1
|
Perfect JR, Kronstad JW. Cryptococcal nutrient acquisition and pathogenesis: dining on the host. Microbiol Mol Biol Rev 2025; 89:e0001523. [PMID: 39927764 PMCID: PMC11948494 DOI: 10.1128/mmbr.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYPathogens must acquire essential nutrients to successfully colonize and proliferate in host tissue. Additionally, nutrients provide signals that condition pathogen deployment of factors that promote disease. A series of transcriptomics experiments over the last 20 years, primarily with Cryptococcus neoformans and to a lesser extent with Cryptococcus gattii, provide insights into the nutritional requirements for proliferation in host tissues. Notably, the identified functions include a number of transporters for key nutrients including sugars, amino acids, metals, and phosphate. Here, we first summarize the in vivo gene expression studies and then discuss the follow-up analyses that specifically test the relevance of the identified transporters for the ability of the pathogens to cause disease. The conclusion is that predictions based on transcriptional profiling of cryptococcal cells in infected tissue are well supported by subsequent investigations using targeted mutations. Overall, the combination of transcriptomic and genetic approaches provides substantial insights into the nutritional requirements that underpin proliferation in the host.
Collapse
Affiliation(s)
- John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Lee CWJ, Brisland A, Qu X, Horianopoulos LC, Hu G, Mayer FL, Kronstad JW. Loss of Opi3 causes a lipid imbalance that influences the virulence traits of Cryptococcus neoformans but not cryptococcosis. Front Cell Infect Microbiol 2024; 14:1448229. [PMID: 39193507 PMCID: PMC11347413 DOI: 10.3389/fcimb.2024.1448229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The basidiomycete fungus Cryptococcus neoformans is a useful model for investigating mechanisms of fungal pathogenesis in mammalian hosts. This pathogen is the causative agent of cryptococcal meningitis in immunocompromised patients and is in the critical priority group of the World Health Organization fungal priority pathogens list. In this study, we employed a mutant lacking the OPI3 gene encoding a methylene-fatty-acyl-phospholipid synthase to characterize the role of phosphatidylcholine (PC) and lipid homeostasis in the virulence of C. neoformans. We first confirmed that OPI3 was required for growth in nutrient limiting conditions, a phenotype that could be rescued with exogenous choline and PC. Additionally, we established that loss of Opi3 and the lack of PC lead to an accumulation of neutral lipids in lipid droplets and alterations in major lipid classes. The growth defect of the opi3Δ mutant was also rescued by sorbitol and polyethylene glycol (PEG), a result consistent with protection of ER function from the stress caused by lipid imbalance. We then examined the impact of Opi3 on virulence and found that the dependence of PC synthesis on Opi3 caused reduced capsule size and this was accompanied by an increase in shed capsule polysaccharide and changes in cell wall composition. Further tests of virulence demonstrated that survival in alveolar macrophages and the ability to cause disease in mice were not impacted by loss of Opi3 despite the choline auxotrophy of the mutant in vitro. Overall, this work establishes the contribution of lipid balance to virulence factor elaboration by C. neoformans and suggests that host choline is sufficient to support proliferation during disease.
Collapse
Affiliation(s)
- Christopher W. J. Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Anna Brisland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Linda C. Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - François L. Mayer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Black B, da Silva LBR, Hu G, Qu X, Smith DFQ, Magaña AA, Horianopoulos LC, Caza M, Attarian R, Foster LJ, Casadevall A, Kronstad JW. Glutathione-mediated redox regulation in Cryptococcus neoformans impacts virulence. Nat Microbiol 2024; 9:2084-2098. [PMID: 38956248 PMCID: PMC11930340 DOI: 10.1038/s41564-024-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
The fungal pathogen Cryptococcus neoformans is well adapted to its host environment. It has several defence mechanisms to evade oxidative and nitrosative agents released by phagocytic host cells during infection. Among them, melanin production is linked to both fungal virulence and defence against harmful free radicals that facilitate host innate immunity. How C. neoformans manipulates its redox environment to facilitate melanin formation and virulence is unclear. Here we show that the antioxidant glutathione is inextricably linked to redox-active processes that facilitate melanin and titan cell production, as well as survival in macrophages and virulence in a murine model of cryptococcosis. Comparative metabolomics revealed that disruption of glutathione biosynthesis leads to accumulation of reducing and acidic compounds in the extracellular environment of mutant cells. Overall, these findings highlight the importance of redox homeostasis and metabolic compensation in pathogen adaptation to the host environment and suggest new avenues for antifungal drug development.
Collapse
Affiliation(s)
- Braydon Black
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leandro Buffoni Roque da Silva
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xianya Qu
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel F Q Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Armando Alcázar Magaña
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Metabolomics Core Facility, Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda C Horianopoulos
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Mélissa Caza
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Larissa Yarr Medical Microbiology Laboratory, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Rodgoun Attarian
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Pfizer Canada, Kirkland, Quebec, Canada
| | - Leonard J Foster
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Metabolomics Core Facility, Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James W Kronstad
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Hu G, Qu X, Bhalla K, Xue P, Bakkeren E, Lee CWJ, Kronstad JW. Loss of the putative Rab GTPase, Ypt7, impairs the virulence of Cryptococcus neoformans. Front Microbiol 2024; 15:1437579. [PMID: 39119141 PMCID: PMC11306161 DOI: 10.3389/fmicb.2024.1437579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Small GTPases of the Rab family coordinate multiple membrane fusion and trafficking events in eukaryotes. In fungi, the Rab GTPase, Ypt7, plays a critical role in late endosomal trafficking, and is required for homotypic fusion events in vacuole biogenesis and inheritance. In this study, we identified a putative YPT7 homologue in Cryptococcus neoformans, a fungal pathogen causing life threatening meningoencephalitis in immunocompromised individuals. As part of an ongoing effort to understand mechanisms of iron acquisition in C. neoformans, we established a role for Ypt7 in growth on heme as the sole iron source. Deletion of YPT7 also caused abnormal vacuolar morphology, defective endocytic trafficking and autophagy, and mislocalization of Aph1, a secreted vacuolar acid phosphatase. Ypt7 localized to the vacuolar membrane and membrane contact sites between the vacuole and mitochondria (vCLAMPs), and loss of the protein impaired growth on inhibitors of the electron transport chain. Additionally, Ypt7 was required for robust growth at 39°C, a phenotype likely involving the calcineurin signaling pathway because ypt7 mutants displayed increased susceptibility to the calcineurin-specific inhibitors, FK506 and cyclosporin A; the mutants also had impaired growth in either limiting or high levels of calcium. Finally, Ypt7 was required for survival during interactions with macrophages, and ypt7 mutants were attenuated for virulence in a mouse inhalation model thus demonstrating the importance of membrane trafficking functions in cryptococcosis.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Peng Xue
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Erik Bakkeren
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christopher W. J. Lee
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W. Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
French KS, Chukwuma E, Linshitz I, Namba K, Duckworth OW, Cubeta MA, Baars O. Inactivation of siderophore iron-chelating moieties by the fungal wheat root symbiont Pyrenophora biseptata. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13234. [PMID: 38240404 PMCID: PMC10866069 DOI: 10.1111/1758-2229.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024]
Abstract
We investigated the ability of four plant and soil-associated fungi to modify or degrade siderophore structures leading to reduced siderophore iron-affinity in iron-limited and iron-replete cultures. Pyrenophora biseptata, a melanized fungus from wheat roots, was effective in inactivating siderophore iron-chelating moieties. In the supernatant solution, the tris-hydroxamate siderophore desferrioxamine B (DFOB) underwent a stepwise reduction of the three hydroxamate groups in DFOB to amides leading to a progressive loss in iron affinity. A mechanism is suggested based on the formation of transient ferrous iron followed by reduction of the siderophore hydroxamate groups during fungal high-affinity reductive iron uptake. P. biseptata also produced its own tris-hydroxamate siderophores (neocoprogen I and II, coprogen and dimerum acid) in iron-limited media and we observed loss of hydroxamate chelating groups during incubation in a manner analogous to DFOB. A redox-based reaction was also involved with the tris-catecholate siderophore protochelin in which oxidation of the catechol groups to quinones was observed. The new siderophore inactivating activity of the wheat symbiont P. biseptata is potentially widespread among fungi with implications for the availability of iron to plants and the surrounding microbiome in siderophore-rich environments.
