-oxidase type 2, increased expression of heme oxygenase-1, glutathione peroxidase and glutathione recycling enzymes, superoxide dismutase-2, thioredoxins and decreased expression of catalase. One of the mechanisms of resistance to drug therapy and oxidative stress of chronic lymphocytic leukemia cells is the intracellular signaling pathway dependent on erythroid nuclear factor-2, due to the activation of expression in cells of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, heme oxygenase-1, thioredoxin-1 and -2, reduced glutathione, natural killer cell activity, which is associated with lifespan, chemotaxis, proliferation, and survival. FOXO family proteins are believed to suppress carcinogenesis. FOXO3a increases the expression of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, and the activity of natural killer cells, which promotes the survival of tumor cells. The development of new targeted pharmacological agents that are capable of accumulating reactive oxygen species and reducing antioxidant protection due to the degradation of erythroid nuclear factor-2 and activation of NADPH-quinone oxidoreductase-1 is underway, which modernizes the therapy of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- M V Osikov
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia.
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia.
| | - E A Korobkin
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia
| | - A A Fedosov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation, Moscow, Russia
| | | |
Collapse
|
2
|
Farodoye OM, Otenaike TA, Loreto JS, Adedara AO, Silva MM, Barbosa NV, Rocha JBTD, Abolaji AO, Loreto ELS. Evidence of acrylamide-induced behavioral deficit, mitochondrial dysfunction and cell death in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109971. [PMID: 38972620 DOI: 10.1016/j.cbpc.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Acrylamide (ACR), a ubiquitous compound with diverse route of exposure, has been demonstrated to have detrimental effects on human and animal health. The mechanisms underlying its toxicity is multifaceted and not fully elucidated. This study aims to provide further insight into novel pathways underlying ACR toxicity by leveraging on Drosophila melanogaster as a model organism. The concentrations of acrylamide (25, 50 and 100 mg/kg) and period of exposure (7-days) used in this study was established through a concentration response curve. ACR exposure demonstrably reduced organismal viability, evidenced by decline in survival rate, offspring emergence and deficits in activity, sleep and locomotory behaviors. Using a high-resolution respirometry assay, the role of mitochondria respiratory system in ACR-mediated toxicity in the flies was investigated. Acrylamide caused dysregulation in mitochondrial bioenergetics and respiratory capacity leading to an impaired OXPHOS activity and electron transport, ultimately contributing to the pathological process of ACR-toxicity. Furthermore, ACR exacerbated apoptosis and induced oxidative stress in D. melanogaster. The up-regulation of mRNA transcription of Reaper, Debcl and Dark genes and down-regulation of DIAP1, an ubiquitylation catalyzing enzyme, suggests that ACR promotes apoptosis through disruption of caspase and pro-apoptotic protein ubiquitination and a mitochondria-dependent pathway in Drosophila melanogaster. Conclusively, this study provides valuable insights into the cellular mechanism underlying ACR-mediated toxicity. Additionally, our study reinforces the utility of D. melanogaster as a translational tool for elucidating the complex mechanisms of ACR toxicity.
