1
|
Galgut O, Ashford F, Deeks A, Ghataure A, Islam M, Sambhi T, Ker YW, Duncan CJ, de Silva TI, Hopkins S, Hall V, Klenerman P, Dunachie S, Richter A. COVID-19 vaccines are effective at preventing symptomatic and severe infection among healthcare workers: A clinical review. Vaccine X 2024; 20:100546. [PMID: 39221179 PMCID: PMC11364133 DOI: 10.1016/j.jvacx.2024.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Health care workers (HCWs) have been at increased risk of infection during the SARS-CoV-2 pandemic and as essential workers have been prioritised for vaccination. Due to increased exposure HCW are considered a predictor of what might happen in the general population, particularly working age adults. This study aims to summarise effect of vaccination in this 'at risk' cohort. Methods Ovid MEDLINE and Embase were searched, and 358 individual articles were identified. Of these 49 met the inclusion criteria for review and 14 were included in a meta-analysis. Results Participants included were predominantly female and working age. Median time to infection was 51 days. Reported vaccine effectiveness against infection, symptomatic infection, and infection requiring hospitalisation were between 5 and 100 %, 34 and 100 %, and 65 and 100 % (respectively). No vaccinated HCW deaths were recorded in any study. Pooled estimates of protection against infection, symptomatic infection, and hospitalisation were, respectively, 84.7 % (95 % CI 72.6-91.5 %, p < 0.0001), 86.0 % (95 % CI 67.2 %-94.0 %; p < 0.0001), and 96.1 % (95 % CI 90.4 %-98.4 %). Waning protection against infection was reported by four studies, although protection against hospitalisation for severe infection persists for at least 6 months post vaccination. Conclusions Vaccination against SARS-CoV2 in HCWs is protective against infection, symptomatic infection, and hospitalisation. Waning protection is reported but this awaits more mature studies to understand durability more clearly. This study is limited by varying non-pharmacological responses to COVID-19 between included studies, a predominantly female and working age population, and limited information on asymptomatic transmission or long COVID protection.
Collapse
Affiliation(s)
- Oliver Galgut
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Fiona Ashford
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Alexandra Deeks
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andeep Ghataure
- College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Mimia Islam
- College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Tanvir Sambhi
- College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Yiu Wayn Ker
- College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher J.A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Thushan I. de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, PO Box 273, Fajara, the Gambia
| | - Susan Hopkins
- United Kingdom Health Security Agency, Colindale, London, UK
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Victoria Hall
- United Kingdom Health Security Agency, Colindale, London, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
2
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Gim H, Lee S, Seo H, Park Y, Chun BC. Effects of Severe Acute Respiratory Syndrome Coronavirus Vaccination on Reinfection: A Community-Based Retrospective Cohort Study. Vaccines (Basel) 2023; 11:1408. [PMID: 37766086 PMCID: PMC10535171 DOI: 10.3390/vaccines11091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a disease that is characterized by frequent reinfection. However, the factors influencing reinfection remain poorly elucidated, particularly regarding the effect of COVID-19 vaccination on preventing reinfection and its effects on symptomatology and the interval until reinfection. METHODS This retrospective cohort study examined patients with severe acute respiratory syndrome coronavirus reinfection between January 2020 and February 2022. This study included patients aged >17 years who were reinfected at least 90 days between two infections with severe acute respiratory syndrome coronavirus. The main outcome measure was a reduction in symptoms during reinfection, and reinfection interval. RESULTS Overall, 712 patients (average age: 40.52 ± 16.41 years; 312 males) were included. The reduction rate of symptoms at reinfection than that at first infection was significantly higher in the vaccinated group than in the unvaccinated group (p < 0.001). The average reinfection interval was 265.81 days. The interval between the first and second infection was 63.47 days longer in the vaccinated group than in the unvaccinated group. The interval was also 57.23 days, significantly longer in the asymptomatic group than in the symptomatic group (p < 0.001). CONCLUSIONS Besides its role in preventing severe acute respiratory syndrome coronavirus infection, vaccination reduces the rate of symptomatic reinfection and increases the reinfection interval; thus, it is necessary to be vaccinated even after a previous infection. The findings may inform the decision to avail COVID-19 vaccination.