Collapse
Affiliation(s)
- Katie S. French
- Department of Entomology and Plant PathologyNorth Carolina State University, Center for Integrated Fungal ResearchRaleighNorth CarolinaUSA
- Present address:
Department of Soil ScienceUniversity of ArkansasFayettevilleArkansasUSA
| | - Emmanuel Chukwuma
- Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ilan Linshitz
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Kosuke Namba
- Department of Pharmaceutical SciencesTokushima UniversityTokushimaJapan
| | - Owen W. Duckworth
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Marc A. Cubeta
- Department of Entomology and Plant PathologyNorth Carolina State University, Center for Integrated Fungal ResearchRaleighNorth CarolinaUSA
| | - Oliver Baars
- Department of Entomology and Plant PathologyNorth Carolina State University, Center for Integrated Fungal ResearchRaleighNorth CarolinaUSA
- Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Pijuan J, Moreno DF, Yahya G, Moisa M, Ul Haq I, Krukiewicz K, Mosbah R, Metwally K, Cavalu S. Regulatory and pathogenic mechanisms in response to iron deficiency and excess in fungi. Microb Biotechnol 2023; 16:2053-2071. [PMID: 37804207 PMCID: PMC10616654 DOI: 10.1111/1751-7915.14346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Iron is an essential element for all eukaryote organisms because of its redox properties, which are important for many biological processes such as DNA synthesis, mitochondrial respiration, oxygen transport, lipid, and carbon metabolism. For this reason, living organisms have developed different strategies and mechanisms to optimally regulate iron acquisition, transport, storage, and uptake in different environmental responses. Moreover, iron plays an essential role during microbial infections. Saccharomyces cerevisiae has been of key importance for decrypting iron homeostasis and regulation mechanisms in eukaryotes. Specifically, the transcription factors Aft1/Aft2 and Yap5 regulate the expression of genes to control iron metabolism in response to its deficiency or excess, adapting to the cell's iron requirements and its availability in the environment. We also review which iron-related virulence factors have the most common fungal human pathogens (Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans). These factors are essential for adaptation in different host niches during pathogenesis, including different fungal-specific iron-uptake mechanisms. While being necessary for virulence, they provide hope for developing novel antifungal treatments, which are currently scarce and usually toxic for patients. In this review, we provide a compilation of the current knowledge about the metabolic response to iron deficiency and excess in fungi.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular MedicineInstitut de Recerca Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadridSpain
| | - David F. Moreno
- Department of Molecular Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
- Systems Biology InstituteYale UniversityWest HavenConnecticutUSA
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of PharmacyZagazig UniversityAl SharqiaEgypt
| | - Mihaela Moisa
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Programa de Pós‐graduação em Inovação TecnológicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Centre for Organic and Nanohybrid ElectronicsSilesian University of TechnologyGliwicePoland
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityZagazigEgypt
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
- Department of Pharmaceutical Medicinal Chemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt
| | - Simona Cavalu
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| |
Collapse
|
7
|
Wiesmann CL, Wang NR, Zhang Y, Liu Z, Haney CH. Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals. FEMS Microbiol Rev 2023; 47:fuac048. [PMID: 36521845 PMCID: PMC10719066 DOI: 10.1093/femsre/fuac048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/17/2023] Open
Abstract
Regardless of the outcome of symbiosis, whether it is pathogenic, mutualistic or commensal, bacteria must first colonize their hosts. Intriguingly, closely related bacteria that colonize diverse hosts with diverse outcomes of symbiosis have conserved host-association and virulence factors. This review describes commonalities in the process of becoming host associated amongst bacteria with diverse lifestyles. Whether a pathogen, commensal or mutualist, bacteria must sense the presence of and migrate towards a host, compete for space and nutrients with other microbes, evade the host immune system, and change their physiology to enable long-term host association. We primarily focus on well-studied taxa, such as Pseudomonas, that associate with diverse model plant and animal hosts, with far-ranging symbiotic outcomes. Given the importance of opportunistic pathogens and chronic infections in both human health and agriculture, understanding the mechanisms that facilitate symbiotic relationships between bacteria and their hosts will help inform the development of disease treatments for both humans, and the plants we eat.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhexian Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Xue P, Hu G, Jung WH, Kronstad JW. Metals and the cell surface of Cryptococcus neoformans. Curr Opin Microbiol 2023; 74:102331. [PMID: 37257400 PMCID: PMC10513164 DOI: 10.1016/j.mib.2023.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Recent studies in pathogenic yeasts reinforce our appreciation of the influence of metal homeostasis on the fungal cell surface. To illustrate this influence, we focus on recent studies on Cryptococcus neoformans, a fungal pathogen with a complex surface of a cell wall with embedded melanin and an attached polysaccharide capsule. Copper and iron are essential yet toxic metals, and current efforts demonstrate the importance of these metals for modulating the surface structure of C. neoformans cells in ways that contribute to fungal-host interactions during disease in vertebrate hosts. In this review, we briefly summarize mechanisms of acquisition and regulation for copper and iron, and then discuss recent insights into the connections between the metals and the cell surface.
Collapse
Affiliation(s)
- Peng Xue
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
9
|
Bailão AM, Silva KLPD, Moraes D, Lechner B, Lindner H, Haas H, Soares CMA, Silva-Bailão MG. Iron Starvation Induces Ferricrocin Production and the Reductive Iron Acquisition System in the Chromoblastomycosis Agent Cladophialophora carrionii. J Fungi (Basel) 2023; 9:727. [PMID: 37504717 PMCID: PMC10382037 DOI: 10.3390/jof9070727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Iron is a micronutrient required by almost all living organisms. Despite being essential, the availability of this metal is low in aerobic environments. Additionally, mammalian hosts evolved strategies to restrict iron from invading microorganisms. In this scenario, the survival of pathogenic fungi depends on high-affinity iron uptake mechanisms. Here, we show that the production of siderophores and the reductive iron acquisition system (RIA) are employed by Cladophialophora carrionii under iron restriction. This black fungus is one of the causative agents of chromoblastomycosis, a neglected subcutaneous tropical disease. Siderophore biosynthesis genes are arranged in clusters and, interestingly, two RIA systems are present in the genome. Orthologs of putative siderophore transporters were identified as well. Iron starvation regulates the expression of genes related to both siderophore production and RIA systems, as well as of two transcription factors that regulate iron homeostasis in fungi. A chrome azurol S assay demonstrated the secretion of hydroxamate-type siderophores, which were further identified via RP-HPLC and mass spectrometry as ferricrocin. An analysis of cell extracts also revealed ferricrocin as an intracellular siderophore. The presence of active high-affinity iron acquisition systems may surely contribute to fungal survival during infection.
Collapse
Affiliation(s)
- Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Dayane Moraes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Beatrix Lechner
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | - Herbert Lindner
- Institute of Medical Biochemistry/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | | | | |
Collapse
|
10
|
XUE P, SÁNCHEZ-LEÓN E, DAMOO D, HU G, JUNG WH, KRONSTAD JW. Heme sensing and trafficking in fungi. FUNGAL BIOL REV 2023; 43:100286. [PMID: 37781717 PMCID: PMC10540271 DOI: 10.1016/j.fbr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fungal pathogens cause life-threatening diseases in humans, and the increasing prevalence of these diseases emphasizes the need for new targets for therapeutic intervention. Nutrient acquisition during infection is a promising target, and recent studies highlight the contributions of endomembrane trafficking, mitochondria, and vacuoles in the sensing and acquisition of heme by fungi. These studies have been facilitated by genetically encoded biosensors and other tools to quantitate heme in subcellular compartments and to investigate the dynamics of trafficking in living cells. In particular, the applications of biosensors in fungi have been extended beyond the detection of metabolites, cofactors, pH, and redox status to include the detection of heme. Here, we focus on studies that make use of biosensors to examine mechanisms of heme uptake and degradation, with guidance from the model fungus Saccharomyces cerevisiae and an emphasis on the pathogenic fungi Candida albicans and Cryptococcus neoformans that threaten human health. These studies emphasize a role for endocytosis in heme uptake, and highlight membrane contact sites involving mitochondria, the endoplasmic reticulum and vacuoles as mediators of intracellular iron and heme trafficking.
Collapse
Affiliation(s)
- Peng XUE
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy SÁNCHEZ-LEÓN
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Djihane DAMOO
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan HU
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee JUNG
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - James W. KRONSTAD
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Factors Influencing the Nitrogen-Source Dependent Flucytosine Resistance in Cryptococcus Species. mBio 2023; 14:e0345122. [PMID: 36656038 PMCID: PMC9973006 DOI: 10.1128/mbio.03451-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Flucytosine (5-FC) is an antifungal agent commonly used for treatment of cryptococcosis and several other systemic mycoses. In fungi, cytosine permease and cytosine deaminase are known major players in flucytosine resistance by regulating uptake and deamination of 5-FC, respectively. Cryptococcus species have three paralogs each of cytosine permease (FCY2, FCY3, and FCY4) and cytosine deaminase (FCY1, FCY5 and FCY6). As in other fungi, we found FCY1 and FCY2 to be the primary cytosine deaminase and permease gene, respectively, in C. neoformans H99 (VNI), C. gattii R265 (VGIIa) and WM276 (VGI). However, when various amino acids were used as the sole nitrogen source, C. neoformans and C. gattii diverged in the function of FCY3 and FCY6. Though there was some lineage-dependent variability, the two genes functioned as the secondary permease and deaminase, respectively, only in C. gattii when the nitrogen source was arginine, asparagine, or proline. Additionally, the expression of FCY genes, excluding FCY1, was under nitrogen catabolic repression in the presence of NH4. Functional analysis of GAT1 and CIR1 gene deletion constructs demonstrated that these two genes regulate the expression of each permease and deaminase genes individually. Furthermore, the expression levels of FCY3 and FCY6 under different amino acids corroborated the 5-FC susceptibility in fcy2Δ or fcy1Δ background. Thus, the mechanism of 5-FC resistance in C. gattii under diverse nitrogen conditions is orchestrated by two transcription factors of GATA family, cytosine permease and deaminase genes. IMPORTANCE 5-FC is a commonly used antifungal drug for treatment of cryptococcosis caused by Cryptococcus neoformans and C. gattii species complexes. When various amino acids were used as the sole nitrogen source for growth, we found lineage dependent differences in 5-FC susceptibility. Deletion of the classical cytosine permease (FCY2) and deaminase (FCY1) genes caused increased 5-FC resistance in all tested nitrogen sources in C. neoformans but not in C. gattii. Furthermore, we demonstrate that the two GATA family transcription factor genes GAT1 and CIR1 are involved in the nitrogen-source dependent 5-FC resistance by regulating the expression of the paralogs of cytosine permease and deaminase genes. Our study not only identifies the new function of paralogs of the cytosine permease and deaminase and the role of their regulatory transcription factors but also denotes the differences in the mechanism of 5-FC resistance among the two etiologic agents of cryptococcosis under different nitrogen sources.
