1
|
Tebibi K, Ben Laamari R, Saied Z, Maghrebi O, Touzi H, Meddeb Z, Ben Sassi S, Triki H, Belghith M, Rezig D. Profile of Cytokines and T Cell Subsets Transcription Factors in Cerebrospinal Fluid of Patients with Viral Encephalitis. Viral Immunol 2024; 37:459-469. [PMID: 39527011 DOI: 10.1089/vim.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
This study investigates the demographic, clinical characteristics, virological profiles, and immunological responses of patients with viral encephalitis (VE) compared with a control group. The VE group displayed a wide range of neurological symptoms. Virological analysis revealed the predominance of Herpesviridae family viruses. Immune responses in cerebrospinal fluid (CSF) from patients with VE were examined, highlighting an immunological shift toward T helper 1 (Th1) cells dominance, altered T helper 17 cells/regulatory T cells (Th17/Tregs) balance, and high interleukin-6 expression. These findings provide insights into the complex immunological landscape of VE, highlighting the role of specific cytokines and T cell subsets in its pathogenesis and potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Khadija Tebibi
- Research Laboratory "Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health", Pasteur Institute of Tunis, Tunis, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rafika Ben Laamari
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Transmission, Control, and Immunobiology of Infections, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zakaria Saied
- Neurological Department of Mongi Ben Hmida Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Maghrebi
- Laboratory of Transmission, Control, and Immunobiology of Infections, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Zina Meddeb
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Samia Ben Sassi
- Neurological Department of Mongi Ben Hmida Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- Research Laboratory "Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health", Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Meriam Belghith
- Laboratory of Transmission, Control, and Immunobiology of Infections, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dorra Rezig
- Research Laboratory "Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health", Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| |
Collapse
|
2
|
Czupryna P, Moniuszko-Malinowska A, Trojan G, Adamczuk J, Martonik D, Parfieniuk-Kowerda A, Kruszewska E, Giecko M, Grygorczuk S. The assessment of usefulness of cytokines and other soluble mediators as the predictors of sequalae development in various forms of tick-borne encephalitis (TBE). Cytokine 2024; 184:156767. [PMID: 39326199 DOI: 10.1016/j.cyto.2024.156767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
AIM The aim of the study was to assess the usefulness of cytokines and other soluble mediators in differentiation between severe and mild course of tick-borne encephalitis (TBE) as well as the predictor of sequalae development. MATERIAL AND METHODS 122 patients (mean age 47.66 ± 14.77 years, 43 females, 79 males) with TBE were included in the study. Concentrations of 82 cytokines, growth factors, selectins, matrix metalloproteinases and other soluble mediators were measured in serum and CSF samples according to the manufacturer's instruction on a Bio-Plex 200 System using the custom made Luminex assays. Enzyme-linked immunosorbent assays for the quantitative detection of human IL-26, IL-29 IL-22, CXCL12 were performed. RESULTS No significant differences between serum concentrations of examined factors between group with sequelae and group with complete recovery were observed. In the CSF the concentrations of GM-CSF, Il-1α, Il-2, Il-4, Il-6, Il-12p70, Il-17A, CXCL1, CXCL6, Il-8, CCL4, CCL20, TRAIL, CD40L, MMP8 were significantly higher in patients who developed sequelae than in patients with complete recovery. For TRAIL concentration over 26.65 pg/ml in CSF the probability of sequalae development was 10.5 higher. In case of CCL20 - the concentration over 21.38 pg/ml in CSF the odds ratio was 6.429 times. For MMP-8 over 4210.54 pg/ml, the odds ratio was 11.222 times. CONCLUSIONS TRAIL, CCL-20 and MMP-8 are promising biomarkers of prediction of the sequalae development of TBE. Pro-inflammatory cytokines IL-8, IL-1, IL-2, IL-12, IL-17A also associate well with the risk of sequelae and could be further evaluated as prognostic markers in TBE, individually or as elements of a larger model.
Collapse
Affiliation(s)
- Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| | - Gabriela Trojan
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| | - Maciej Giecko
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland.