Collapse
Affiliation(s)
- Hyerin Gim
- Infectious Disease Research Center, Citizens’ Health Bureau, Seoul Metropolitan Government, Seoul 04524, Republic of Korea; (H.G.); (S.L.); (H.S.)
- Department of Epidemiology & Health Informatics, Graduate School of Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Seul Lee
- Infectious Disease Research Center, Citizens’ Health Bureau, Seoul Metropolitan Government, Seoul 04524, Republic of Korea; (H.G.); (S.L.); (H.S.)
| | - Haesook Seo
- Infectious Disease Research Center, Citizens’ Health Bureau, Seoul Metropolitan Government, Seoul 04524, Republic of Korea; (H.G.); (S.L.); (H.S.)
| | - Yumi Park
- Citizens’ Health Bureau, Seoul Metropolitan Government, Seoul 04524, Republic of Korea;
| | - Byung Chul Chun
- Department of Epidemiology & Health Informatics, Graduate School of Public Health, Korea University, Seoul 02841, Republic of Korea
- Department of Preventive Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Lind ML, Dorion M, Houde AJ, Lansing M, Lapidus S, Thomas R, Yildirim I, Omer SB, Schulz WL, Andrews JR, Hitchings MDT, Kennedy BS, Richeson RP, Cummings DAT, Ko AI. Evidence of leaky protection following COVID-19 vaccination and SARS-CoV-2 infection in an incarcerated population. Nat Commun 2023; 14:5055. [PMID: 37598213 PMCID: PMC10439918 DOI: 10.1038/s41467-023-40750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
Whether SARS-CoV-2 infection and COVID-19 vaccines confer exposure-dependent ("leaky") protection against infection remains unknown. We examined the effect of prior infection, vaccination, and hybrid immunity on infection risk among residents of Connecticut correctional facilities during periods of predominant Omicron and Delta transmission. Residents with cell, cellblock, and no documented exposure to SARS-CoV-2 infected residents were matched by facility and date. During the Omicron period, prior infection, vaccination, and hybrid immunity reduced the infection risk of residents without a documented exposure (HR: 0.36 [0.25-0.54]; 0.57 [0.42-0.78]; 0.24 [0.15-0.39]; respectively) and with cellblock exposures (0.61 [0.49-0.75]; 0.69 [0.58-0.83]; 0.41 [0.31-0.55]; respectively) but not with cell exposures (0.89 [0.58-1.35]; 0.96 [0.64-1.46]; 0.80 [0.46-1.39]; respectively). Associations were similar during the Delta period and when analyses were restricted to tested residents. Although associations may not have been thoroughly adjusted due to dataset limitations, the findings suggest that prior infection and vaccination may be leaky, highlighting the potential benefits of pairing vaccination with non-pharmaceutical interventions in crowded settings.
Collapse
Affiliation(s)
- Margaret L Lind
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Murilo Dorion
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Amy J Houde
- Connecticut Department of Correction, Wethersfield, CT, USA
| | - Mary Lansing
- Connecticut Department of Correction, Wethersfield, CT, USA
| | - Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Russell Thomas
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Inci Yildirim
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Saad B Omer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale School of Public Health, New Haven, CT, USA
- UT Southwestern, School of Public Health, Dallas, TX, USA
| | - Wade L Schulz
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Matt D T Hitchings
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | | | | | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil.