Collapse
|
12
|
Patiño LH, Muñoz M, Ramírez AL, Vélez N, Escandón P, Parra-Giraldo CM, Ramírez JD. A Landscape of the Genomic Structure of Cryptococcus neoformans in Colombian Isolates. J Fungi (Basel) 2023; 9:jof9020135. [PMID: 36836249 PMCID: PMC9959405 DOI: 10.3390/jof9020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Cryptococcus neoformans species complexes are recognized as environmental fungi responsible for lethal meningoencephalitis in immunocompromised individuals. Despite the vast knowledge about the epidemiology and genetic diversity of this fungus in different regions of the world, more studies are necessary to comprehend the genomic profiles across South America, including Colombia, considered to be the second country with the highest number of Cryptococcosis. Here, we sequenced and analyzed the genomic architecture of 29 Colombian C. neoformans isolates and evaluated the phylogenetic relationship of these strains with publicly available C. neoformans genomes. The phylogenomic analysis showed that 97% of the isolates belonged to the VNI molecular type and the presence of sub-lineages and sub-clades. We evidenced a karyotype without changes, a low number of genes with copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs). Additionally, a difference in the number of SNPs between the sub-lineages/sub-clades was observed; some were involved in crucial fungi biological processes. Our study demonstrated the intraspecific divergence of C. neoformans in Colombia. These findings provide evidence that Colombian C. neoformans isolates do not probably require significant structural changes as adaptation mechanisms to the host. To the best of our knowledge, this is the first study to report the whole genome sequence of Colombian C. neoformans isolates.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111321, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111321, Colombia
| | - Angie Lorena Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111321, Colombia
| | - Nórida Vélez
- Unidad de Proteómica y Micosis Humanas, Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá 111321, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28001 Madrid, Spain
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Claudia-Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá 111321, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28001 Madrid, Spain
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111321, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(332)-2344161
| |
Collapse
|
13
|
Sephton-Clark P, Tenor JL, Toffaletti DL, Meyers N, Giamberardino C, Molloy SF, Palmucci JR, Chan A, Chikaonda T, Heyderman R, Hosseinipour M, Kalata N, Kanyama C, Kukacha C, Lupiya D, Mwandumba HC, Harrison T, Bicanic T, Perfect JR, Cuomo CA. Genomic Variation across a Clinical Cryptococcus Population Linked to Disease Outcome. mBio 2022; 13:e0262622. [PMID: 36354332 PMCID: PMC9765290 DOI: 10.1128/mbio.02626-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Cryptococcus neoformans is the causative agent of cryptococcosis, a disease with poor patient outcomes that accounts for approximately 180,000 deaths each year. Patient outcomes may be impacted by the underlying genetics of the infecting isolate; however, our current understanding of how genetic diversity contributes to clinical outcomes is limited. Here, we leverage clinical, in vitro growth and genomic data for 284 C. neoformans isolates to identify clinically relevant pathogen variants within a population of clinical isolates from patients with human immunodeficiency virus (HIV)-associated cryptococcosis in Malawi. Through a genome-wide association study (GWAS) approach, we identify variants associated with the fungal burden and the growth rate. We also find both small and large-scale variation, including aneuploidy, associated with alternate growth phenotypes, which may impact the course of infection. Genes impacted by these variants are involved in transcriptional regulation, signal transduction, glycosylation, sugar transport, and glycolysis. We show that growth within the central nervous system (CNS) is reliant upon glycolysis in an animal model and likely impacts patient mortality, as the CNS yeast burden likely modulates patient outcome. Additionally, we find that genes with roles in sugar transport are enriched in regions under selection in specific lineages of this clinical population. Further, we demonstrate that genomic variants in two genes identified by GWAS impact virulence in animal models. Our approach identifies links between the genetic variation in C. neoformans and clinically relevant phenotypes and animal model pathogenesis, thereby shedding light on specific survival mechanisms within the CNS and identifying the pathways involved in yeast persistence. IMPORTANCE Infection outcomes for cryptococcosis, most commonly caused by C. neoformans, are influenced by host immune responses as well as by host and pathogen genetics. Infecting yeast isolates are genetically diverse; however, we lack a deep understanding of how this diversity impacts patient outcomes. To better understand both clinical isolate diversity and how diversity contributes to infection outcomes, we utilize a large collection of clinical C. neoformans samples that were isolated from patients enrolled in a clinical trial across 3 hospitals in Malawi. By combining whole-genome sequence data, clinical data, and in vitro growth data, we utilize genome-wide association approaches to examine the genetic basis of virulence. Genes with significant associations display virulence attributes in both murine and rabbit models, demonstrating that our approach can identify potential links between genetic variants and patho-biologically significant phenotypes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nancy Meyers
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Síle F. Molloy
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - Julia R. Palmucci
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Adrienne Chan
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Tarsizio Chikaonda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Robert Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mina Hosseinipour
- UNC Project Malawi, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Newton Kalata
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Cecilia Kanyama
- UNC Project Malawi, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christopher Kukacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Duncan Lupiya
- Tisungane Clinic, Zomba Central Hospital, Zomba, Malawi
| | - Henry C. Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Thomas Harrison
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - Tihana Bicanic
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Islam MR, Rahman MM, Ahasan MT, Sarkar N, Akash S, Islam M, Islam F, Aktar MN, Saeed M, Harun-Or-Rashid M, Hosain MK, Rahaman MS, Afroz S, Bibi S, Rahman MH, Sweilam SH. The impact of mucormycosis (black fungus) on SARS-CoV-2-infected patients: at a glance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69341-69366. [PMID: 35986111 PMCID: PMC9391068 DOI: 10.1007/s11356-022-22204-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 05/28/2023]
Abstract
The emergence of various diseases during the COVID-19 pandemic made health workers more attentive, and one of the new pathogens is the black fungus (mucormycosis). As a result, millions of lives have already been lost. As a result of the mutation, the virus is constantly changing its traits, including the rate of disease transmission, virulence, pathogenesis, and clinical signs. A recent analysis revealed that some COVID-19 patients were also coinfected with a fungal disease called mucormycosis (black fungus). India has already categorized the COVID-19 patient black fungus outbreak as an epidemic. Only a few reports are observed in other countries. The immune system is weakened by COVID-19 medication, rendering it more prone to illnesses like black fungus (mucormycosis). COVID-19, which is caused by a B.1.617 strain of the SARS-CoV-2 virus, has been circulating in India since April 2021. Mucormycosis is a rare fungal infection induced by exposure to a fungus called mucormycete. The most typically implicated genera are Mucor rhyzuprhizopusdia and Cunninghamella. Mucormycosis is also known as zygomycosis. The main causes of infection are soil, dumping sites, ancient building walls, and other sources of infection (reservoir words "mucormycosis" and "zygomycosis" are occasionally interchanged). Zygomycota, on the other hand, has been identified as polyphyletic and is not currently included in fungal classification systems; also, zygomycosis includes Entomophthorales, but mucormycosis does not. This current review will be focused on the etiology and virulence factors of COVID-19/mucormycosis coinfections in COVID-19-associated mucormycosis patients, as well as their prevalence, diagnosis, and treatment.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Tanjimul Ahasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Kawsar Hosain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Sadia Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-E-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 China
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213 Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426 Korea
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829 Egypt
| |
Collapse
|
15
|
Moreira-Walsh B, Ragsdale A, Lam W, Upadhya R, Xu E, Lodge JK, Donlin MJ. Membrane Integrity Contributes to Resistance of Cryptococcus neoformans to the Cell Wall Inhibitor Caspofungin. mSphere 2022; 7:e0013422. [PMID: 35758672 PMCID: PMC9429927 DOI: 10.1128/msphere.00134-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
The fungal pathogen Cryptococcus neoformans causes up to 278 000 infections each year globally, resulting in up to 180,000 deaths annually, mostly impacting immunocompromised people. Therapeutic options for C. neoformans infections are very limited. Caspofungin, a member of the echinocandin class of antifungals, is generally well tolerated but clinically ineffective against C. neoformans. We sought to identify biological processes that can be targeted to render the cell more susceptible to echinocandins by screening the available libraries of gene deletion mutants made in the KN99α background for caspofungin sensitivity. We adapted a Candida albicans fungal biofilm assay for the growth characteristics of C. neoformans and systematically screened 4,030 individual gene deletion mutants in triplicate plate assays. We identified 25 strains that showed caspofungin sensitivity. We followed up with a dose dependence assay, and 17 of the 25 were confirmed sensitive, 5 of which were also sensitive in an agar plate assay. We made new deletion mutant strains for four of these genes: CFT1, encoding an iron transporter; ERG4, encoding a sterol desaturase; MYO1, encoding a myosin heavy chain; and YSP2, encoding a sterol transporter. All were more sensitive to membrane stress and showed significantly increased sensitivity to caspofungin at higher temperatures. Surprisingly, none showed any obvious cell wall defects such as would be expected for caspofungin-sensitive strains. Our microscopy analyses suggested that loss of membrane integrity contributed to the caspofungin sensitivity, either by allowing more caspofungin to enter or remain in the cell or by altering the location or orientation of the enzyme target to render it more susceptible to inhibition. IMPORTANCE The intrinsic resistance of Cryptococcus neoformans to the cell wall inhibitor caspofungin limits the available therapies for treating cryptococcal infections. We screened a collection of more than 4,000 gene deletion strains for altered caspofungin sensitivity to identify biological processes that could be targeted to render the cell more susceptible to caspofungin. We identified multiple genes with an effect on caspofungin susceptibility and found that they were associated with altered membrane permeability rather than the expected cell wall defects. This suggests that targeting these genes or other genes affecting membrane permeability is a viable path for developing novel therapies for treating this global fungal pathogen.