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540 Bialystok, Poland
| |
Collapse
|
3
|
Shen H, Liu M, Zhou H, Li Y, Guo Y, Yin Y, Zhang F, Wang J. Differential expression and significance of cytokines in cerebrospinal fluid of patients with viral encephalitis. Neuroscience 2024; 561:11-19. [PMID: 39389253 DOI: 10.1016/j.neuroscience.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
To extensively identify cerebrospinal fluid (CSF) cytokine profiles related to the occurrence, development and prognosis of viral encephalitis (VE) patients by using a high-throughput proteomic approach. We measured 80 cytokines in the CSF of acute-phase VE patients (n = 11) using high-throughput protein chip technology, comparing them to controls (n = 6). ELISA validated these findings and assessed additional cytokines from prior literature in a larger cohort (15 VE patients, 15 controls). Correlations between biomarkers and clinical characteristics were also examined. In the initial stage, we identified two differentially expressed cytokines: cathepsin-L (CTSL), which was up-regulated, and Fractalkine, which was down-regulated. Functional enrichment analysis revealed that these proteins are linked to inflammation, apoptosis, autophagy, and blood-brain barrier disruption. In stage2, the elevations of cathepsin-L (CTSL), fractalkine, interleukin-6 (IL-6), IL-1β, macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), insulin-like growth factor Ⅱ (IGF-2) and CXC chemokine ligand 10 (CXCL10) in VE were validated by ELISA. The results of linear regression indicated that these cytokines was positively correlated with CSF reactive lesions (p < 0.05). In this study, some biomarkers related with CSF level changes and prognosis were obtained. Although these cytokines are not specific, they may be related to the occurrence and development of VE. CTSL, MIF, IL-1β, TNF-α and CXCL10 can be used as VE potential biomarkers. These cytokines may participate in the pathogenesis of VE through inflammatory response, cell apoptosis, autophagy, blood-brain barrier disruption and cytokine-cytokine receptor interaction pathway.
Collapse
Affiliation(s)
- Huijun Shen
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China; School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Miaomiao Liu
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Zhou
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuchen Li
- Tianjin Medical University, Tianjin, China
| | - Yingshi Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujie Yin
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fang Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Damodar T, Dunai C, Prabhu N, Jose M, Akhila L, Kinhal UV, Anusha Raj K, Marate S, Lalitha AV, Dsouza FS, Sajjan SV, Gowda VK, Basavaraja GV, Singh B, Prathyusha PV, Tharmaratnam K, Ravi V, Kolamunnage-Dona R, Solomon T, Turtle L, Yadav R, Michael BD, Mani RS. Diagnostic markers of acute encephalitis syndrome and COVID-associated multisystem inflammatory syndrome in children from Southern India. J Med Virol 2024; 96:e29666. [PMID: 38738569 PMCID: PMC7616670 DOI: 10.1002/jmv.29666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Acute encephalitis syndrome (AES) in children poses a significant public health challenge in India. This study aims to explore the utility of host inflammatory mediators and neurofilament (NfL) levels in distinguishing etiologies, assessing disease severity, and predicting outcomes in AES. We assessed 12 mediators in serum (n = 58) and 11 in cerebrospinal fluid (CSF) (n = 42) from 62 children with AES due to scrub typhus, viral etiologies, and COVID-associated multisystem inflammatory syndrome (MIS-C) in Southern India. Additionally, NfL levels in serum (n = 20) and CSF (n = 18) were examined. Clinical data, including Glasgow coma scale (GCS) and Liverpool outcome scores, were recorded. Examining serum and CSF markers in the three AES etiology groups revealed notable distinctions, with scrub typhus differing significantly from viral and MIS-C causes. Viral causes had elevated serum CCL11 and CCL2 compared with scrub typhus, while MIS-C cases showed higher HGF levels than scrub typhus. However, CSF analysis showed a distinct pattern with the scrub typhus group exhibiting elevated levels of IL-1RA, IL-1β, and TNF compared with MIS-C, and lower CCL2 levels compared with the viral group. Modeling the characteristic features, we identified that age ≥3 years with serum CCL11 < 180 pg/mL effectively distinguished scrub typhus from other AES causes. Elevated serum CCL11, HGF, and IL-6:IL-10 ratio were associated with poor outcomes (p = 0.038, 0.005, 0.02). Positive CSF and serum NfL correlation, and negative GCS and serum NfL correlation were observed. Median NfL levels were higher in children with abnormal admission GCS and poor outcomes. Measuring immune mediators and brain injury markers in AES provides valuable diagnostic insights, with the potential to facilitate rapid diagnosis and prognosis. The correlation between CSF and serum NfL, along with distinctive serum cytokine profiles across various etiologies, indicates the adequacy of blood samples alone for assessment and monitoring. The association of elevated levels of CCL11, HGF, and an increased IL-6:IL-10 ratio with adverse outcomes suggests promising avenues for therapeutic exploration, warranting further investigation.