Collapse
Affiliation(s)
- Oluwabukola Mary Farodoye
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. https://twitter.com/@Bukolarita
| | - Titilayomi Ayomide Otenaike
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. https://twitter.com/@TITILAYOMIADE
| | - Julia Sepel Loreto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Adeola Oluwatosin Adedara
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Monica Medeiros Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Joao Batista Teixeira da Rocha
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Amos Olalekan Abolaji
- Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria. https://twitter.com/@amosabolaji
| | - Elgion Lucio Silva Loreto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Salimi A, Haddadi S, Khezri S, Asgari B, Pourgholi M. Vanillic acid protects mortality and toxicity induced by N-ethyl-N-nitrosourea in mice; in vivo model of chronic lymphocytic leukemia. Toxicol Rep 2024; 12:389-396. [PMID: 38590344 PMCID: PMC10999465 DOI: 10.1016/j.toxrep.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Alkylating agents such as N-Ethyl-N-Nitrosourea (ENU) are ubiquitous within living cells and in the environment. This study designed to evaluate the chemopreventive activity of vanillic acid on ENU-induced toxicity and carcinogenesis in mice as an animal model of chronic lymphocytic leukemia (CLL). The female, Swiss albino mice were divided into three groups each with 7 mice, group I received normal saline, group II, mice received ENU at a dose of 80 mg/kg body weight i.p. to induce CLL on the 31th day of the study, and group III, the mice pretreated with vanillic acid at a dose of 20 mg/kg body weight/day, i.p. up to 30 days and received ENU. The animals were monitored for weight changes and mortality during 120 days, and then were sacrificed for isolation of lymphocytes, as target cells in CLL. Cellular parameters like reactive oxygen species (ROS) formation, malondialdehyde (MDA) production, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) and lysosomal membrane integrity were studied. We found that pretreatment with vanillic acid significantly increased the survival of mice up to 57%, delay in death time (30%) and prevented weight changes after exposure to ENU. In addition, it was found that vanillic acid protected ROS formation, lipid peroxidation mitochondrial dysfunction, and lysosomal membrane destabilization in isolated lymphocytes. These data suggest that vanillic acid exhibited significant protection against ENU-induced toxicity and carcinogenicity, which might be related to the protection of the mitochondria and lysosomes and the reduction of ROS formation and oxidative stress.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
| | - Shadi Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bahare Asgari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahshad Pourgholi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Salimi A, Jamali Z. Teratogenic Effects of Drugs on Primary Lymphocytes Assessed by Flow Cytometry. Methods Mol Biol 2024; 2753:231-249. [PMID: 38285342 DOI: 10.1007/978-1-0716-3625-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Peripheral blood lymphocytes as primary cells can be isolated from human, animal, fetus, and placenta. These cells are an excellent cellular model for the assessment of cytotoxicity, genotoxicity, oxidative stress, and mitochondrial and lysosomal dysfunction induced by drug and chemicals. Moreover, peripheral blood lymphocytes are an easily available source of primary cells appropriate for basic research and in cellular studies regarding teratogenic, genotoxic, and cytotoxic effect of drugs and chemicals. Most drugs and other chemicals that produce birth defects, known as teratogenic agents, produce reactive oxygen species (ROS) formation and mitochondrial and lysosomal dysfunction. It seems that there is an important mechanistic link between oxidative stress, mitochondrial damages, lysosomal integrity, and teratogenic drug-induced birth defects. One of the most sensitive periods in the embryo is transition from an important developmental event to another such as transition from proliferation to differentiation. Mitochondria, lysosomes, and cellular ROS have an important role in proliferative, differentiative, and apoptotic activities during the development. Therefore, disruption of the function of mitochondria, lysosomes, oxidative stress, and redox imbalance leads to cellular dysfunctions and subsequently poor developmental outcomes in the fetus. In this chapter, we will focus on evaluation of mitochondrial/lysosomal functions and estimation of ROS formation using flow cytometry methods in isolated lymphocytes and their isolated mitochondria.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
5
|