Collapse
Affiliation(s)
- Brenda Moreira-Walsh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Abigail Ragsdale
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Evan Xu
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maureen J. Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Song M, Thak EJ, Kang HA, Kronstad JW, Jung WH. Cryptococcus neoformans can utilize ferritin as an iron source. Med Mycol 2022; 60:myac056. [PMID: 35943215 PMCID: PMC9387142 DOI: 10.1093/mmy/myac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/11/2022] [Accepted: 08/06/2022] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Ferritin, a major iron storage protein in vertebrates, supplies iron upon iron deficiency. Ferritin is also found extracellularly, and acts as an iron carrier and a contributor to the immune response to invading microbes. Some microbial pathogens take advantage of ferritin as an iron source upon infection. However, no information is currently available on whether the human fungal pathogen Cryptococcus neoformans can acquire iron from ferritin. Here, we found that C. neoformans grew well in the presence of ferritin as a sole iron source. We showed that the binding of ferritin to the surface of C. neoformans is necessary and that acidification may contribute to ferritin-iron utilization by the fungus. Our data also revealed that the high-affinity reductive iron uptake system in C. neoformans is required for ferritin-iron acquisition. Furthermore, phagocytosis of C. neoformans by macrophages led to increased intracellular ferritin levels, suggesting that iron is sequestered by ferritin in infected macrophages. The increase in intracellular ferritin levels was reversed upon infection with a C. neoformans mutant deficient in the high-affinity reductive iron uptake system, indicating that this system plays a major role in iron acquisition in the phagocytosed C. neoformans in macrophages. LAY SUMMARY Cryptococcus neoformans is an opportunistic fungal pathogen causing life-threatening pulmonary disease and cryptococcal meningitis, mainly in immunocompromised patients. In this study, we found that C. neoformans can use ferritin, a major iron storage protein in vertebrates, as a sole iron source.
Collapse
Affiliation(s)
- Moonyong Song
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Eun Jung Thak
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
17
|
Lee SR, Schalk F, Schwitalla JW, Guo H, Yu JS, Song M, Jung WH, de Beer ZW, Beemelmanns C, Kim KH. GNPS‐Guided Discovery of Madurastatin Siderophores from the Termite‐Associated
Actinomadura
sp. RB99**. Chemistry 2022; 28:e202200612. [PMID: 35404539 PMCID: PMC9325478 DOI: 10.1002/chem.202200612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/14/2022]
Abstract
In this study, we analyzed if Actinomadura sp. RB99 produces siderophores that that could be responsible for the antimicrobial activity observed in co‐cultivation studies. Dereplication of high‐resolution tandem mass spectrometry (HRMS/MS) and global natural product social molecular networking platform (GNPS) analysis of fungus‐bacterium co‐cultures resulted in the identification of five madurastatin derivatives (A1, A2, E1, F, and G1), of which were four new derivatives. Chemical structures were unambiguously confirmed by HR‐ESI‐MS, 1D and 2D NMR experiments, as well as MS/MS data and their absolute structures were elucidated based on Marfey's analysis, DP4+ probability calculation and total synthesis. Structure analysis revealed that madurastatin E1 (2) contained a rare 4‐imidazolidinone cyclic moiety and madurastatin A1 (5) was characterized as a Ga3+‐complex. The function of madurastatins as siderophores was evaluated using the fungal pathogen Cryptococcus neoformans as model organism. Based on homology models, we identified the putative NRPS‐based gene cluster region of the siderophores in Actinomadura sp. RB99.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
- Department of Chemistry Princeton University New Jersey 08544 USA
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Jan W. Schwitalla
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Jae Sik Yu
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Moonyong Song
- Department of Systems Biotechnology Chung-Ang University Anseong 17546 Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology Chung-Ang University Anseong 17546 Republic of Korea
| | - Z. Wilhelm de Beer
- Department of Biochemistry Genetics and Microbiology Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Hatfield 0028 Pretoria South Africa
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
- Biochemistry of Microbial Metabolism Institute of Biochemistry Leipzig University Johannisallee 21–23 Leipzig 04103 Germany
| | - Ki Hyun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| |
Collapse
|
18
|
Araf Y, Moin AT, Timofeev VI, Faruqui NA, Saiara SA, Ahmed N, Parvez MSA, Rahaman TI, Sarkar B, Ullah MA, Hosen MJ, Zheng C. Immunoinformatic Design of a Multivalent Peptide Vaccine Against Mucormycosis: Targeting FTR1 Protein of Major Causative Fungi. Front Immunol 2022; 13:863234. [PMID: 35720422 PMCID: PMC9204303 DOI: 10.3389/fimmu.2022.863234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment’s safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine’s safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.
Collapse
Affiliation(s)
- Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh
| | - Abu Tayab Moin
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre, Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
| | - Nairita Ahsan Faruqui
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Syeda Afra Saiara
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh
| | - Nafisa Ahmed
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Md Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tanjim Ishraq Rahaman
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Bishajit Sarkar
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
20
|
Vélez N, Monteoliva L, Sánchez-Quitian ZA, Amador-García A, García-Rodas R, Ceballos-Garzón A, Gil C, Escandón P, Zaragoza Ó, Parra-Giraldo CM. The Combination of Iron and Copper Increases Pathogenicity and Induces Proteins Related to the Main Virulence Factors in Clinical Isolates of Cryptococcus neoformans var. grubii. J Fungi (Basel) 2022; 8:jof8010057. [PMID: 35049997 PMCID: PMC8778102 DOI: 10.3390/jof8010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/09/2023] Open
Abstract
In fungi, metals are associated with the expression of virulence factors. However, it is unclear whether the uptake of metals affects their pathogenicity. This study aimed to evaluate the effect of iron/copper in modulating pathogenicity and proteomic response in two clinical isolates of C. neoformans with high and low pathogenicity. Methods: In both isolates, the effect of 50 µM iron and 500 µM copper on pathogenicity, capsule induction, and melanin production was evaluated. We then performed a quantitative proteomic analysis of cytoplasmic extracts exposed to that combination. Finally, the effect on pathogenicity by iron and copper was evaluated in eight additional isolates. Results: In both isolates, the combination of iron and copper increased pathogenicity, capsule size, and melanin production. Regarding proteomic data, proteins with increased levels after iron and copper exposure were related to biological processes such as cell stress, vesicular traffic (Ap1, Vps35), cell wall structure (Och1, Ccr4, Gsk3), melanin biosynthesis (Hem15, Mln2), DNA repair (Chk1), protein transport (Mms2), SUMOylation (Uba2), and mitochondrial transport (Atm1). Increased pathogenicity by exposure to metal combination was also confirmed in 90% of the eight isolates. Conclusions: The combination of these metals enhances pathogenicity and increases the abundance of proteins related to the main virulence factors.
Collapse
Affiliation(s)
- Nórida Vélez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Zilpa-Adriana Sánchez-Quitian
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Ahinara Amador-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Andrés Ceballos-Garzón
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, 44200 Nantes, France
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Claudia-Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Correspondence:
| |
Collapse
|
21
|
Hu G, Bakkeren E, Caza M, Horianopoulos L, Sánchez-León E, Sorensen M, Jung W, Kronstad JW. Vam6/Vps39/TRAP1-domain proteins influence vacuolar morphology, iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2021; 23:e13400. [PMID: 34800311 DOI: 10.1111/cmi.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans must overcome iron limitation to cause disease in mammalian hosts. Previously, we reported a screen for insertion mutants with poor growth on haem as the sole iron source. In this study, we characterised one such mutant and found that the defective gene encoded a Vam6/Vps39/TRAP1 domain-containing protein required for robust growth on haem, an important iron source in host tissue. We designated this protein Vps3 based on reciprocal best matches with the corresponding protein in Saccharomyces cerevisiae. C. neoformans encodes a second Vam6/Vps39/TRAP1 domain-containing protein designated Vam6/Vlp1, and we found that this protein is also required for robust growth on haem as well as on inorganic iron sources. This protein is predicted to be a component of the homotypic fusion and vacuole protein sorting complex involved in endocytosis. Further characterisation of the vam6Δ and vps3Δ mutants revealed perturbed trafficking of iron acquisition functions (e.g., the high affinity iron permease Cft1) and impaired processing of the transcription factor Rim101, a regulator of haem and iron acquisition. The vps3Δ and vam6Δ mutants also had pleiotropic phenotypes including loss of virulence in a mouse model of cryptococcosis, reduced virulence factor elaboration and increased susceptibility to stress, indicating pleiotropic roles for Vps3 and Vam6 beyond haem use in C. neoformans. TAKE AWAYS: Two Vam6/Vps39/TRAP1-domain proteins, Vps3 and Vam6, support the growth of Cryptococcus neoformans on haem. Loss of Vps3 and Vam6 influences the trafficking and expression of iron uptake proteins. Loss of Vps3 or Vam6 eliminates the ability of C. neoformans to cause disease in a mouse model of cryptococcosis.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik Bakkeren
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mélissa Caza
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Larissa Yarr Medical Microbiology Laboratory, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Linda Horianopoulos
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Sorensen
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wonhee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - James W Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
COVID-19-associated-mucormycosis: possible role of free iron uptake and immunosuppression. Mol Biol Rep 2021; 49:747-754. [PMID: 34709573 PMCID: PMC8552432 DOI: 10.1007/s11033-021-06862-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 01/19/2023]
Abstract
COVID-19-associated-mucormycosis, commonly referred to as the "Black Fungus," is a rare secondary fungal infection in COVID-19 patients prompted by a group of mucor molds. Association of this rare fungal infection with SARS-CoV-2 infection has been declared as an endemic in India, with minor cases in several other countries around the globe. Although the fungal infection is not contagious like the viral infection, the causative fungal agent is omnipresent. Infection displays an overall mortality rate of around 50%, with many other secondary side effects posing a potential threat in exacerbating COVID-19 mortality rates. In this review, we have accessed the role of free iron availability in COVID-19 patients that might correlate to the pathogenesis of the causative fungal agent. Besides, we have analyzed the negative consequences of using immunosuppressive drugs in encouraging this opportunistic fungal infection.