Collapse
Affiliation(s)
- Tina Damodar
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Cordelia Dunai
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Namratha Prabhu
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Maria Jose
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - L. Akhila
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Uddhava V. Kinhal
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - K. Anusha Raj
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Srilatha Marate
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - A. V. Lalitha
- Department of Pediatric Critical Care, St John’s Medical College and Hospital, Bangalore, India
| | | | - Sushma Veeranna Sajjan
- Department of Pediatrics, Bangalore Medical College and Research Institute, Bangalore, India
| | - Vykuntaraju K. Gowda
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bangalore, India
| | - G. V. Basavaraja
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Bhagteshwar Singh
- Tropical & Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - P. V. Prathyusha
- Department of Biostatistics, National Institute of Mental Health & Neurosciences, Bangalore, India
| | | | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | | | - Tom Solomon
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, Liverpool, UK
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Lance Turtle
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Benedict D. Michael
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, Liverpool, UK
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Reeta S. Mani
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, India
| |
Collapse
|
5
|
Rossor T, Lim M. Immune-mediated encephalitis. Dev Med Child Neurol 2024; 66:307-316. [PMID: 37438863 DOI: 10.1111/dmcn.15694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
A neurological deterioration in a child presents a significant worry to the family and often a diagnostic challenge to the clinician. A dysregulated immune response is implicated in a wide and growing spectrum of neurological conditions. In this review we consider the current paradigms in which immune-mediated encephalopathies are considered; the development of paediatric specific diagnostic criteria that facilitate early consideration and treatment of immune-mediated conditions and the limitations and potential developments in diagnostic testing. We consider the expanding phenotype of myelin oligodendrocyte glycoprotein antibody, the spectrum of virus-associated encephalopathy syndromes, and the strategies that have been employed to build an evidence base for the management of these rare conditions. Looking forward we explore the potential for advanced molecular investigations to improve our understanding of immune-mediated encephalitides and guide future treatment strategies. Recently characterized immune-mediated central nervous system disorders include new antibodies causing previously recognized phenotypes. Aggregation of conditions with similar clinical triggers, and characterization of unique imaging features in virus-associated encephalopathy syndromes. Immune treatment iscurrently guided by meta-analysis of individualized patient data and/or multi-national consensus.
Collapse
Affiliation(s)
- Thomas Rossor
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department Women and Children's Health, School of Life Course Sciences, King's College London, UK
| |
Collapse
|
6
|
Seyedmirzaei H, Salabat D, KamaliZonouzi S, Teixeira AL, Rezaei N. Risk of MS relapse and deterioration after COVID-19: A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 83:105472. [PMID: 38316078 DOI: 10.1016/j.msard.2024.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Upper respiratory viral infections have long been considered triggers for multiple sclerosis (MS) relapse and exacerbation. The possible effects of SARS-CoV-2 infection on MS relapse and deterioration remain controversial. METHODS We systematically searched PubMed, Scopus, Embase, Cochrane, and Web of Science databases to find relevant studies assessing changes in relapse rates or Expanded Disability Status Scale (EDSS) following COVID-19 in people with MS. Meta-analyses were performed, and to investigate sources of heterogeneity, subgroup analysis, meta-regression, and sensitivity analysis were conducted. RESULTS We included 14 studies in our systematic review and meta-analysis. The meta-analysis demonstrated that COVID-19 was not associated with a rise in relapse rate (risk ratio (RR): 0.97, 95 % confidence interval (CI): 0.67, 1.41, p-value: 0.87) or a rise in EDSS (standardized mean difference (SMD): -0.09, 95 % CI: -0.22, 0.03, p-value: 0.13). The analysis of EDSS changes indicated a significant heterogeneity (I2: 55 %, p-value: 0.01). Other analyses were not statistically significant. CONCLUSIONS COVID-19 infection was not associated with an increased risk of relapse and clinical deterioration in people with MS.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Salabat
