1
|
Zhao G, Zhao Y, Liang W, Lu H, Liu H, Deng Y, Zhu T, Guo Y, Chang L, Garcia-Barrio MT, Chen YE, Zhang J. Endothelial KLF11 is a novel protector against diabetic atherosclerosis. Cardiovasc Diabetol 2024; 23:381. [PMID: 39462409 PMCID: PMC11514907 DOI: 10.1186/s12933-024-02473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular diseases remain the leading cause of mortality in diabetic patients, with endothelial cell (EC) dysfunction serving as the initiating step of atherosclerosis, which is exacerbated in diabetes. Krüppel-like factor 11 (KLF11), known for its missense mutations leading to the development of diabetes in humans, has also been identified as a novel protector of vascular homeostasis. However, its role in diabetic atherosclerosis remains unexplored. METHODS Diabetic atherosclerosis was induced in both EC-specific KLF11 transgenic and knockout mice in the Ldlr-/- background by feeding a diabetogenic diet with cholesterol (DDC). Single-cell RNA sequencing (scRNA-seq) was utilized to profile EC dysfunction in diabetic atherosclerosis. Additionally, gain- and loss-of-function experiments were conducted to investigate the role of KLF11 in hyperglycemia-induced endothelial cell dysfunction. RESULTS We found that endothelial KLF11 deficiency significantly accelerates atherogenesis under diabetic conditions, whereas KLF11 overexpression remarkably inhibits it. scRNA-seq profiling demonstrates that loss of KLF11 increases endothelial-to-mesenchymal transition (EndMT) during atherogenesis under diabetic conditions. Utilizing gain- and loss-of-function approaches, our in vitro study reveals that KLF11 significantly inhibits EC inflammatory activation and TXNIP-induced EC oxidative stress, as well as Notch1/Snail-mediated EndMT under high glucose exposure. CONCLUSION Our study demonstrates that endothelial KLF11 is an endogenous protective factor against diabetic atherosclerosis. These findings indicate that manipulating KLF11 could be a promising approach for developing novel therapies for diabetes-related cardiovascular complications.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Haocheng Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yongjie Deng
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Huang Y, Pan W, Ma J. SKP2-mediated ubiquitination and degradation of KLF11 promotes osteoarthritis via modulation of JMJD3/NOTCH1 pathway. FASEB J 2024; 38:e23640. [PMID: 38690715 DOI: 10.1096/fj.202300664rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Osteoarthritis (OA) is the main cause of cartilage damage and disability. This study explored the biological function of S-phase kinase-associated protein 2 (SKP2) and Kruppel-like factor 11 (KLF11) in OA progression and its underlying mechanisms. C28/I2 chondrocytes were stimulated with IL-1β to mimic OA in vitro. We found that SKP2, Jumonji domain-containing protein D3 (JMJD3), and Notch receptor 1 (NOTCH1) were upregulated, while KLF11 was downregulated in IL-1β-stimulated chondrocytes. SKP2/JMJD3 silencing or KLF11 overexpression repressed apoptosis and extracellular matrix (ECM) degradation in chondrocytes. Mechanistically, SKP2 triggered the ubiquitination and degradation of KLF11 to transcriptionally activate JMJD3, which resulted in activation of NOTCH1 through inhibiting H3K27me3. What's more, the in vivo study found that KLF11 overexpression delayed OA development in rats via restraining apoptosis and maintaining the balance of ECM metabolism. Taken together, ubiquitination and degradation of KLF11 regulated by SKP2 contributed to OA progression by activation of JMJD3/NOTCH1 pathway. Our findings provide promising therapeutic targets for OA.