Collapse
|
23
|
Rizzo J, Wong SSW, Gazi AD, Moyrand F, Chaze T, Commere P, Novault S, Matondo M, Péhau‐Arnaudet G, Reis FCG, Vos M, Alves LR, May RC, Nimrichter L, Rodrigues ML, Aimanianda V, Janbon G. Cryptococcus extracellular vesicles properties and their use as vaccine platforms. J Extracell Vesicles 2021; 10:e12129. [PMID: 34377375 PMCID: PMC8329992 DOI: 10.1002/jev2.12129] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Whereas extracellular vesicle (EV) research has become commonplace in different biomedical fields, this field of research is still in its infancy in mycology. Here we provide a robust set of data regarding the structural and compositional aspects of EVs isolated from the fungal pathogenic species Cryptococcus neoformans, C. deneoformans and C. deuterogattii. Using cutting-edge methodological approaches including cryogenic electron microscopy and cryogenic electron tomography, proteomics, and flow cytometry, we revisited cryptococcal EV features and suggest a new EV structural model, in which the vesicular lipid bilayer is covered by mannoprotein-based fibrillar decoration, bearing the capsule polysaccharide as its outer layer. About 10% of the EV population is devoid of fibrillar decoration, adding another aspect to EV diversity. By analysing EV protein cargo from the three species, we characterized the typical Cryptococcus EV proteome. It contains several membrane-bound protein families, including some Tsh proteins bearing a SUR7/PalI motif. The presence of known protective antigens on the surface of Cryptococcus EVs, resembling the morphology of encapsulated virus structures, suggested their potential as a vaccine. Indeed, mice immunized with EVs obtained from an acapsular C. neoformans mutant strain rendered a strong antibody response in mice and significantly prolonged their survival upon C. neoformans infection.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Sarah Sze Wah Wong
- Unité Mycologie Moléculaire, CNRS UMR2000Département de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Anastasia D. Gazi
- Ultrastructural Bio‐Imaging, UTechS UBI, CNRS UMR 3528Département de Biologie cellulaire et infection, Institut Pasteur, F‐75015ParisFrance
| | - Frédérique Moyrand
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Thibault Chaze
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), CNRS UMR 2000Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Pierre‐Henri Commere
- Cytometry and BiomarkersCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Sophie Novault
- Cytometry and BiomarkersCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), CNRS UMR 2000Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Gérard Péhau‐Arnaudet
- Ultrastructural Bio‐Imaging, UTechS UBI, CNRS UMR 3528Département de Biologie cellulaire et infection, Institut Pasteur, F‐75015ParisFrance
| | - Flavia C. G. Reis
- Instituto Carlos ChagasFundação Oswaldo Cruz (FIOCRUZ)CuritibaBrazil
- Centro de Desenvolvimento Tecnologico em Saude (CDTS‐Fiocruz)São PauloBrazil
| | - Matthijn Vos
- NanoImaging Core FacilityCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | | | - Robin C. May
- Institute of Microbiology and Infection and School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Marcio L. Rodrigues
- Instituto Carlos ChagasFundação Oswaldo Cruz (FIOCRUZ)CuritibaBrazil
- Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Vishukumar Aimanianda
- Unité Mycologie Moléculaire, CNRS UMR2000Département de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| |
Collapse
|
24
|
Lin J, Zangi M, Kumar TVH, Shakar Reddy M, Reddy LVR, Sadhukhan SK, Bradley DP, Moreira-Walsh B, Edwards TC, O’Dea AT, Tavis JE, Meyers MJ, Donlin MJ. Synthetic Derivatives of Ciclopirox are Effective Inhibitors of Cryptococcus neoformans. ACS OMEGA 2021; 6:8477-8487. [PMID: 33817509 PMCID: PMC8015083 DOI: 10.1021/acsomega.1c00273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Opportunistic fungal infections caused by Cryptococcus neoformans are a significant source of mortality in immunocompromised patients. They are challenging to treat because of a limited number of antifungal drugs, and novel and more effective anticryptococcal therapies are needed. Ciclopirox olamine, a N-hydroxypyridone, has been in use as an approved therapeutic agent for the treatment of topical fungal infections for more than two decades. It is a fungicide, with broad activity across multiple fungal species. We synthesized 10 N-hydroxypyridone derivatives to develop an initial structure-activity understanding relative to efficacy as a starting point for the development of systemic antifungals. We screened the derivatives for antifungal activity against C. neoformans and Cryptococcus gattii and counter-screened for specificity in Candida albicans and two Malassezia species. Eight of the ten show inhibition at 1-3 μM concentration (0.17-0.42 μg per mL) in both Cryptococcus species and in C. albicans, but poor activity in the Malassezia species. In C. neoformans, the N-hydroxypyridones are fungicides, are not antagonistic with either fluconazole or amphotericin B, and are synergistic with multiple inhibitors of the mitochondrial electron transport chain. They appear to function primarily by chelating iron within the active site of iron-dependent enzymes. This preliminary structure-activity relationship points to the need for a lipophilic functional group at position six of the N-hydroxypyridone ring and identifies positions four and six as sites where further substitution may be tolerated. These molecules provide a clear starting point for future optimization for efficacy and target identification.
Collapse
Affiliation(s)
- Jeffrey Lin
- Department
of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Maryam Zangi
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | | | - Makala Shakar Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Lingala Vijaya Raghava Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Daniel P. Bradley
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Brenda Moreira-Walsh
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
| | - Tiffany C. Edwards
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Austin T. O’Dea
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - John E. Tavis
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Maureen J. Donlin
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
25
|
Jung WH, Sánchez-León E, Kronstad JW. Coordinated regulation of iron metabolism in Cryptococcus neoformans by GATA and CCAAT transcription factors: connections with virulence. Curr Genet 2021; 67:583-593. [PMID: 33760942 DOI: 10.1007/s00294-021-01172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Iron acquisition is critical for pathogenic fungi to adapt to and survive within the host environment. However, to same extent, the fungi must also avoid the detrimental effects caused by excess iron. The importance of iron has been demonstrated for the physiology and virulence of major fungal pathogens of humans including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. In particular, numerous studies have revealed that aspects of iron acquisition, metabolism, and homeostasis in the fungal pathogens are tightly controlled by conserved transcriptional regulators including a GATA-type iron transcription factor and the CCAAT-binding complex (CBC)/HapX orthologous protein complex. However, the specific downstream regulatory networks are slightly different in each fungus. In addition, roles have been proposed or demonstrated for other factors including monothiol glutaredoxins, BolA-like proteins, and Fe-S cluster incorporation on the GATA-type iron transcription factor and the CBC/HapX orthologous protein complex, although limited information is available. Here we focus on recent work on C. neoformans in the context of an emerging framework for fungal regulation of iron acquisition, metabolism, and homeostasis. Our specific goal is to summarize recent findings on transcriptional networks governed by the iron regulators Cir1 and HapX in C. neoformans.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea.
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
26
|
Sun T, Li X, Song W, Yu S, Wang L, Ding C, Xu Y. Metabolomic alterations associated with copper stress in Cryptococcus neoformans. Future Microbiol 2021; 16:305-316. [PMID: 33635120 DOI: 10.2217/fmb-2020-0290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Copper stress is an effective host strategy in resisting the opportunistic pathogenic fungus Cryptococcus neoformans. We studied metabolic changes in C. neoformans under copper stress. Materials & methods: Wild-type and metallothionein-null C. neoformans were treated with copper on agar containing glucose, glycerol or ethanol as the carbon source and their metabolites were analyzed by untarget metabolomics strategy using gas chromatography coupled with time-of-flight mass spectrometry. Results: The metabolic profile of C. neoformans varied in the presence and absence of copper. Pathway enrichment analysis showed that the differentially abundant metabolites were related to amino acid and carbohydrate metabolism. C. neoformans grown on glycerol or ethanol resisted copper toxicity better than C. neoformans grown on glucose. Conclusion: Copper stress alters the metabolic profile of C. neoformans.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Center, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Xiaogang Li
- Medical Research Center, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Wei Song
- Medical Research Center, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shuying Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chen Ding
- College of Life & Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe & Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research & Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
27
|
Shanmugam A, Chithiravel V, Gunasekar A, Venkattappan A. Siderophores in Antifungal Drug Discovery: A Computational Approach. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
29
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
30
|
Choi Y, Do E, Hu G, Caza M, Horianopoulos LC, Kronstad JW, Jung WH. Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans. J Microbiol Biotechnol 2020; 30:1142-1148. [PMID: 32522963 DOI: 10.4014/jmb.2004.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/18/2020] [Indexed: 11/01/2022]
Abstract
Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.