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara KamaliZonouzi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Soltani Khaboushan A, Moeinafshar A, Ersi MH, Teixeira AL, Majidi Zolbin M, Kajbafzadeh AM. Circulating levels of inflammatory biomarkers in Huntington's disease: A systematic review and meta-analysis. J Neuroimmunol 2023; 385:578243. [PMID: 37984118 DOI: 10.1016/j.jneuroim.2023.578243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant disease caused by an abnormally high number of CAG repeats at the huntingtin-encoding gene, HTT. This genetic alteration results in the expression of a mutant form of the protein (mHTT) and the formation of intracellular aggregates, inducing an inflammatory state within the affected areas. This dysfunction of inflammatory response leads to elevated levels of related inflammatory markers in both CNS tissue samples and body fluids. This study aims to investigate peripheral/blood concentrations of inflammatory molecules in HD. METHODS A search was conducted in MEDLINE, Scopus, Web of Science, and Embase databases until March 30th, 2023. Random-effect meta-analysis was used for exploring concentrations of inflammatory molecules in HD. Subgroup and sensitivity analyses were used to assess heterogeneity among the included studies. The study protocol has been registered in PROSPERO with the ID number CRD42022296078. RESULTS Ten studies were included in the meta-analysis. Plasma levels of Interleukin 6 (IL-6) and IL-10 were higher in HD compared to controls. Other biomarkers, namely, complement component C-reactive protein (CRP), C3, interferon-γ (IFN-γ), IL-1, IL-2, IL-8, and tumor necrosis factor-α (TNF-α), did not show any significant differences between the two groups. In addition, the subgroup analysis results established no significant differences in levels of these biomarkers in body fluids among premanifest and manifest HD patients. CONCLUSION The results of this study provide evidence for the presence of higher plasma levels of IL-6 and IL-10 in HD patients in comparison with healthy controls.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hamed Ersi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Evidence Based Medicine Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
8
|
Aguilan JT, Pedrosa E, Dolstra H, Baykara RN, Barnes J, Zhang J, Sidoli S, Lachman HM. Proteomics and phosphoproteomics profiling in glutamatergic neurons and microglia in an iPSC model of Jansen de Vries Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548192. [PMID: 37461463 PMCID: PMC10350077 DOI: 10.1101/2023.07.08.548192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a truncated PPM1D protein that retains catalytic activity and has a GOF effect because of reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established factors in a number of cancers, due to excessive dephosphorylation and reduced function of P53 and other substrates involved in DDR. Children with JdVS have a variety of neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute neuropsychiatric decompensation apparently triggered by infection or severe non-infectious environmental stress factors. Methods To understand the molecular basis of JdVS, we developed an induced pluripotent stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate immune system in microglia could account for acute behavioral decompensation. Results One of the major findings was the downregulation of POGZ in unstimulated microglia. Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated microglia show marked alterations in the expression of several E3 ubiquitin ligases, most notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. Limitations Owing to the cost and labor-intensive nature of iPSC research, the sample size was small. Conclusions Our findings provide insight into the molecular basis of JdVS and can be extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of patients with ASD and other NDDs.
Collapse
Affiliation(s)
- Jennifer T. Aguilan
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jesse Barnes
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| |
Collapse
|
9
|
Vogrig A, Versace S, Gigli GL, Fabris M, Honnorat J, Valente M. Eating reflex epilepsy of presumed autoimmune etiology after SARS-CoV-2 vaccination. J Neurol 2023:10.1007/s00415-023-11723-0. [PMID: 37117736 PMCID: PMC10144898 DOI: 10.1007/s00415-023-11723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Affiliation(s)
- Alberto Vogrig
- Clinical Neurology, Santa Maria Della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Piazzale Santa Maria Della Misericordia, 15, 33100, Udine, Italy.