Fazeli Kakhki H, Ghasemzadeh Rahbardar M, Razavi BM, Heidari MR, Hosseinzadeh H. Preventive and therapeutic effects of azithromycin on acrylamide-induced neurotoxicity in rats. Neurotoxicology 2024; 100:47-54. [PMID: 38043637 DOI: 10.1016/j.neuro.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Acrylamide (ACR) can induce neurotoxicity through different pathways, including oxidative stress and apoptosis. Azithromycin is well-known for its antioxidant and anti-apoptotic properties. OBJECTIVE To evaluate the potential neuroprotective effect of azithromycin in an in vivo model of ACR-induced neurotoxicity, by investigating its impact on oxidative stress and apoptosis pathways. METHODS Male rats were divided into eleven groups at random (n = 6). 1:control (vehicle), 2:ACR (50 mg/kg, 11 days, I.P.), 3-7:ACR+ azithromycin (3.1, 6.25, 12.5, 25, 50 mg/kg, 11 days, I.P.), 8-9:ACR+ azithromycin (3.1, 6.25 mg/kg, from day 3-11), 10: ACR+ vitamin E (200 mg/kg, every other day, I.P.), 11. Azithromycin (50 mg/kg). Following the treatment period, a gait score examination was performed, and malondialdehyde (MDA), glutathione (GSH), Bcl-2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) ratio and caspase-3 levels in the cerebral cortex were measured. RESULTS Gait abnormality, a drop in GSH, and an increase in lipid peroxidation, Bax/Bcl-2 ratio, and caspase-3 levels were all significantly triggered by ACR in the cerebral cortex versus the control group. Azithromycin 3.1 and 6.25 mg/kg with ACR and azithromycin 6.25 mg/kg with ACR from day 3-11 ameliorated movement disorders caused by ACR. Azithromycin in all doses and both protocols along with ACR decreased the MDA level. Azithromycin (3.1, 6.25 mg/kg) along with ACR in both protocols increased the level of GSH, reduced the Bax/Bcl-2 ratio and caspase-3 amounts in the brain tissue versus the ACR group. CONCLUSIONS Administration of azithromycin had both preventive and therapeutic effects on ACR-induced neurotoxicity through its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Reza Heidari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
7
|
Reyes López MG, Cavazos Garduño A, Franco Rodríguez NE, Silva Jara JM, Serrano Niño JC. [Assessment of the in vitro effect of intra and extracellular extracts of Lactobacillus against genotoxicity and oxidative stress caused by acrylamide]. NUTR HOSP 2023; 40:811-818. [PMID: 36602127 DOI: 10.20960/nh.04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Introduction: acrylamide is formed by the Maillard reaction and is found in many food products subjected to thermal processes, generating genotoxicity and DNA damage. Studies have reported that lactobacilli have the ability to generate compounds with antioxidant, antigenotoxic and antimutagenic activity, which is why the present work aims to evaluate the effect of Lactobacillus strains and their intra and extracellular extracts against genotoxicity and oxidative stress as caused by acrylamide. Methods: a strain of Lactobacillus casei Shirota and a strain of Lactobacillus reuteri NRRL B-14171 were used, both were cultured in MRS broth and subjected to mechanical and enzymatic treatments to obtain extra and intracellular extracts. Lymphocytes were cultured in RPMI medium. Lipid peroxidation was evaluated by TBARS and the antioxidant capacity was measured in the extra and intracellular extracts with the ABTS technique, also using a strain of Saccharomyces cerevisiae RC 212 as a model. The reduction of lipid peroxidation in lymphocytes was measured by TBARS and the reduction of genotoxicity by reducing the formation of micronuclei in lymphocytes. Results: both strains evaluated, as well as their intra and extracellular extracts, showed the ability to counteract oxidative stress and genotoxicity caused by acrylamide. Conclusion: the results found suggest that the use of intra and extracellular extracts of both strains could be an alternative to reduce the effects of genotoxicity and oxidative stress caused by acrylamide without the need for a viable structure.
Collapse
|
8
|
Wu SL, Ju JQ, Ji YM, Zhang HL, Zou YJ, Sun SC. Exposure to acrylamide induces zygotic genome activation defects of mouse embryos. Food Chem Toxicol 2023; 175:113753. [PMID: 36997053 DOI: 10.1016/j.fct.2023.113753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Acrylamide (ACR) is an important chemical raw material for wastewater treatment, paper industry and textile industry, which is widely exposed from occupational, environmental and dietary situation. ACR has neurotoxicity, genotoxicity, potential carcinogenicity and reproductive toxicity. Recent study indicates that ACR affected oocyte maturation quality. In the present study, we reported the effects of ACR exposure on zygotic genome activation (ZGA) in embryos and its related mechanism. Our results showed that ACR treatment caused 2-cell arrest in mouse embryos, indicating the failure of ZGA, which was confirmed by decreased global transcription levels and aberrant expression of ZGA-related and maternal factors. We found that histone modifications such as H3K9me3, H3K27me3 and H3K27ac levels were altered, and this might be due to the occurrence of DNA damage, showing with positive γ-H2A.X signal. Moreover, mitochondrial dysfunction and high levels of ROS were detected in ACR treated embryos, indicating that ACR induced oxidative stress, and this might further cause abnormal distribution of endoplasmic reticulum, Golgi apparatus and lysosomes. In conclusion, our results indicated that ACR exposure disrupted ZGA by inducing mitochondria-based oxidative stress, which further caused DNA damage, aberrant histone modifications and organelles in mouse embryos.
