1
|
Piszczatowska K, Czerwaty K, Dżaman K, Jermakow N, Brzost J, Kantor I, Ludwig N, Szczepański MJ. Evaluation of CNPase and TGFβ1/Smad Signalling Pathway Molecule Expression in Sinus Epithelial Tissues of Patients with Chronic Rhinosinusitis with (CRSwNP) and without Nasal Polyps (CRSsNP). J Pers Med 2024; 14:894. [PMID: 39338148 PMCID: PMC11433593 DOI: 10.3390/jpm14090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP, respectively) is a chronic inflammatory disease affecting almost 5 to 12% of the population and exhibiting high recurrence rates after functional endoscopic sinus surgery (FESS). TGFβ1-related pathways contribute to tissue remodelling, which is one of the key aspects of CRS pathogenesis. Additionally, adenosine signalling participates in inflammatory processes, and CNPase was shown to elevate adenosine levels by metabolizing cyclic monophosphates. Thus, the aim of this study was to assess the expression levels of Smad2, pSmad3, TGFβ1, and CNPase protein via immunohistochemistry in sinus epithelial tissues from patients with CRSwNP (n = 20), CRSsNP (n = 23), and non-CRS patients (n = 8). The expression of Smad2, pSmad3, TGFβ1, and CNPase was observed in the sinus epithelium and subepithelial area of all three groups of patients, and their expression correlated with several clinical symptoms of CRS. Smad2 expression was increased in CRSsNP patients compared to CRSwNP patients and controls (p = 0.001 and p < 0.001, respectively), pSmad3 expression was elevated in CRSwNP patients compared to controls (p = 0.007), TGFβ1 expression was elevated in CRSwNP patients compared to controls (p = 0.009), and CNPase was decreased in CRSsNP patients compared to controls (p = 0.03). To the best of our knowledge, we are the first to demonstrate CNPase expression in the upper airway epithelium of CRSwNP, CRSsNP, and non-CRS patients and point out a putative synergy between CNPase and TGFβ1/Smad signalling in CRS pathogenesis that emerges as a novel still undiscovered aspect of CRS pathogenesis; further studies are needed to explore its function in the course of the chronic inflammation of the upper airways.
Collapse
Affiliation(s)
- Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland;
| | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Nils Ludwig
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| |
Collapse
|
2
|
Han Y, Dong C, Hu M, Wang X, Wang G. Unlocking the adenosine receptor mechanism of the tumour immune microenvironment. Front Immunol 2024; 15:1434118. [PMID: 38994361 PMCID: PMC11236561 DOI: 10.3389/fimmu.2024.1434118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The suppressive tumour microenvironment significantly hinders the efficacy of immunotherapy in treating solid tumors. In this context, stromal cells, such as tumour-associated fibroblasts, undergo changes that include an increase in the number and function of immunosuppressive cells. Adenosine, a factor that promotes tumour growth, is produced from ATP breakdown and is markedly elevated in the tumour microenvironment. It acts through specific binding to adenosine receptors, with A2A and A2B adenosine receptor being primary drivers of immunosuppression. This paper presents the roles of various adenosine receptors in different tumour microenvironments. This review focus on the function of adenosine receptors in the stromal cells and non-cellular components of the tumour microenvironment. Additionally, we summarize and discuss recent advances and potential trends in using adenosine receptor antagonists combined with immunotherapy.
Collapse
Affiliation(s)
- Yecheng Han
- General Affairs Office of Shenyang Hongqiao Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mingwang Hu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Gonzalez-Llerena JL, Espinosa-Rodriguez BA, Treviño-Almaguer D, Mendez-Lopez LF, Carranza-Rosales P, Gonzalez-Barranco P, Guzman-Delgado NE, Romo-Mancillas A, Balderas-Renteria I. Cordycepin Triphosphate as a Potential Modulator of Cellular Plasticity in Cancer via cAMP-Dependent Pathways: An In Silico Approach. Int J Mol Sci 2024; 25:5692. [PMID: 38891880 PMCID: PMC11171877 DOI: 10.3390/ijms25115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.