| |
Collapse
|
5
|
Dayan GH, Rouphael N, Walsh SR, Chen A, Grunenberg N, Allen M, Antony J, Asante KP, Bhate AS, Beresnev T, Bonaparte MI, Ceregido MA, Dobrianskyi D, Fu B, Grillet MH, Keshtkar-Jahromi M, Juraska M, Kee JJ, Kibuuka H, Koutsoukos M, Masotti R, Michael NL, Reynales H, Robb ML, Villagómez Martínez SM, Sawe F, Schuerman L, Tong T, Treanor J, Wartel TA, Diazgranados CA, Chicz RM, Gurunathan S, Savarino S, Sridhar S. Efficacy of a bivalent (D614 + B.1.351) SARS-CoV-2 Protein Vaccine. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.12.05.22282933. [PMID: 36523415 PMCID: PMC9753788 DOI: 10.1101/2022.12.05.22282933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background COVID-19 vaccines with alternative strain compositions are needed to provide broad protection against newly emergent SARS-CoV-2 variants of concern. Methods We conducted a global Phase 3, multi-stage efficacy study (NCT04904549) among adults aged ≥18 years. Participants were randomized 1:1 to receive two intramuscular injections 21 days apart of a bivalent SARS-CoV-2 recombinant protein vaccine with AS03-adjuvant (5 μg of ancestral (D614) and 5 μg of B.1.351 [beta] variant spike protein) or placebo. Symptomatic COVID-19 was defined as laboratory-confirmed COVID-19 with COVID-19-like illness (CLI) symptoms. The primary efficacy endpoint was the prevention of symptomatic COVID-19 ≥14 days after the second injection (post-dose 2 [PD2]). Results Between 19 Oct 2021 and 15 Feb 2022, 12,924 participants received ≥1 study injection. 75% of participants were SARS-CoV-2 non-naïve. 11,416 participants received both study injections (efficacy-evaluable population [vaccine, n=5,736; placebo, n=5,680]). Up to 15 March 2022, 121 symptomatic COVID-19 cases were reported (32 in the vaccine group and 89 in the placebo group) ≥14 days PD2 with a vaccine efficacy (VE) of 64.7% (95% confidence interval [CI] 46.6; 77.2%). VE was 75.1% (95% CI 56.3; 86.6%) in non-naïve and 30.9% (95% CI -39.3; 66.7%) in naïve participants. Viral genome sequencing identified the infecting strain in 68 cases (Omicron [BA.1 and BA.2 subvariants]: 63; Delta: 4; Omicron and Delta: 1). The vaccine was well-tolerated and had an acceptable safety profile. Conclusions A bivalent vaccine conferred heterologous protection against symptomatic infection with newly emergent Omicron (BA.1 and BA.2) in non-naïve adults 18-59 years of age.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary Allen
- National Institute of Allergy and Infectious Diseases / National Institutes of Health, Bethedsa, MA, USA
| | | | - Kwaku Poku Asante
- Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | | | - Tatiana Beresnev
- National Institute of Allergy and Infectious Diseases / National Institutes of Health, Bethedsa, MA, USA
| | | | | | | | - Bo Fu
- Sanofi, Swiftwater, PA, USA
| | | | - Maryam Keshtkar-Jahromi
- National Institute of Health, Rockville, Maryland
- John Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Jia Jin Kee
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | | | | | | | - Humberto Reynales
- Centro de Attencion e Investigation Medica S.A.S. – Caimed Chía, Chía, Colombia
| | - Merlin L. Robb
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MA, USA
| | | | - Fredrick Sawe
- Kenya Medical Research Institute — US Army Medical Research, Kisumu, Kenya
| | | | - Tina Tong
- National Institute of Allergy and Infectious Diseases / National Institutes of Health, Bethedsa, MA, USA
| | - John Treanor
- Tunnell Government Services in support of Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Elangovan D, Hussain SMS, Virudhunagar Muthuprakash S, Devi Periadurai N, Viswanath Nalankilli A, Volvoikar H, Ramani P, Sivasubramaniam J, Mohanram K, Surapaneni KM. Impact of COVID-19 Vaccination on Seroprevalence of SARS-CoV-2 among the Health Care Workers in a Tertiary Care Centre, South India. Vaccines (Basel) 2022; 10:1967. [PMID: 36423062 PMCID: PMC9697367 DOI: 10.3390/vaccines10111967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Global vaccine development efforts have been accelerated in response to the devastating COVID-19 pandemic. The study aims to determine the seroprevalence of SARS-CoV-2 IgG antibodies among vaccine-naïve healthcare workers and to describe the impact of vaccination roll-out on COVID-19 antibody prevalence among the health care centers in tertiary care centers in South India. Serum samples collected from vaccinated and unvaccinated health care workers between January 2021 and April 2021were subjected to COVID-19 IgG ELISA, and adverse effects after the first and second dose of receiving the Covishield vaccine were recorded. The vaccinated group was followed for a COVID-19 breakthrough infection for a period of 6 months. Among the recruited HCW, 156 and 157 participants were from the vaccinated and unvaccinated group, respectively. The seroprevalence (COVID-19 IgG ELISA) among the vaccinated and unvaccinated Health Care Workers (HCW) was 91.7% and 38.2%, respectively, which is statistically significant. Systemic and local side-effects after Covishield vaccination occur at lower frequencies than reported in phase 3 trials. Since the COVID-19 vaccine rollout has commenced in our tertiary care hospital, seropositivity for COVID-19 IgG has risen dramatically and clearly shows trends in vaccine-induced antibodies among the health care workers.