Collapse
Affiliation(s)
- Yoojeong Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Guanggan Hu
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - Mélissa Caza
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - Linda C Horianopoulos
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - James W Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
31
|
Kornitzer D, Roy U. Pathways of heme utilization in fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118817. [PMID: 32777371 DOI: 10.1016/j.bbamcr.2020.118817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Iron acquisition is challenging in most environments. As an alternative to elemental iron, organisms can take up iron-protoporphyrin IX, or heme. Heme can be found in decaying organic matter and is particularly prevalent in animal hosts. Fungi have evolved at least three distinct endocytosis-mediated heme uptake systems, which have been studied in detail in the organisms Candida albicans, Cryptococcus neoformans and Schizosaccharomyces pombe. Here we summarize the known molecular details of these three uptake systems that enable parasitic and saprophytic fungi to take advantage of external heme as either cellular iron or heme sources.
Collapse
Affiliation(s)
- Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Udita Roy
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
32
|
Martínez-Pastor MT, Puig S. Adaptation to iron deficiency in human pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118797. [PMID: 32663505 DOI: 10.1016/j.bbamcr.2020.118797] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.
Collapse
Affiliation(s)
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
33
|
A Transcriptional Regulatory Map of Iron Homeostasis Reveals a New Control Circuit for Capsule Formation in Cryptococcus neoformans. Genetics 2020; 215:1171-1189. [PMID: 32580959 DOI: 10.1534/genetics.120.303270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the growth of the human fungal pathogen Cryptococcus neoformans within the vertebrate host, and iron sensing contributes to the elaboration of key virulence factors, including the formation of the polysaccharide capsule. C. neoformans employs sophisticated iron acquisition and utilization systems governed by the transcription factors Cir1 and HapX. However, the details of the transcriptional regulatory networks that are governed by these transcription factors and connections to virulence remain to be defined. Here, we used chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and transcriptome analysis (RNA-seq) to identify genes directly regulated by Cir1 and/or HapX in response to iron availability. Overall, 40 and 100 genes were directly regulated by Cir1, and 171 and 12 genes were directly regulated by HapX, under iron-limited and replete conditions, respectively. More specifically, we found that Cir1 directly controls the expression of genes required for iron acquisition and metabolism, and indirectly governs capsule formation by regulating specific protein kinases, a regulatory connection not previously revealed. HapX regulates the genes responsible for iron-dependent pathways, particularly under iron-depleted conditions. By analyzing target genes directly bound by Cir1 and HapX, we predicted the binding motifs for the transcription factors and verified that the purified proteins bind these motifs in vitro Furthermore, several direct target genes were coordinately and reciprocally regulated by Cir1 and HapX, suggesting that these transcription factors play conserved roles in the response to iron availability. In addition, biochemical analyses revealed that Cir1 and HapX are iron-containing proteins, implying that the regulatory networks of Cir1 and HapX may be influenced by the incorporation of iron into these proteins. Taken together, our identification of the genome-wide transcriptional networks provides a detailed understanding of the iron-related regulatory landscape, establishes a new connection between Cir1 and kinases that regulate capsule, and underpins genetic and biochemical analyses that reveal iron-sensing mechanisms for Cir1 and HapX in C. neoformans.
Collapse
|
34
|
Heme-iron acquisition in fungi. Curr Opin Microbiol 2019; 52:77-83. [DOI: 10.1016/j.mib.2019.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/09/2023]
|
35
|
Chayakulkeeree M, Tangkoskul T, Waywa D, Tiengrim S, Pati N, Thamlikitkul V. Impact of iron chelators on growth and expression of iron-related genes of Cryptococcus species. J Mycol Med 2019; 30:100905. [PMID: 31706700 DOI: 10.1016/j.mycmed.2019.100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/31/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Iron chelator has previously demonstrated fungicidal effects. This study aimed to investigate the antifungal activity of the iron chelators deferoxamine (DFO) and deferasirox (DSX) against Cryptococcus. MATERIALS AND METHODS Cryptococcus neoformans and Cryptococcus gattii were used to determine the minimal inhibitory concentrations (MICs) of DFO and DSX, and the fractional inhibitory concentration index (FICI) of DFO and DSX when combined with amphotericin B (AMB). Expression of cryptococcal CFT1, CFT2, and CIR1 genes was determined using real-time polymerase chain reaction (PCR). RESULTS Neither DFO nor DSX alone showed antifungal activity against Cryptococcus strains. When combined with AMB, the MICs of DFO and DSX decreased from>200μg/mL to 6.25 or 12.5μg/mL. The MIC of AMB decreased one-fold dilution in most strains when combined with iron chelators. The FICI of DFO+AMB and DSX+AMB was 0.5 and 1, respectively. C. neoformans showed significant growth retardation when incubated with a combination of sub-MIC concentrations of AMB and DFO; whereas, C. gattii demonstrated lesser growth retardation in DFO+AMB. No cryptococcal growth retardation was observed when DSX was combined with AMB. When C. neoformans was grown in DFO, the CFT1, CFT2, and CIR1 proteins were expressed 1.7, 2.0, and 0.9 times, respectively. When C. neoformans was grown in DSX, the CFT1, CFT2, and CIR1 genes were expressed 0.5, 0.6, and 0.3 times, respectively. CONCLUSION Synergistic antifungal activity of combination DFO and AMB was observed in Cryptococcus. Relatively increased CFT1 and CFT2 expression may be associated with the effect of DFO that inhibits the growth of fungi.
Collapse
Affiliation(s)
- M Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - T Tangkoskul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - D Waywa
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - S Tiengrim
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - N Pati
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - V Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
36
|
Unveil the transcriptional landscape at the Cryptococcus-host axis in mice and nonhuman primates. PLoS Negl Trop Dis 2019; 13:e0007566. [PMID: 31329596 PMCID: PMC6675133 DOI: 10.1371/journal.pntd.0007566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/01/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Pathogens and hosts require rapid modulation of virulence and defense mechanisms at the infection axis, but monitoring such modulations is challenging. In studying the human fungal pathogen Cryptococcus neoformans, mouse and rabbit infection models are often employed to shed light on the disease mechanisms but that may not be clinically relevant. In this study, we developed an animal infection model using the non-human primate cynomolgus monkey Macaca fascicularis. In addition, we systematically profiled and compared transcriptional responses between the infected mice and the cynomolgus monkey, using simultaneous or dual RNA next-generation sequencing. We demonstrated that there are shared but distinct transcriptional profiles between the two models following C. neoformans infection. Specifically, genes involved in immune and inflammatory responses are all upregulated. Osteoclastogenesis and insulin signaling are also significantly co-regulated in both models and disrupting an osteoclastogenesis-associated gene (OC-STAMP) or the insulin-signaling process significantly altered the host tolerance to C. neoformans. Moreover, C. neoformans was shown to activate metal sequestration, dampen the sugar metabolism, and control cell morphology during infection. Taking together, we described the development of a non-human primate model of cryptococcosis that allowed us to perform an in-depth analysis and comparison of transcriptome profiles during infections of two animal models and conceptually identify host genes important in disease responses. This study provides new insights in understanding fungal pathogenesis mechanisms that potentially facilitate the identification of novel drug targets for the treatment of cryptococcal infection. The host-pathogen interaction is highly dynamic and tightly regulated, and yet is difficult to monitor. Traditional investigations provide valuable information for the understanding of pathogenic microbial biology but are time-consuming and often neglect the host immune responses. In addition, current animal models for studying pathogenic fungi are limited in mimicking the responses from humans. The development of a new Cryptococcus neoformans infection model using nonhuman primates and the utilization of simultaneous RNA sequencing analysis provide fast and clinically relevant research data allowing the identification of novel critical players from both the invading fungus and the host. The data from the current study would not only help to decipher disease mechanisms but also promote the discovery of novel antifungal drug targets.
Collapse
|
37
|
Do E, Lee HG, Park M, Cho YJ, Kim DH, Park SH, Eun D, Park T, An S, Jung WH. Antifungal Mechanism of Action of Lauryl Betaine Against Skin-Associated Fungus Malassezia restricta. MYCOBIOLOGY 2019; 47:242-249. [PMID: 31448144 PMCID: PMC6691833 DOI: 10.1080/12298093.2019.1625175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
Betaine derivatives are considered major ingredients of shampoos and are commonly used as antistatic and viscosity-increasing agents. Several studies have also suggested that betaine derivatives can be used as antimicrobial agents. However, the antifungal activity and mechanism of action of betaine derivatives have not yet been fully understood. In this study, we investigated the antifungal activity of six betaine derivatives against Malassezia restricta, which is the most frequently isolated fungus from the human skin and is implicated in the development of dandruff. We found that, among the six betaine derivatives, lauryl betaine showed the most potent antifungal activity. The mechanism of action of lauryl betaine was studied mainly using another phylogenetically close model fungal organism, Cryptococcus neoformans, because of a lack of available genetic manipulation and functional genomics tools for M. restricta. Our genome-wide reverse genetic screening method using the C. neoformans gene deletion mutant library showed that the mutants with mutations in genes for cell membrane synthesis and integrity, particularly ergosterol synthesis, are highly sensitive to lauryl betaine. Furthermore, transcriptome changes in both C. neoformans and M. restricta cells grown in the presence of lauryl betaine were analyzed and the results indicated that the compound mainly affected cell membrane synthesis, particularly ergosterol synthesis. Overall, our data demonstrated that lauryl betaine influences ergosterol synthesis in C. neoformans and that the compound exerts a similar mechanism of action on M. restricta.