Collapse
Affiliation(s)
- Jose Luis Gonzalez-Llerena
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Bryan Alejandro Espinosa-Rodriguez
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Daniela Treviño-Almaguer
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Luis Fernando Mendez-Lopez
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Pilar Carranza-Rosales
- Laboratory of Cell Biology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Mexico;
| | - Patricia Gonzalez-Barranco
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Nancy Elena Guzman-Delgado
- Health Research Division, High Specialty Medical Unit, Cardiology Hospital N. 34. Mexican Social Security Institute, Monterrey 64360, Mexico;
| | - Antonio Romo-Mancillas
- Computer Aided Drug Design and Synthesis Group, School of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Isaias Balderas-Renteria
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| |
Collapse
|
4
|
Hu Y, Sarkar A, Song K, Michael S, Hook M, Wang R, Heczey A, Song X. Selective refueling of CAR T cells using ADA1 and CD26 boosts antitumor immunity. Cell Rep Med 2024; 5:101530. [PMID: 38688275 PMCID: PMC11148642 DOI: 10.1016/j.xcrm.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is hindered in solid tumor treatment due to the immunosuppressive tumor microenvironment and suboptimal T cell persistence. Current strategies do not address nutrient competition in the microenvironment. Hence, we present a metabolic refueling approach using inosine as an alternative fuel. CAR T cells were engineered to express membrane-bound CD26 and cytoplasmic adenosine deaminase 1 (ADA1), converting adenosine to inosine. Autocrine secretion of ADA1 upon CD3/CD26 stimulation activates CAR T cells, improving migration and resistance to transforming growth factor β1 suppression. Fusion of ADA1 with anti-CD3 scFv further boosts inosine production and minimizes tumor cell feeding. In mouse models of hepatocellular carcinoma and non-small cell lung cancer, metabolically refueled CAR T cells exhibit superior tumor reduction compared to unmodified CAR T cells. Overall, our study highlights the potential of selective inosine refueling to enhance CAR T therapy efficacy against solid tumors.
Collapse
MESH Headings
- Animals
- Adenosine Deaminase/metabolism
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Immunotherapy, Adoptive/methods
- Dipeptidyl Peptidase 4/metabolism
- Dipeptidyl Peptidase 4/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Inosine
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
Collapse
Affiliation(s)
- Yue Hu
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Abhijit Sarkar
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kevin Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Biology, University of Houston, Houston, TX, USA
| | - Sara Michael
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Synthesis Biology, University of Houston, Houston, TX, USA
| | - Magnus Hook
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Andras Heczey
- Texas Children's Hospital, Houston, TX, USA; Department of Pediatric, Baylor College of Medicine, Houston, TX, USA
| | - Xiaotong Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
5
|
Liao J, Chen R, Lin B, Deng R, Liang Y, Zeng J, Ma S, Qiu X. Cross-Talk between the TGF-β and Cell Adhesion Signaling Pathways in Cancer. Int J Med Sci 2024; 21:1307-1320. [PMID: 38818471 PMCID: PMC11134594 DOI: 10.7150/ijms.96274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Transforming growth factor-β (TGF-β) is strongly associated with the cell adhesion signaling pathway in cell differentiation, migration, etc. Mechanistically, TGF-β is secreted in an inactive form and localizes to the extracellular matrix (ECM) via the latent TGF-β binding protein (LTBP). However, it is the release of mature TGF-β that is essential for the activation of the TGF-β signaling pathway. This progress requires specific integrins (one of the main groups of cell adhesion molecules (CAMs)) to recognize and activate the dormant TGF-β. In addition, TGF-β regulates cell adhesion ability through modulating CAMs expression. The aberrant activation of the TGF-β signaling pathway, caused by abnormal expression of key regulatory molecules (such as Smad proteins, certain transcription factors, and non-coding RNAs), promotes tumor invasive and metastasis ability via epithelial-mesenchymal transition (EMT) during the late stages of tumorigenesis. In this paper, we summarize the crosstalk between TGF-β and cell adhesion signaling pathway in cancer and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiahao Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Rentang Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Runhua Deng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Yanfang Liang
- Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan, Guangdong, 523905, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Sha Ma
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Xianxiu Qiu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| |
Collapse
|
6
|
Zhang B, Xi Y, Huang Y, Zhang Y, Guo F, Yang H. Integration of single-nucleus RNA sequencing and network disturbance to elucidate crosstalk between multicomponent drugs and trigeminal ganglia cells in migraine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117286. [PMID: 37838292 DOI: 10.1016/j.jep.2023.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine is caused by hyperactivity of the trigeminovascular system, where trigeminal ganglia (TG) plays an important role. TG is composed of multiple neuronal and non-neuronal cell types, which is related to "neuro-inflammation-vascular" disorder in migraine. Tou Tong Ning capsule (TTNC), a CFDA-approved traditional Chinese medicine for treating migraine, has the characteristics of "multicomponents, multitargets, multipathways". AIM OF THE STUDY To clarify the mechanism of TTNC and elucidate crosstalk between multicomponent drugs and neuronal and non-neuronal functions and cells in migraine. MATERIALS AND METHODS We integrated single-nucleus RNA sequencing and a quantitative evaluation algorithm of the disturbance of multitarget drugs on the disease network and explored the specific pathology of migraine and corresponding compounds. A cerebrovascular smooth muscle spasmolytic activity experiment was carried out to verify the results of the bioinformatics analysis. RESULTS TTNC exhibited its regulation activities in neuronal and non-neuronal aspects based on drugs attack to four subnetworks and cell specific networks, which explored the MoA of TTNC in comprehensive and refined perspectives. Compared to neuronal regulation, TTNC showed more significant attack score on non-neuronal biological function (smooth muscle and vessel). And TTNC compound clusters C1, C6 and C7, targeting non-neuronal function and cells, had larger group area than C10, C4 and C6 for neuronal function and cell, which implied that TTNC may mainly regulate the non-neuronal function, e.g., vessel smooth muscle contraction. Contraction of cerebrovascular smooth muscle of mice ex vivo confirmed the vasodilation activity of TTNC and active compounds from C1, C6, C9 (Emodin, Luteolin and Levistilide A). Literature mining confirmed the vasospasmodolytic activity and neuroprotective effect of TTNC. CONCLUSIONS The study found that TTNC may primarily alleviate non-neuronal functional disorders in migraine by relaxing cerebral vascular smooth muscle cell spasm to alleviate migraine. Integrating single-nucleus RNA sequencing data and network disturbance tools provides a new strategy for the pharmacological mechanism of multicomponent drugs through cell subtyping.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Cash E, Goodwin AT, Tatler AL. Adenosine receptor signalling as a driver of pulmonary fibrosis. Pharmacol Ther 2023; 249:108504. [PMID: 37482099 DOI: 10.1016/j.pharmthera.2023.108504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Pulmonary fibrosis is a debilitating and life-limiting lung condition in which the damage- response mechanisms of mixed-population cells within the lungs go awry. The tissue microenvironment is drastically remodelled by aberrantly activated fibroblasts which deposit ECM components into the surrounding lung tissue, detrimentally affecting lung function and capacity for gas exchange. Growing evidence suggests a role for adenosine signalling in the pathology of tissue fibrosis in a variety of organs, including the lung, but the molecular pathways through which this occurs remain largely unknown. This review explores the role of adenosine in fibrosis and evaluates the contribution of the different adenosine receptors to fibrogenesis. Therapeutic targeting of the adenosine receptors is also considered, along with clinical observations pointing towards a role for adenosine in fibrosis. In addition, the interaction between adenosine signalling and other profibrotic signalling pathways, such as TGFβ1 signalling, is discussed.