Collapse
Affiliation(s)
- Divyaa Elangovan
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | - Shifa Meharaj Shaik Hussain
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | | | - Nanthini Devi Periadurai
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
- Department of Molecular Virology, Panimalar Medical College Hospital Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | - Ashok Viswanath Nalankilli
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | - Harshada Volvoikar
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | - Preethy Ramani
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | - Jayanthi Sivasubramaniam
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | - Kalyani Mohanram
- Department of Microbiology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| | - Krishna Mohan Surapaneni
- Department of Molecular Virology, Panimalar Medical College Hospital Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
- SMAART Population Health Informatics Intervention Center, Foundation of Healthcare Technologies Society, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
- Departments of Biochemistry, Medical Education, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| |
Collapse
|
7
|
Mahilkar S, Agrawal S, Chaudhary S, Parikh S, Sonkar SC, Verma DK, Chitalia V, Mehta D, Koner BC, Vijay N, Shastri J, Sunil S. SARS-CoV-2 variants: Impact on biological and clinical outcome. Front Med (Lausanne) 2022; 9:995960. [PMID: 36438034 PMCID: PMC9685312 DOI: 10.3389/fmed.2022.995960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that was first identified in December 2019, in Wuhan, China was found to be the etiological agent for a novel respiratory infection that led to a Coronavirus Induced Disease named COVID-19. The disease spread to pandemic magnitudes within a few weeks and since then we have been dealing with several waves across the world, due to the emergence of variants and novel mutations in this RNA virus. A direct outcome of these variants apart from the spike of cases is the diverse disease presentation and difficulty in employing effective diagnostic tools apart from confusing disease outcomes. Transmissibility rates of the variants, host response, and virus evolution are some of the features found to impact COVID-19 disease management. In this review, we will discuss the emerging variants of SARS-CoV-2, notable mutations in the viral genome, the possible impact of these mutations on detection, disease presentation, and management as well as the recent findings in the mechanisms that underlie virus-host interaction. Our aim is to invigorate a scientific debate on how pathogenic potential of the new pandemic viral strains contributes toward development in the field of virology in general and COVID-19 disease in particular.