Collapse
Affiliation(s)
- Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hyun Gee Lee
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | | | - Dong Hyeun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Se-Ho Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Daekyung Eun
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Taehun Park
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Susun An
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| |
Collapse
|
38
|
Pulmonary Iron Limitation Induced by Exogenous Type I IFN Protects Mice from Cryptococcus gattii Independently of T Cells. mBio 2019; 10:mBio.00799-19. [PMID: 31213551 PMCID: PMC6581853 DOI: 10.1128/mbio.00799-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause fatal infection in immunodeficient and immunocompetent individuals. While these fungi are sibling species, C. gattii infects very few AIDS patients, while C. neoformans infection is an AIDS-defining illness, suggesting that the host response to HIV selects C. neoformans over C. gattii. We used a viral mimic molecule (pICLC) to stimulate the immune response, and pICLC treatment improved mouse outcomes from both species. pICLC-induced action against C. neoformans was due to activation of well-defined immune pathways known to deter C. neoformans, whereas these immune pathways were dispensable for pICLC treatment of C. gattii. Since these immune pathways are eventually destroyed by HIV/AIDS, our data help explain why the antiviral immune response in AIDS patients is unable to control C. neoformans infection but is protective against C. gattii. Furthermore, pICLC induced tighter control of iron in the lungs of mice, which inhibited C. gattii, thus suggesting an entirely new mode of nutritional immunity activated by viral signals. Cryptococcus neoformans causes deadly mycosis primarily in AIDS patients, whereas Cryptococcus gattii infects mostly non-HIV patients, even in regions with high burdens of HIV/AIDS and an established environmental presence of C. gattii. As HIV induces type I IFN (t1IFN), we hypothesized that t1IFN would differentially affect the outcome of C. neoformans and C. gattii infections. Exogenous t1IFN induction using stabilized poly(I·C) (pICLC) improved murine outcomes in either cryptococcal infection. In C. neoformans-infected mice, pICLC activity was associated with C. neoformans containment and classical Th1 immunity. In contrast, pICLC activity against C. gattii did not require any immune factors previously associated with C. neoformans immunity: T, B, and NK cells, IFN-γ, and macrophages were all dispensable. Interestingly, C. gattii pICLC activity depended on β-2-microglobulin, which impacts iron levels among other functions. Iron supplementation reversed pICLC activity, suggesting C. gattii pICLC activity requires iron limitation. Also, pICLC induced a set of iron control proteins, some of which were directly inhibitory to cryptococcus in vitro, suggesting t1IFN regulates iron availability in the pulmonary air space fluids. Thus, exogenous induction of t1IFN significantly improves the outcome of murine infection by C. gattii and C. neoformans but by distinct mechanisms; the C. gattii effect was mediated by iron limitation, while the effect on C. neoformans infection was through induction of classical T-cell-dependent immunity. Together this difference in types of T-cell-dependent t1IFN immunity for different Cryptococcus species suggests a possible mechanism by which HIV infection may select against C. gattii but not C. neoformans.
Collapse
|
39
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
41
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
42
|
Abstract
The acquisition of iron and the maintenance of iron homeostasis are important aspects of virulence for the pathogenic fungus Cryptococcus neoformans In this study, we characterized the role of the monothiol glutaredoxin Grx4 in iron homeostasis and virulence in C. neoformans Monothiol glutaredoxins are important regulators of iron homeostasis because of their conserved roles in [2Fe-2S] cluster sensing and trafficking. We initially identified Grx4 as a binding partner of Cir1, a master regulator of iron-responsive genes and virulence factor elaboration in C. neoformans We confirmed that Grx4 binds Cir1 and demonstrated that iron repletion promotes the relocalization of Grx4 from the nucleus to the cytoplasm. We also found that a grx4 mutant lacking the GRX domain displayed iron-related phenotypes similar to those of a cir1Δ mutant, including poor growth upon iron deprivation. Importantly, the grx4 mutant was avirulent in mice, a phenotype consistent with observed defects in the key virulence determinants, capsule and melanin, and poor growth at 37°C. A comparative transcriptome analysis of the grx4 mutant and the WT strain under low-iron and iron-replete conditions confirmed a central role for Grx4 in iron homeostasis. Dysregulation of iron-related metabolism was consistent with grx4 mutant phenotypes related to oxidative stress, mitochondrial function, and DNA repair. Overall, the phenotypes of the grx4 mutant lacking the GRX domain and the transcriptome sequencing (RNA-Seq) analysis of the mutant support the hypothesis that Grx4 functions as an iron sensor, in part through an interaction with Cir1, to extensively regulate iron homeostasis.IMPORTANCE Fungal pathogens cause life-threatening diseases in humans, particularly in immunocompromised people, and there is a tremendous need for a greater understanding of pathogenesis to support new therapies. One prominent fungal pathogen, Cryptococcus neoformans, causes meningitis in people suffering from HIV/AIDS. In the present study, we focused on characterizing mechanisms by which C. neoformans senses iron availability because iron is both a signal and a key nutrient for proliferation of the pathogen in vertebrate hosts. Specifically, we characterized a monothiol glutaredoxin protein, Grx4, that functions as a sensor of iron availability and interacts with regulatory factors to control the ability of C. neoformans to cause disease. Grx4 regulates key virulence factors, and a mutant is unable to cause disease in a mouse model of cryptococcosis. Overall, our study provides new insights into nutrient sensing and the role of iron in the pathogenesis of fungal diseases.
Collapse
|
43
|
Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol 2018; 21:e12961. [PMID: 30291809 DOI: 10.1111/cmi.12961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Heme is a major source of iron for pathogens of humans, and its use is critical in determining the outcome of infection and disease. Cryptococcus neoformans is an encapsulated fungal pathogen that causes life-threatening infections in immunocompromised individuals. C. neoformans effectively uses heme as an iron source, but the underlying mechanisms are poorly defined. Non-iron metalloporphyrins (MPPs) are toxic analogues of heme and are thought to enter microbial cells via endogenous heme acquisition systems. We therefore carried out a mutant screen for susceptibility against manganese MPP (MnMPP) to identify new components for heme uptake in C. neoformans. We identified several genes involved in signalling, DNA repair, sugar metabolism, and trafficking that play important roles in susceptibility to MnMPP and in the use of heme as an iron source. We focused on investigating the role of clathrin-mediated endocytosis (CME) and found that several components of CME including Chc1, Las17, Rvs161, and Rvs167 are required for growth on heme and hemoglobin and for endocytosis and intracellular trafficking of these molecules. We show that the hemoglobin uptake process in C. neoformans involves clathrin heavy chain, Chc1, which appears to colocalise with hemoglobin-containing vesicles and to potentially assist in proper delivery of hemoglobin to the vacuole. Additionally, C. neoformans strains lacking Chc1, Las17, Rvs161, or Rvs167 were defective in the elaboration of several key virulence factors, and a las17 mutant was avirulent in a mouse model of cryptococcosis. Overall, this study unveils crucial functions of CME in the use of heme iron by C. neoformans and reveals a role for CME in fungal pathogenesis.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
The Sec1/Munc18 (SM) protein Vps45 is involved in iron uptake, mitochondrial function and virulence in the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 2018; 14:e1007220. [PMID: 30071112 PMCID: PMC6091972 DOI: 10.1371/journal.ppat.1007220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/14/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The battle for iron between invading microorganisms and mammalian hosts is a pivotal determinant of the outcome of infection. The pathogenic fungus, Cryptococcus neoformans, employs multiple mechanisms to compete for iron during cryptococcosis, a disease primarily of immunocompromised hosts. In this study, we examined the role of endocytic trafficking in iron uptake by characterizing a mutant defective in the Sec1/Munc18 (SM) protein Vps45. This protein is known to regulate the machinery for vesicle trafficking and fusion via interactions with SNARE proteins. As expected, a vps45 deletion mutant was impaired in endocytosis and showed sensitivity to trafficking inhibitors. The mutant also showed poor growth on iron-limited media and a defect in transporting the Cfo1 ferroxidase of the high-affinity iron uptake system from the plasma membrane to the vacuole. Remarkably, we made the novel observation that Vps45 also contributes to mitochondrial function in that a Vps45-Gfp fusion protein associated with mitotracker, and a vps45 mutant showed enhanced sensitivity to inhibitors of electron transport complexes as well as changes in mitochondrial membrane potential. Consistent with mitochondrial function, the vps45 mutant was impaired in calcium homeostasis. To assess the relevance of these defects for virulence, we examined cell surface properties of the vps45 mutant and found increased sensitivity to agents that challenge cell wall integrity and to antifungal drugs. A change in cell wall properties was consistent with our observation of altered capsule polysaccharide attachment, and with attenuated virulence in a mouse model of cryptococcosis. Overall, our studies reveal a novel role for Vps45-mediated trafficking for iron uptake, mitochondrial function and virulence. Cryptococcus neoformans is a causative agent of cryptococcal meningitis, a disease that is estimated to cause ~ 15% of AIDS-related deaths. In this context, cryptococosis is one of the most common causes of mortality in people with HIV/AIDS, closely behind tuberculosis. Unfortunately, very few antifungal drugs are available to treat this disease. However, understanding mechanisms involved in the pathogenesis of C. neoformans can lead to new therapeutic avenues. In this study, we discovered a new role for a regulatory protein involved in vesicle transport. Specifically, we found that the Vps45 protein, which regulates vesicle fusion, participates in the trafficking of iron into fungal cells, supports mitochondria function, mediates antifungal resistance and is required for virulence. These discoveries shed light on the molecular mechanisms underlying the uptake and use of iron as an essential nutrient for the virulence of C. neoformans. Further investigations could lead to the development of drugs that target Vps45-mediated processes.