Collapse
Affiliation(s)
- Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Ming Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Aleksandrova S, Alexova R, Dragomanova S, Kalfin R, Nicoletti F, Fagone P, Petralia MC, Mangano K, Tancheva L. Preventive and Therapeutic Effects of Punica granatum L. Polyphenols in Neurological Conditions. Int J Mol Sci 2023; 24:ijms24031856. [PMID: 36768185 PMCID: PMC9916020 DOI: 10.3390/ijms24031856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.
Collapse
Affiliation(s)
- Simona Aleksandrova
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University—Sofia, 2 Zdrave St., 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Kachot RL, Patel UD, Patel HB, Modi CM, Chauhan R, Kariya MH, Bhadaniya AR. Neurotoxicity of acrylamide in adult zebrafish following short-term and long-term exposure: evaluation of behavior alterations, oxidative stress markers, expression of antioxidant genes, and histological examination of the brain and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40116-40131. [PMID: 36607571 DOI: 10.1007/s11356-022-25112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
In the present work, 224 adult female zebrafish (56 fish in each group) were randomly divided into four groups (two control groups and two toxicity groups) as per duration of exposure (7 and 21 days). All fish of the two toxicity groups were exposed to 0.610 mM acrylamide (ACR) concentration for 7 and 21 days. The effects of ACR exposure on behavior, oxidative stress biomarkers, molecular expression of antioxidant genes (sod, cat, and nrf2), and histopathological examination of the brain and eye were examined. Our result shows that ACR exposure for 7 days produced an anxiety-like behavior in zebrafish. Short-term exposure of ACR resulted in alterations of oxidative stress markers (SOD and CAT activity, and the level of GSH and MDA) in the brain and eye of zebrafish. However, the antioxidant defense system of adult female zebrafish could be able to counteract the free radicals generated in long-term ACR exposure as indicated by non-significant difference in oxidative insult following short-term and long-term exposure. ACR exposure downregulated the mRNA expression of the sod, cat, and nrf2 (nuclear factor erythroid 2-related factor 2) genes in the brain and eye without significant difference between the two toxicity groups. Mild histological changes in the dorsal telencephalic area, tectum opticum, medulla, and hypothalamus area of the brain of zebrafish have been observed following short-term and long-term ACR exposure. In the eye, marked histological changes in the retinal pigmented epithelium layer (RPE), structural changes of the photoreceptor layer (PRL) with disorganized layer of rods and cones, and reduction of the relative thickness of the RPE, PRL, outer nuclear layer (ONL), and inner nuclear layer (INL) have been noted following ACR exposure for 21 days as compared to 7 days. ACR produced neurobehavioral aberrations and oxidative stress within 7 days of exposure, while various histological changes in the brain and eyes have been observed following long-term exposure (21 days) to ACR.
Collapse
Affiliation(s)
- Rajesh L Kachot
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India.
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Chirag M Modi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - RadheyShyam Chauhan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Mayank H Kariya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Amit R Bhadaniya
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| |
Collapse
|
11
|
Shabani M, Bayrami D, Moghadam AA, Jamali Z, Salimi A. Pretreatment of ellagic acid protects ifosfamide-induced acute nephrotoxicity in rat kidneys: A mitochondrial, histopathological and oxidative stress approaches. Toxicol Rep 2023; 10:441-447. [PMID: 37125148 PMCID: PMC10133406 DOI: 10.1016/j.toxrep.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Ifosfamide (IFO) kidney damage is an important organ toxicity in children and adults undergoing chemotherapy. Previous evidence has shown that IFO toxic metabolites such as acrolein and are associated with mitochondrial dysfunction, depletion of antioxidants, oxidative stress and may predispose the kidney to IFO toxicity. Bioactive food compounds such as ellagic acid (EA) found in fruits has been described as antioxidant and mitochondrial protective agents against toxicity-related mitochondrial damage and oxidative stress. In current study, the protective effects of EA on IFO-induced nephrotoxicity in male Wistar rats were investigated with histopathological, biochemical, and mitochondrial methods. The rats were randomly divided into four groups, control, IFO, IFO + EA, and EA groups. EA (25 mg/kg, i.p. daily) were administered to animals for 2 consecutive days and IFO (500 mg/kg, i.p.) was administered on third day. The results showed that pretreatment EA significantly increased mitochondrial succinate dehydrogenases (SDH) activity, and protected mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) formation, lipid peroxidation (LPO) and depletion glutathione (GSH). Histopathological findings demonstrated that EA had protective effects and reduced histopathological abnormalities caused by IFO. These results showed that EA administration protects the kidneys against mitochondrial dysfunction, oxidative stress and histopathological abnormality induced by IFO. Taken together, our results demonstrated that EA played a protective role against IFO-induced nephrotoxicity through mitochondrial protection and antioxidant properties.