Collapse
Affiliation(s)
- Shakuntala Mahilkar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sachee Agrawal
- Department of Microbiology, Topiwala National Medical College (TNMC) and Bai Yamunabai Laxman Nair (BYL) Charitable Hospital, Mumbai, Maharashtra, India
| | - Sakshi Chaudhary
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Swapneil Parikh
- Molecular Diagnostic Reference Laboratory, Kasturba Hospital for Infectious Diseases, Mumbai, Maharashtra, India
| | - Subash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College and Associated Hospital, New Delhi, India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, India
| | - Dileep Kumar Verma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vidushi Chitalia
- Molecular Diagnostic Reference Laboratory, Kasturba Hospital for Infectious Diseases, Mumbai, Maharashtra, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Bidhan Chandra Koner
- Multidisciplinary Research Unit, Maulana Azad Medical College and Associated Hospital, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, India
| | - Neetu Vijay
- Department of Health Research, Ministry of Health and Family Welfare, New Delhi, India
| | - Jayanthi Shastri
- Department of Microbiology, Topiwala National Medical College (TNMC) and Bai Yamunabai Laxman Nair (BYL) Charitable Hospital, Mumbai, Maharashtra, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
8
|
Flacco ME, Acuti Martellucci C, Baccolini V, De Vito C, Renzi E, Villari P, Manzoli L. COVID-19 vaccines reduce the risk of SARS-CoV-2 reinfection and hospitalization: Meta-analysis. Front Med (Lausanne) 2022; 9:1023507. [PMID: 36438045 PMCID: PMC9681813 DOI: 10.3389/fmed.2022.1023507] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 07/24/2023] Open
Abstract
The addictive protection against SARS-CoV-2 reinfection conferred by vaccination, as compared to natural immunity alone, remains to be quantified. We thus carried out a meta-analysis to summarize the existing evidence on the association between SARS-CoV-2 vaccination and the risk of reinfection and disease. We searched MedLine, Scopus and preprint repositories up to July 31, 2022, to retrieve cohort or case-control studies comparing the risk of SARS-CoV-2 reinfection or severe/critical COVID-19 among vaccinated vs. unvaccinated subjects, recovered from a primary episode. Data were combined using a generic inverse-variance approach. Eighteen studies, enrolling 18,132,192 individuals, were included. As compared to the unvaccinated, vaccinated subjects showed a significantly lower likelihood of reinfection (summary Odds Ratio-OR: 0.47; 95% CI: 0.42-0.54). Notably, the results did not change up to 12 months of follow-up, by number of vaccine doses, in studies that adjusted for potential confounders, adopting different reinfection definitions, and with different predominant strains. Once reinfected, vaccinated subjects were also significantly less likely to develop a severe disease (OR: 0.45; 95% CI: 0.38-0.54). Although further studies on the long-term persistence of protection, under the challenge of the new circulating variants, are clearly needed, the present meta-analysis provides solid evidence of a stronger protection of hybrid vs. natural immunity, which may persist during Omicron waves and up to 12 months.
Collapse
Affiliation(s)
- Maria Elena Flacco
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | | | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Erika Renzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lamberto Manzoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Panahi Y, Einollahi B, Beiraghdar F, Darvishi M, Fathi S, Javanbakht M, Shafiee S, Akhavan-Sigari R. Fully understanding the efficacy profile of the COVID-19 vaccination and its associated factors in multiple real-world settings. Front Immunol 2022; 13:947602. [PMID: 36389777 PMCID: PMC9641184 DOI: 10.3389/fimmu.2022.947602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/25/2022] [Indexed: 09/29/2023] Open
Abstract
We performed a review study according to recent COVID-19 vaccines' real-world data to provide comparisons between COVID-19 vaccines regarding their relative efficacy. Although most vaccine platforms showed comparable effectiveness and efficacy, we highlight critical points and recent developments generated in studies that might affect vaccine efficacy including population-dependent effects of the vaccine (transplantation, adiposity, and specific comorbidities, as well as older age, male sex, ethnicity, and prior infection), vaccine type, variants of concern (VOC), and an extended vaccine schedule. Owing to these factors, community-based trials can be of great importance in determining vaccine effectiveness in a systematic manner; thus, uncertainty remains regarding vaccine efficacy. Long immune protection of vaccination with BNT162b2 or ChAdOx1 nCoV-19 has been demonstrated to be up to 61 months and 5-12 months after the previous infection, and boosting infection-acquired immunity for both the first and second doses of the BNT162b2 and ChAdOx1 nCoV-19 vaccines was correlated with high and durable protection. However, large cohort and longitudinal studies are required for the evaluation of immunity dynamics and longevity in unvaccinated, vaccinated, and infected individuals, as well as vaccinated convalescent individuals in real-world settings. Regarding the likelihood of vaccine escape variants evolving, an ongoing examination of the protection conferred against an evolving virus (new variant) by an extended schedule can be crucial.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Fathi