Collapse
Affiliation(s)
- Yuanchi Huang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| | - Wenjie Pan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P. R. China
| |
Collapse
|
3
|
席 进, 张 敏, 张 永, 张 晨, 张 雨, 王 锐, 申 林, 李 静, 宋 雪. [Upregulating KLF11 ameliorates intestinal inflammation in mice with 2, 4, 6-trinitrobenesulfonic acid-induced colitis by inhibiting the JAK2/STAT3 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:765-772. [PMID: 38708511 PMCID: PMC11073944 DOI: 10.12122/j.issn.1673-4254.2024.04.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To investigate the expression level of Kruppel-like transcription factor family member KLF11 in intestinal mucosal tissues of Crohn's disease (CD) and its regulatory effect on intestinal inflammation in CD-like colitis. METHODS We examined KLF11 expression levels in diseased and normal colon mucosal tissues from 12 CD patients and 12 patients with colorectal cancer using immunofluorescence staining. KLF11 expression was also detected in the colon mucosal tissues of a mouse model of 2, 4, 6-trinitrobenesulfonic acid (TNBS)-induced colitis. A recombinant adenoviral vector was used to upregulate KLF11 expression in the mouse models and the changes in intestinal inflammation was observed. A Caco-2 cell model with stable KLF11 overexpression was constructed by lentiviral infection. The effect of KLF11 overexpression on expressions of JAK2/STAT3 signaling pathway proteins was investigated using immunoblotting in both the mouse and cell models. The mouse models were treated with coumermycin A1, a JAK2/STAT3 signaling pathway agonist, and the changes in intestinal inflammatory responses were observed. RESULTS The expression level of KLF11 was significantly lowered in both the clinical specimens of diseased colon mucosal tissues and the colon tissues of mice with TNBS-induced colitis (P < 0.05). Adenovirus-mediated upregulation of KLF11 significantly improved intestinal inflammation and reduced the expression levels of inflammatory factors in the intestinal mucosa of the colitis mouse models (P < 0.05). Overexpression of KLF11 significantly inhibited the expression levels of p-JAK2 and p-STAT3 in intestinal mucosal tissues of the mouse models and in Caco-2 cells (P < 0.05). Treatment with coumermycin A1 obviously inhibited the effect of KLF11 upregulation for improving colitis and significantly increased the expression levels of inflammatory factors in the intestinal mucosa of the mouse models (P < 0.05). CONCLUSION KLF11 is downregulated in the intestinal mucosa in CD, and upregulation of KLF11 can improve intestinal inflammation and reduce the production of inflammatory factors probably by inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- 进 席
- 蚌埠医科大学,安徽 蚌埠 233000Bengbu Medical University, Bengbu 233000, China
| | - 敏 张
- 蚌埠医科大学,安徽 蚌埠 233000Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 永玉 张
- 蚌埠医科大学,安徽 蚌埠 233000Bengbu Medical University, Bengbu 233000, China
| | - 晨 张
- 蚌埠医科大学,安徽 蚌埠 233000Bengbu Medical University, Bengbu 233000, China
| | - 雨路 张
- 蚌埠医科大学,安徽 蚌埠 233000Bengbu Medical University, Bengbu 233000, China
| | - 锐 王
- 蚌埠医科大学,安徽 蚌埠 233000Bengbu Medical University, Bengbu 233000, China
| | - 林 申
- 蚌埠医科大学,安徽 蚌埠 233000Bengbu Medical University, Bengbu 233000, China
| | - 静 李
- 蚌埠医科大学第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Anhui Province Key Laboratory of Basic and Translational Research of inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 雪 宋
- 蚌埠医科大学第一附属医院中心实验室,安徽 蚌埠 233000Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Anhui Province Key Laboratory of Basic and Translational Research of inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
4
|
Marstrand-Jørgensen AB, Sembach FE, Bak ST, Ougaard M, Christensen-Dalsgaard M, Rønn Madsen M, Jensen DM, Secher T, Heimbürger SMN, Fink LN, Hansen D, Hansen HH, Østergaard MV, Christensen M, Dalbøge LS. Shared and Distinct Renal Transcriptome Signatures in 3 Standard Mouse Models of Chronic Kidney Disease. Nephron Clin Pract 2024; 148:487-502. [PMID: 38354720 DOI: 10.1159/000535918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Several mouse models with diverse disease etiologies are used in preclinical research for chronic kidney disease (CKD). Here, we performed a head-to-head comparison of renal transcriptome signatures in standard mouse models of CKD to assess shared and distinct molecular changes in three mouse models commonly employed in preclinical CKD research and drug discovery. METHODS All experiments were conducted on male C57BL/6J mice. Mice underwent sham, unilateral ureter obstruction (UUO), or unilateral ischemic-reperfusion injury (uIRI) surgery and were terminated two- and 6-weeks post-surgery, respectively. The adenine-supplemented diet-induced (ADI) model of CKD was established by feeding with adenine diet for 6 weeks and compared to control diet feeding. For all models, endpoints included plasma biochemistry, kidney histology, and RNA sequencing. RESULTS All models displayed increased macrophage infiltration (F4/80 IHC) and fibrosis (collagen 1a1 IHC). Compared to corresponding controls, all models were characterized by an extensive number of renal differentially expressed genes (≥11,000), with a notable overlap in transcriptomic signatures across models. Gene expression markers of fibrosis, inflammation, and kidney injury supported histological findings. Interestingly, model-specific transcriptome signatures included several genes representing current drug targets for CKD, emphasizing advantages and limitations of the three CKD models in preclinical target and drug discovery. CONCLUSION The UUO, uIRI, and ADI mouse models of CKD have significant commonalities in their renal global transcriptome profile. Model-specific renal transcriptional signatures should be considered when selecting the specific model in preclinical target and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Secher
- Gubra A/S, Hørsholm, Denmark
- Cell Imaging and Pharmacology, Cell Therapy R&D, Novo Nordisk A/S, Måløv, Denmark
| | | | - Lisbeth N Fink
- Gubra A/S, Hørsholm, Denmark
- Biotherapeutics Screening, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
5
|
Akhouri V, Majumder S, Gaikwad AB. Targeting DNA methylation in diabetic kidney disease: A new perspective. Life Sci 2023; 335:122256. [PMID: 37949210 DOI: 10.1016/j.lfs.2023.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Diabetic kidney disease (DKD) is a leading diabetic complication causing significant mortality among people around the globe. People with poor glycemic control accompanied by hyperinsulinemia, dyslipidemia, hypertension, and obesity develop diabetic complications. These diabetic patients develop epigenetic changes and suffer from diabetic kidney complications even after subsequent glucose control, the phenomenon that is recognized as metabolic memory. DNA methylation is an essential epigenetic modification that contributes to the development and progression of several diabetic complications, including DKD. The aberrant DNA methylation pattern at CpGs sites within several genes, such as mTOR, RPTOR, IRS2, GRK5, SLC27A3, LCAT, and SLC1A5, associated with the accompanying risk factors exacerbate the DKD progression. Although drugs such as azacytidine and decitabine have been approved to target DNA methylation for diseases such as hematological malignancies, none have been approved for the treatment of DKD. More importantly, no DNA hypomethylation-targeting drugs have been approved for any disease conditions. Understanding the alteration in DNA methylation and its association with the disease risk factors is essential to target DKD effectively. This review has discussed the abnormal DNA methylation pattern and the kidney tissue-specific expression of critical genes involved in DKD onset and progression. Moreover, we also discuss the new possible therapeutic approach that can be exploited for treating DNA methylation aberrancy in a site-specific manner against DKD.