Collapse
|
45
|
Garcia-Santamarina S, Festa RA, Smith AD, Yu CH, Probst C, Ding C, Homer CM, Yin J, Noonan JP, Madhani H, Perfect JR, Thiele DJ. Genome-wide analysis of the regulation of Cu metabolism in Cryptococcus neoformans. Mol Microbiol 2018; 108:473-494. [PMID: 29608794 PMCID: PMC5980777 DOI: 10.1111/mmi.13960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
The ability of the human fungal pathogen Cryptococcus neoformans to adapt to variable copper (Cu) environments within the host is key for successful dissemination and colonization. During pulmonary infection, host alveolar macrophages compartmentalize Cu into the phagosome and C. neoformans Cu-detoxifying metallothioneins, MT1 and MT2, are required for survival of the pathogen. In contrast, during brain colonization the C. neoformans Cu+ importers Ctr1 and Ctr4 are required for virulence. Central for the regulation and expression of both the Cu detoxifying MT1/2 and the Cu acquisition Ctr1/4 proteins is the Cu-metalloregulatory transcription factor Cuf1, an established C. neoformans virulence factor. Due to the importance of the distinct C. neoformans Cu homeostasis mechanisms during host colonization and virulence, and to the central role of Cuf1 in regulating Cu homeostasis, we performed a combination of RNA-Seq and ChIP-Seq experiments to identify differentially transcribed genes between conditions of high and low Cu. We demonstrate that the transcriptional regulation exerted by Cuf1 is intrinsically complex and that Cuf1 also functions as a transcriptional repressor. The Cu- and Cuf1-dependent regulon in C. neoformans reveals new adaptive mechanisms for Cu homeostasis in this pathogenic fungus and identifies potential new pathogen-specific targets for therapeutic intervention in fungal infections.
Collapse
Affiliation(s)
- Sarela Garcia-Santamarina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Richard A. Festa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aaron D. Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Corinna Probst
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chen Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina M. Homer
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Jun Yin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James P. Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hiten Madhani
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
46
|
Navarro-Mendoza MI, Pérez-Arques C, Murcia L, Martínez-García P, Lax C, Sanchis M, Capilla J, Nicolás FE, Garre V. Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Sci Rep 2018; 8:7660. [PMID: 29769603 PMCID: PMC5955967 DOI: 10.1038/s41598-018-26051-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Mucormycosis is an emerging angio-invasive infection caused by Mucorales that presents unacceptable mortality rates. Iron uptake has been related to mucormycosis, since serum iron availability predisposes the host to suffer this infection. In addition, iron uptake has been described as a limiting factor that determines virulence in other fungal infections, becoming a promising field to study virulence in Mucorales. Here, we identified a gene family of three ferroxidases in Mucor circinelloides, fet3a, fet3b and fet3c, which are overexpressed during infection in a mouse model for mucormycosis, and their expression in vitro is regulated by the availability of iron in the culture media and the dimorphic state. Thus, only fet3a is specifically expressed during yeast growth under anaerobic conditions, whereas fet3b and fet3c are specifically expressed in mycelium during aerobic growth. A deep genetic analysis revealed partially redundant roles of the three genes, showing a predominant role of fet3c, which is required for virulence during in vivo infections, and shared functional roles with fet3b and fet3c during vegetative growth in media with low iron concentration. These results represent the first described functional specialization of an iron uptake system during fungal dimorphism.
Collapse
Affiliation(s)
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Laura Murcia
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Pablo Martínez-García
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Sanchis
- Unidad de Microbiología, Universitat Rovira i Virgili. IISPV, Tarragona, Spain
| | - Javier Capilla
- Unidad de Microbiología, Universitat Rovira i Virgili. IISPV, Tarragona, Spain
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
47
|
Le Govic Y, Papon N, Le Gal S, Lelièvre B, Bouchara JP, Vandeputte P. Genomic Organization and Expression of Iron Metabolism Genes in the Emerging Pathogenic Mold Scedosporium apiospermum. Front Microbiol 2018; 9:827. [PMID: 29755443 PMCID: PMC5932178 DOI: 10.3389/fmicb.2018.00827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous mold Scedosporium apiospermum is increasingly recognized as an emerging pathogen, especially among patients with underlying disorders such as immunodeficiency or cystic fibrosis (CF). Indeed, it ranks the second among the filamentous fungi colonizing the respiratory tract of CF patients. However, our knowledge about virulence factors of this fungus is still limited. The role of iron-uptake systems may be critical for establishment of Scedosporium infections, notably in the iron-rich environment of the CF lung. Two main strategies are employed by fungi to efficiently acquire iron from their host or from their ecological niche: siderophore production and reductive iron assimilation (RIA) systems. The aim of this study was to assess the existence of orthologous genes involved in iron metabolism in the recently sequenced genome of S. apiospermum. At first, a tBLASTn analysis using A. fumigatus iron-related proteins as query revealed orthologs of almost all relevant loci in the S. apiospermum genome. Whereas the genes putatively involved in RIA were randomly distributed, siderophore biosynthesis and transport genes were organized in two clusters, each containing a non-ribosomal peptide synthetase (NRPS) whose orthologs in A. fumigatus have been described to catalyze hydroxamate siderophore synthesis. Nevertheless, comparative genomic analysis of siderophore-related clusters showed greater similarity between S. apiospermum and phylogenetically close molds than with Aspergillus species. The expression level of these genes was then evaluated by exposing conidia to iron starvation and iron excess. The expression of several orthologs of A. fumigatus genes involved in siderophore-based iron uptake or RIA was significantly induced during iron starvation, and conversely repressed in iron excess conditions. Altogether, these results indicate that S. apiospermum possesses the genetic information required for efficient and competitive iron uptake. They also suggest an important role of the siderophore production system in iron uptake by S. apiospermum.
Collapse
Affiliation(s)
- Yohann Le Govic
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Solène Le Gal
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Brest, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Brest, France
| | - Bénédicte Lelièvre
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire, Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Patrick Vandeputte
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
48
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
49
|
Abstract
The devastating infections that fungal pathogens cause in humans are underappreciated relative to viral, bacterial and parasitic diseases. In recent years, the contributions to virulence of reductive iron uptake, siderophore-mediated uptake and heme acquisition have been identified in the best studied and most life-threatening fungal pathogens: Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In particular, exciting new work illustrates the importance of iron acquisition from heme and hemoglobin in the virulence of pathogenic yeasts. However, the challenge of establishing how these fungi gain access to hemoglobin in blood and to other sources of heme remains to be fully addressed. Recent studies are also expanding our knowledge of iron uptake in less-well studied fungal pathogens, including dimorphic fungi where new information reveals an integration of iron acquisition with morphogenesis and cell-surface properties for adhesion to host cells. Overall, the accumulating information provides opportunities to exploit iron acquisition for antifungal therapy, and new work highlights the development of specific inhibitors of siderophore biosynthesis and metal chelators for therapeutic use alone or in conjunction with existing antifungal drugs. It is clear that iron-related therapies will need to be customized for specific diseases because the emerging view is that fungal pathogens use different combinations of strategies for iron acquisition in the varied niches of vertebrate hosts.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
50
|
Helsel ME, White EJ, Razvi SZA, Alies B, Franz KJ. Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans. Metallomics 2017; 9:69-81. [PMID: 27853789 DOI: 10.1039/c6mt00172f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A panel of iron (Fe) and copper (Cu) chelators was screened for growth inhibitory activity against the fungal pathogen Cryptococcus neoformans. Select bidentate metal-binding ligands containing mixed O,S or O,N donor atoms were identified as agents that induce cell killing in a Cu-dependent manner. Conversely, structurally similar ligands with O,O donor atoms did not inhibit C. neoformans growth regardless of Cu status. Studies of Cu(ii) and Cu(i) binding affinity, lipophilicity, and growth recovery assays of Cu-import deficient cells identified lipophilicity of thermodynamically stable CuIIL2 complexes as the best predictor of antifungal activity. These same complexes induce cellular hyperaccumulation of Zn and Fe in addition to Cu. The results described here present the utility of appropriate metal-binding ligands as potential antifungal agents that manipulate cellular metal balance as an antimicrobial strategy.
Collapse
Affiliation(s)
- Marian E Helsel
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Elizabeth J White
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Sayyeda Zeenat A Razvi
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Bruno Alies
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Katherine J Franz
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| |
Collapse
|