Collapse
Affiliation(s)
- Mohammad Shabani
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Ashena Moghadam
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Correspondence to: Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
12
|
Cuevas-Magaña MY, Vega-García CC, León-Contreras JC, Hernández-Pando R, Zazueta C, García-Niño WR. Ellagic acid ameliorates hexavalent chromium-induced renal toxicity by attenuating oxidative stress, suppressing TNF-α and protecting mitochondria. Toxicol Appl Pharmacol 2022; 454:116242. [PMID: 36108929 DOI: 10.1016/j.taap.2022.116242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Nephrotoxicity is an important adverse effect of oxidative stress induced by hexavalent chromium [Cr(VI)]. The effect of ellagic acid, a dietary polyphenolic compound with potent antioxidant activity, was investigated in Cr(VI)-induced kidney injury. Six groups of male Wistar rats were treated intragastrically with vehicle or ellagic acid (15 and 30 mg/kg) for 10 days. On day 10, rats received saline or Cr(VI) (K2Cr2O7 15 mg/kg) subcutaneously. Cr(VI) significantly increased kidney weight, affected kidney function assessed by biomarkers in blood and urine (protein, creatinine and urea nitrogen), caused histological changes (tubular injury and glomerular capillary tuft damage), increased markers of oxidative stress and reduced the activity of antioxidant enzymes. In addition, Cr(VI) altered mitochondrial ultrastructure, impaired mitochondrial respiration, increased lipid peroxidation, and inhibited the function of mitochondrial enzymes. Pretreatment with ellagic acid (30 mg/kg) attenuated all the aforementioned alterations. Furthermore, we explored whether ellagic acid might regulate the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 3 (RIPK3) pathway, reducing Cr(VI)-induced tubular necrosis. Cr(VI) upregulated both TNF-α and RIPK3, but ellagic acid only decreased TNF-α levels, having no effect on RIPK3 content. Therefore, understanding the mechanisms through which Cr(VI) promotes necroptosis is crucial for future studies, in order to design strategies to mitigate kidney damage. In conclusion, ellagic acid attenuated Cr(VI)-induced renal alterations by preventing oxidative stress, supporting enzymatic activities, suppressing TNF-α, and preserving mitochondrial ultrastructure and function, most likely due to its antioxidant properties.
Collapse
Affiliation(s)
- Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Claudia Cecilia Vega-García
- Department of Biology of Reproduction, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section. National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico
| | - Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|
13
|
Kumari A, Bhattacharya B, Agarwal T, Paul V, Chakkaravarthi S. Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food Res Int 2022; 156:111172. [DOI: 10.1016/j.foodres.2022.111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/08/2023]
|
14
|
Abstract
EFSA was requested to deliver a statement on a recent publication revisiting the evidence for genotoxicity of acrylamide (AA). The statement was prepared by a Working Group and was endorsed by the CONTAM Panel before its final approval. In interpreting the Terms of Reference, the statement considered the modes of action underlying the carcinogenicity of AA including genotoxic and non-genotoxic effects. Relevant publications since the 2015 CONTAM Panel Opinion on AA in food were reviewed. Several new studies reported positive results on the clastogenic and mutagenic properties of AA and its active metabolite glycidamide (GA). DNA adducts of GA were induced by AA exposure in experimental animals and have also been observed in humans. In addition to the genotoxicity of AA, there is evidence for both secondary DNA oxidation via generation of reactive oxygen species and for non-genotoxic effects which may contribute to carcinogenesis by AA. These studies extend the information assessed by the CONTAM Panel in its 2015 Opinion, and support its conclusions. That Opinion applied the margin of exposure (MOE) approach, as recommended in the EFSA Guidance for substances that are both genotoxic and carcinogenic, for risk characterisation of the neoplastic effects of AA. Based on the new data evaluated, the MOE approach is still considered appropriate, and an update of the 2015 Opinion is not required at the present time.