Collapse
Affiliation(s)
- Vivek Akhouri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
6
|
Xia J, Hou Y, Cai A, Xu Y, Yang W, Huang M, Mou S. An integrated co-expression network analysis reveals novel genetic biomarkers for immune cell infiltration in chronic kidney disease. Front Immunol 2023; 14:1129524. [PMID: 36875100 PMCID: PMC9981626 DOI: 10.3389/fimmu.2023.1129524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Background Chronic kidney disease (CKD) is characterized by persistent damage to kidney function or structure. Progression to end-stage leads to adverse effects on multiple systems. However, owing to its complex etiology and long-term cause, the molecular basis of CKD is not completely known. Methods To dissect the potential important molecules during the progression, based on CKD databases from Gene Expression Omnibus, we used weighted gene co-expression network analysis (WGCNA) to identify the key genes in kidney tissues and peripheral blood mononuclear cells (PBMC). Correlation analysis of these genes with clinical relevance was evaluated based on Nephroseq. Combined with a validation cohort and receiver operating characteristic curve (ROC), we found the candidate biomarkers. The immune cell infiltration of these biomarkers was evaluated. The expression of these biomarkers was further detected in folic acid-induced nephropathy (FAN) murine model and immunohistochemical staining. Results In total, eight genes (CDCP1, CORO1C, DACH1, GSTA4, MAFB, TCF21, TGFBR3, and TGIF1) in kidney tissue and six genes (DDX17, KLF11, MAN1C1, POLR2K, ST14, and TRIM66) in PBMC were screened from co-expression network. Correlation analysis of these genes with serum creatinine levels and estimated glomerular filtration rate from Nephroseq showed a well clinical relevance. Validation cohort and ROC identified TCF21, DACH1 in kidney tissue and DDX17 in PBMC as biomarkers for the progression of CKD. Immune cell infiltration analysis revealed that DACH1 and TCF21 were correlated with eosinophil, activated CD8 T cell, activated CD4 T cell, while the DDX17 was correlated with neutrophil, type-2 T helper cell, type-1 T helper cell, mast cell, etc. FAN murine model and immunohistochemical staining confirmed that these three molecules can be used as genetic biomarkers to distinguish CKD patients from healthy people. Moreover, the increase of TCF21 in kidney tubules might play important role in the CKD progression. Discussion We identified three promising genetic biomarkers which could play important roles in the progression of CKD.
Collapse
Affiliation(s)
- Jia Xia
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anxiang Cai
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Ghajar-Rahimi G, Agarwal A. Endothelial KLF11 as a Nephroprotectant in AKI. KIDNEY360 2022; 3:1302-1305. [PMID: 36176668 PMCID: PMC9416841 DOI: 10.34067/kid.0003422022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Gelare Ghajar-Rahimi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Health Care Services, Birmingham, Alabama
| |
Collapse
|
8
|
Nath KA, Singh RD, Croatt AJ, Ackerman AW, Grande JP, Khazaie K, Chen YE, Zhang J. KLF11 Is a Novel Endogenous Protectant against Renal Ischemia-Reperfusion Injury. KIDNEY360 2022; 3:1417-1422. [PMID: 36176648 PMCID: PMC9416845 DOI: 10.34067/kid.0002272022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023]
Abstract
Discovering new nephroprotectants may provide therapeutic strategies in AKI.This study provides the first evidence that KLF11, a member of the Krüppel-like factor (KLF) family of proteins, protects against AKI.In the absence of KLF11, exaggerated induction of endothelin-1 and IL-6 occurs after ischemic renal injury and may contribute to worse AKI.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|