- Department of Medicine (DAME), University of Udine Medical School, Udine, Italy.
| | - Salvatore Versace
- Clinical Neurology, Santa Maria Della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Piazzale Santa Maria Della Misericordia, 15, 33100, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology, Santa Maria Della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Piazzale Santa Maria Della Misericordia, 15, 33100, Udine, Italy
- Department of Medicine (DAME), University of Udine Medical School, Udine, Italy
| | - Martina Fabris
- Clinical Pathology, Department of Laboratory Medicine, Santa Maria Della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospital for Neurology and Neurosurgery Pierre Wertheimer, Lyon University Hospital, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Mariarosaria Valente
- Clinical Neurology, Santa Maria Della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Piazzale Santa Maria Della Misericordia, 15, 33100, Udine, Italy
- Department of Medicine (DAME), University of Udine Medical School, Udine, Italy
| |
Collapse
|
10
|
Zhang F, Gao X, Liu J, Zhang C. Biomarkers in autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1111719. [PMID: 37090723 PMCID: PMC10113662 DOI: 10.3389/fimmu.2023.1111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
The autoimmune diseases of the central nervous system (CNS) represent individual heterogeneity with different disease entities. Although clinical and imaging features make it possible to characterize larger patient cohorts, they may not provide sufficient evidence to detect disease activity and response to disease modifying drugs. Biomarkers are becoming a powerful tool due to their objectivity and easy access. Biomarkers may indicate various aspects of biological processes in healthy and/or pathological states, or as a response to drug therapy. According to the clinical features described, biomarkers are usually classified into predictive, diagnostic, monitoring and safety biomarkers. Some nerve injury markers, humoral markers, cytokines and immune cells in serum or cerebrospinal fluid have potential roles in disease severity and prognosis in autoimmune diseases occurring in the CNS, which provides a promising approach for clinicians to early intervention and prevention of future disability. Therefore, this review mainly summarizes the potential biomarkers indicated in autoimmune disorders of the CNS.
Collapse
Affiliation(s)
- Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Gao
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
- Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
11
|
Wagner A, Pehar M, Yan Z, Kulka M. Amanita muscaria extract potentiates production of proinflammatory cytokines by dsRNA-activated human microglia. Front Pharmacol 2023; 14:1102465. [PMID: 37124206 PMCID: PMC10130647 DOI: 10.3389/fphar.2023.1102465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Recent interest in mushrooms and their components as potential therapies for mental health, along with recent government and health authority approvals, has necessitated a more comprehensive understanding of their effects on the cellular microenvironment of the brain. Amanita muscaria has been ingested as a treatment for a variety of ailments for centuries, most notably those affecting the central nervous system and conditions associated with neuroinflammation. However, the effects of these extracts on neuroinflammatory cells, such as microglia, are unknown. The effect of commercially-sourced A. muscaria extract (AME-1) on human microglial cell line (HMC3) expression of surface receptors such as CD86, CXCR4, CD45, CD125 and TLR4 was determined by flow cytometry. AME-1 upregulated expression of all of these receptors. The effect of AME-1 on HMC3 production of IL-8 and IL-6 was determined and compared to tumor necrosis factor (TNF), polyinosinic-polycytidylic acid [poly(I:C)], substance P and lipopolysaccharide (LPS), all known activators of HMC-3 and primary microglia. HMC3 produced both IL-8 and IL-6 when activated with LPS, TNF and poly(I:C) but not when they were activated with substance P. Although AME-1 at higher concentrations increased IL-8 production of HMC3 on its own, AME-1 notably potentiated HMC3 production of IL-8 in response to poly(I:C). AME-1 altered expression of toll-like receptor 3 (TLR3) mRNA but not surface protein by HMC3. AME-1 also did not significantly alter expression of retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated protein 5 (MDA5), both cytosolic sensors of dsRNA. Metabolomics analysis showed that AME-1 contained several metabolites, including the autophagy inducer, trehalose. Like AME-1, trehalose also potentiated HMC3 poly(I:C) mediated production of IL-8. This study suggests that A. muscaria extracts can modify HMC3 inflammatory responses, possibly due to their trehalose content.
Collapse
Affiliation(s)
- Ashley Wagner
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Marcus Pehar
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Zhimin Yan
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Marianna Kulka,
| |
Collapse
|