Collapse
|
15
|
Zhao CY, Hu LL, Xing CH, Lu X, Sun SC, Wei YX, Ren YP. Acrylamide Exposure Destroys the Distribution and Functions of Organelles in Mouse Oocytes. Front Cell Dev Biol 2022; 10:834964. [PMID: 35295848 PMCID: PMC8918731 DOI: 10.3389/fcell.2022.834964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Acrylamide (ACR) is a common industrial ingredient which is also found in foods that are cooked at high temperatures. ACR has been shown to have multiple toxicities including reproductive toxicity. Previous studies reported that ACR caused oocyte maturation defects through the induction of apoptosis and oxidative stress. In the present study, we showed that ACR exposure affected oocyte organelle functions, which might be the reason for oocyte toxicity. We found that exposure to 5 mM ACR reduced oocyte maturation. ACR caused abnormal mitochondrial distribution away from spindle periphery and reduced mitochondrial membrane potential. Further analysis showed that ACR exposure reduced the fluorescence intensity of Rps3 and abnormal distribution of the endoplasmic reticulum, indicating that ACR affected protein synthesis and modification in mouse oocytes. We found the negative effects of ACR on the distribution of the Golgi apparatus; in addition, fluorescence intensity of vesicle transporter Rab8A decreased, suggesting the decrease in protein transport capacity of oocytes. Furthermore, the simultaneous increase in lysosomes and LAMP2 fluorescence intensity was also observed, suggesting that ACR affected protein degradation in oocytes. In conclusion, our results indicated that ACR exposure disrupted the distribution and functions of organelles, which further affected oocyte developmental competence in mice.
Collapse
Affiliation(s)
- Chao-Ying Zhao
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lin-Lin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Lu
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Shao-Chen Sun, ; Yu-Xia Wei, ; Yan-Ping Ren,
| | - Yu-Xia Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Shao-Chen Sun, ; Yu-Xia Wei, ; Yan-Ping Ren,
| | - Yan-Ping Ren
- College of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
- *Correspondence: Shao-Chen Sun, ; Yu-Xia Wei, ; Yan-Ping Ren,
| |
Collapse
|
16
|
Salimi A, Khodaparast F, Bohlooli S, Hashemidanesh N, Baghal E, Rezagholizadeh L. Linalool reverses benzene-induced cytotoxicity, oxidative stress and lysosomal/mitochondrial damages in human lymphocytes. Drug Chem Toxicol 2021; 45:2454-2462. [PMID: 34304650 DOI: 10.1080/01480545.2021.1957563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Benzene exposure results in bone marrow suppression, leading to a decrease in the number of circulating white blood cells, an increased risk of chronic lymphocytic leukemia, acute myeloid leukemia and aplastic anemia. Since the mechanism of induction of benzene toxicity is due to active metabolites through cytochrome p450 enzymes and production of reactive oxygen species (ROS), we hypothesized that natural compound such linalool with anti-inflammatory/antioxidant properties could be effective in reducing its toxicity. Lymphocytes isolated from healthy individuals were simultaneously cotreated with different concentrations of LIN (10, 25 and 50 µM) and benzene (50 µM) for 4 h at 37 °C. After incubation, the toxicity parameters such cytotoxicity, ROS formation, lysosomal membrane integrity, mitochondria membrane potential (ΔΨm) collapse, oxidized/reduced glutathione (GSH/GSSG) and malondialdehyde (MDA) were analyzed using biochemical and flow cytometry evaluations. Our data showed that benzene (50 µM) induced a significant increase in cytotoxicity, ROS formation, mitochondrial membrane potential (MMP) collapse, lipid peroxidation and oxidative stress while LIN with antioxidant potential reversed the toxic effects of benzene on isolated human lymphocytes. Our results suggest that LIN reduces and reverses benzene-induced cytotoxicity, oxidative stress and lysosomal/mitochondrial damages in human lymphocyte. This study demonstrated that cotreatment of LIN with benzene can reduce several parameters indicative of oxidative stress. As such, LIN could represent a potential therapeutic agent in reducing certain aspects of benzene-induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzad Khodaparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahab Bohlooli
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Niloufar Hashemidanesh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elahe Baghal
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Lotfollah Rezagholizadeh
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|