Collapse
Affiliation(s)
- Emily Cash
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda T Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
8
|
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci 2023; 24:4428. [PMID: 36901855 PMCID: PMC10002355 DOI: 10.3390/ijms24054428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Purine nucleotides and nucleosides are involved in various human physiological and pathological mechanisms. The pathological deregulation of purinergic signaling contributes to various chronic respiratory diseases. Among the adenosine receptors, A2B has the lowest affinity such that it was long considered to have little pathophysiological significance. Many studies suggest that A2BAR plays protective roles during the early stage of acute inflammation. However, increased adenosine levels during chronic epithelial injury and inflammation might activate A2BAR, resulting in cellular effects relevant to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga (UNAIR), Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Pulmonology and Respiratory Medicine of UNAIR (PaRU) Research Center, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
9
|
Cuevas RA, Wong R, Joolharzadeh P, Moorhead WJ, Chu CC, Callahan J, Crane A, Boufford CK, Parise AM, Parwal A, Behzadi P, St Hilaire C. Ecto-5'-nucleotidase (Nt5e/CD73)-mediated adenosine signaling attenuates TGFβ-2 induced elastin and cellular contraction. Am J Physiol Cell Physiol 2023; 324:C327-C338. [PMID: 36503240 PMCID: PMC9902218 DOI: 10.1152/ajpcell.00054.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disease caused by a loss-of-function mutation in the NT5E gene encoding the ecto-5'-nucleotidase (cluster of differentiation 73, CD73) enzyme. Patients with ACDC develop vessel arteriomegaly, tortuosity, and vascular calcification in their lower extremity arteries. Histological analysis shows that patients with ACDC vessels exhibit fragmented elastin fibers similar to that seen in aneurysmal-like pathologies. It is known that alterations in transforming growth factor β (TGFβ) pathway signaling contribute to this elastin phenotype in several connective tissue diseases, as TGFβ regulates extracellular matrix (ECM) remodeling. Our study investigates whether CD73-derived adenosine modifies TGFβ signaling in vascular smooth muscle cells (SMCs). We show that Nt5e-/- SMCs have elevated contractile markers and elastin gene expression compared with Nt5e+/+ SMCs. Ecto-5'-nucleotidase (Nt5e)-deficient SMCs exhibit increased TGFβ-2 and activation of small mothers against decapentaplegic (SMAD) signaling, elevated elastin transcript and protein, and potentiate SMC contraction. These effects were diminished when the A2b adenosine receptor was activated. Our results identify a novel link between adenosine and TGFβ signaling, where adenosine signaling via the A2b adenosine receptor attenuates TGFβ signaling to regulate SMC homeostasis. We discuss how disruption in adenosine signaling is implicated in ACDC vessel tortuosity and could potentially contribute to other aneurysmal pathogenesis.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Wong
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pouya Joolharzadeh
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Moorhead
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claire C Chu
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jack Callahan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alex Crane
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Camille K Boufford
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Angelina M Parise
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aneesha Parwal
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Parya Behzadi
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Scuruchi M, Mannino F, Imbesi C, Pallio G, Vermiglio G, Bagnato G, Minutoli L, Bitto A, Squadrito F, Irrera N. Biglycan Involvement in Heart Fibrosis: Modulation of Adenosine 2A Receptor Improves Damage in Immortalized Cardiac Fibroblasts. Int J Mol Sci 2023; 24:ijms24021784. [PMID: 36675295 PMCID: PMC9866951 DOI: 10.3390/ijms24021784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-β activation. Biglycan (BGN), a small leucine-rich proteoglycan (SLRPG) integrated within the ECM, plays a key role in matrix assembly and the phenotypic control of cardiac fibroblasts. Moreover, BGN is critically involved in pathological cardiac remodeling through TGF-β binding, thus causing myofibroblast differentiation and proliferation. Adenosine receptors (ARs), and in particular A2AR, may play a key role in stimulating fibrotic damage through collagen production/deposition, as a consequence of cyclic AMP (cAMP) and AKT activation. For this reason, A2AR modulation could be a useful tool to manage cardiac fibrosis in order to reduce fibrotic scar deposition in heart tissue. Therefore, the aim of the present study was to investigate the possible crosstalk between A2AR and BGN modulation in an in vitro model of TGF-β-induced fibrosis. Immortalized human cardiac fibroblasts (IM-HCF) were stimulated with TGF-β at the concentration of 10 ng/mL for 24 h to induce a fibrotic phenotype. After applying the TGF-β stimulus, cells were treated with two