- Department of Parasite Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
10
|
Flacco ME, Acuti Martellucci C, Baccolini V, De Vito C, Renzi E, Villari P, Manzoli L. Risk of reinfection and disease after SARS-CoV-2 primary infection: Meta-analysis. Eur J Clin Invest 2022; 52:e13845. [PMID: 35904405 PMCID: PMC9353414 DOI: 10.1111/eci.13845] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A precise estimate of the frequency and severity of SARS-CoV-2 reinfections would be critical to optimize restriction and vaccination policies for the hundreds of millions previously infected subjects. We performed a meta-analysis to evaluate the risk of reinfection and COVID-19 following primary infection. METHODS We searched MedLine, Scopus and preprint repositories for cohort studies evaluating the onset of new infections among baseline SARS-CoV-2-positive subjects. Random-effect meta-analyses of proportions were stratified by gender, exposure risk, vaccination status, viral strain, time between episodes, and reinfection definition. RESULTS Ninety-one studies, enrolling 15,034,624 subjects, were included. Overall, 158,478 reinfections were recorded, corresponding to a pooled rate of 0.97% (95% CI: 0.71%-1.27%), with no substantial differences by definition criteria, exposure risk or gender. Reinfection rates were still 0.66% after ≥12 months from first infection, and the risk was substantially lower among vaccinated subjects (0.32% vs. 0.74% for unvaccinated individuals). During the first 3 months of Omicron wave, the reinfection rates reached 3.31%. Overall rates of severe/lethal COVID-19 were very low (2-7 per 10,000 subjects according to definition criteria) and were not affected by strain predominance. CONCLUSIONS A strong natural immunity follows the primary infection and may last for more than one year, suggesting that the risk and health care needs of recovered subjects might be limited. Although the reinfection rates considerably increased during the Omicron wave, the risk of a secondary severe or lethal disease remained very low. The risk-benefit profile of multiple vaccine doses for this subset of population needs to be carefully evaluated.
Collapse
Affiliation(s)
- Maria Elena Flacco
- Department of Environmental and Preventive Sciences, University of Ferrara, Ferrara, Italy
| | | | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Erika Renzi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Lamberto Manzoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Kostin NN, Bobik TV, Skryabin GA, Simonova MA, Knorre VD, Abrikosova VA, Mokrushina YA, Smirnov IV, Aleshenko NL, Kruglova NA, Mazurov DV, Nikitin AE, Gabibov AG. An ELISA Platform for the Quantitative Analysis of SARS-CoV-2 RBD-neutralizing Antibodies As an Alternative to Monitoring of the Virus-Neutralizing Activity. Acta Naturae 2022; 14:109-119. [PMID: 36348715 PMCID: PMC9611858 DOI: 10.32607/actanaturae.11776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Monitoring of the level of the virus-neutralizing activity of serum immunoglobulins ensures that one can reliably assess the effectiveness of any protection against the SARS-CoV-2 infection. For SARS-CoV-2, the RBD-ACE2 neutralizing activity of sera is almost equivalent to the virus-neutralizing activity of their antibodies and can be used to assess the level of SARS-CoV-2 neutralizing antibodies. We are proposing an ELISA platform for performing a quantitative analysis of SARS-CoV-2 RBD-neutralizing antibodies, as an alternative to the monitoring of the virus-neutralizing activity using pseudovirus or "live" virus assays. The advantage of the developed platform is that it can be adapted to newly emerging virus variants in a very short time (1-2 weeks) and, thereby, provide quantitative data on the activity of SARS-CoV-2 RBD-neutralizing antibodies. The developed platform can be used to (1) study herd immunity to SARS-CoV-2, (2) monitor the effectiveness of the vaccination drive (revaccination) in a population, and (3) select potential donors of immune plasma. The protective properties of the humoral immune response in hospitalized patients and outpatients, as well as after prophylaxis with the two most popular SARS-CoV-2 vaccines in Russia, were studied in detail using this platform. The highest RBD-neutralizing activity was observed in the group of hospitalized patients. The protective effect in the group of individuals vaccinated with Gam-COVID-Vac vaccine was 25% higher than that in outpatients and almost four times higher than that in individuals vaccinated with the CoviVac vaccine.
Collapse
Affiliation(s)
- N. N. Kostin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. V. Bobik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - G. A. Skryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. A. Simonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. D. Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. A. Abrikosova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Y. A. Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - N. L. Aleshenko
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow, 117593 Russia
| | - N. A. Kruglova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Mazurov
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. E. Nikitin
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow, 117593 Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|