different A2AR antagonists, Istradefylline and ZM241385, for an additional 24 h, at the concentration of 10 µM and 1 µM, respectively. Both A2AR antagonists were able to regulate the oxidative stress induced by TGF-β through intracellular reactive oxygen species (ROS) reduction in IM-HCFs. Moreover, collagen1a1, MMPs 3/9, BGN, caspase-1 and IL-1β gene expression was markedly decreased following A2AR antagonist treatment in TGF-β-challenged human fibroblasts. The results obtained for collagen1a1, SMAD3, α-SMA and BGN were also confirmed when protein expression was evaluated; phospho-Akt protein levels were also reduced following Istradefylline and ZM241385 use, thus suggesting that collagen production involves AKT recruited by the A2AR. These results suggest that A2AR modulation might be an effective therapeutic option to reduce the fibrotic processes involved in heart pathological remodeling.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giovanna Vermiglio
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Gianluca Bagnato
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
- Correspondence:
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
11
|
Carnevale J, Shifrut E, Kale N, Nyberg WA, Blaeschke F, Chen YY, Li Z, Bapat SP, Diolaiti ME, O'Leary P, Vedova S, Belk J, Daniel B, Roth TL, Bachl S, Anido AA, Prinzing B, Ibañez-Vega J, Lange S, Haydar D, Luetke-Eversloh M, Born-Bony M, Hegde B, Kogan S, Feuchtinger T, Okada H, Satpathy AT, Shannon K, Gottschalk S, Eyquem J, Krenciute G, Ashworth A, Marson A. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 2022; 609:174-182. [PMID: 36002574 PMCID: PMC9433322 DOI: 10.1038/s41586-022-05126-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 07/20/2022] [Indexed: 12/17/2022]
Abstract
The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.
Collapse
Affiliation(s)
- Julia Carnevale
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
| | - Eric Shifrut
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Pathology Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Nupura Kale
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Sagar P Bapat
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Morgan E Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick O'Leary
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shane Vedova
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Julia Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Theodore L Roth
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Stefanie Bachl
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alejandro Allo Anido
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brooke Prinzing
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jorge Ibañez-Vega
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon Lange
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Marie Luetke-Eversloh
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Maelys Born-Bony
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bindu Hegde
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Kogan
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Hideho Okada
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Kevin Shannon
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Adenosine Receptor A2B Negatively Regulates Cell Migration in Ovarian Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23094585. [PMID: 35562985 PMCID: PMC9100769 DOI: 10.3390/ijms23094585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The purinergic system is fundamental in the tumor microenvironment, since it regulates tumor cell interactions with the immune system, as well as growth and differentiation in autocrine-paracrine responses. Here, we investigated the role of the adenosine A2B receptor (A2BR) in ovarian carcinoma-derived cells’ (OCDC) properties. From public databases, we documented that high A2BR expression is associated with a better prognostic outcome in ovarian cancer patients. In vitro experiments were performed on SKOV-3 cell line to understand how A2BR regulates the carcinoma cell phenotype associated with cell migration. RT-PCR and Western blotting revealed that the ADORA2B transcript (coding for A2BR) and A2BR were expressed in SKOV-3 cells. Stimulation with BAY-606583, an A2BR agonist, induced ERK1/2 phosphorylation, which was abolished by the antagonist PSB-603. Pharmacological activation of A2BR reduced cell migration and actin stress fibers; in agreement, A2BR knockdown increased migration and enhanced actin stress fiber expression. Furthermore, the expression of E-cadherin, an epithelial marker, increased in BAY-606583-treated cells. Finally, cDNA microarrays revealed the pathways mediating the effects of A2BR activation on SKOV-3 cells. Our results showed that A2BR contributed to maintaining an epithelial-like phenotype in OCDC and highlighted this purinergic receptor as a potential biomarker.
Collapse
|
13
|
Kotulová J, Hajdúch M, Džubák P. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose? Int J Mol Sci 2021; 22:12569. [PMID: 34830449 PMCID: PMC8617980 DOI: 10.3390/ijms222212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Collapse
Affiliation(s)
| | | | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.K.); (M.H.)
| |
Collapse
|