1
|
Kwon KM, Masonbrink RE, Maier TR, Gardner MN, Severin AJ, Baum TJ, Mitchum MG. Comparative Transcriptomic Analysis of Soybean Cyst Nematode Inbred Populations Non-adapted or Adapted on Soybean rhg1-a/ Rhg4-Mediated Resistance. PHYTOPATHOLOGY 2024; 114:2341-2350. [PMID: 38976643 DOI: 10.1094/phyto-03-24-0095-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes rhg1-a and Rhg4. We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for Rhg4. To identify SCN genes potentially involved in overcoming rhg1-a/Rhg4-mediated resistance, we conducted RNA sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison with early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or downregulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602
| | - Rick E Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA 50011
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Thomas R Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Michael N Gardner
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, IA 50011
| | - Thomas J Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| |
Collapse
|
2
|
Kwon KM, Viana JPG, Walden KKO, Usovsky M, Scaboo AM, Hudson ME, Mitchum MG. Genome scans for selection signatures identify candidate virulence genes for adaptation of the soybean cyst nematode to host resistance. Mol Ecol 2024; 33:e17490. [PMID: 39135406 DOI: 10.1111/mec.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Plant pathogens are constantly under selection pressure for host resistance adaptation. Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean primarily managed through resistant cultivars; however, SCN populations have evolved virulence in response to selection pressures driven by repeated monoculture of the same genetic resistance. Resistance to SCN is mediated by multiple epistatic interactions between Rhg (for resistance to H. glycines) genes. However, the identity of SCN virulence genes that confer the ability to overcome resistance remains unknown. To identify candidate genomic regions showing signatures of selection for increased virulence, we conducted whole genome resequencing of pooled individuals (Pool-Seq) from two pairs of SCN populations adapted on soybeans with Peking-type (rhg1-a, rhg2, and Rhg4) resistance. Population differentiation and principal component analysis-based approaches identified approximately 0.72-0.79 million SNPs, the frequency of which showed potential selection signatures across multiple genomic regions. Chromosomes 3 and 6 between population pairs showed the greatest density of outlier SNPs with high population differentiation. Conducting multiple outlier detection tests to identify overlapping SNPs resulted in a total of 966 significantly differentiated SNPs, of which 285 exon SNPs were mapped to 97 genes. Of these, six genes encoded members of known stylet-secreted effector protein families potentially involved in host defence modulation including venom-allergen-like, annexin, glutathione synthetase, SPRYSEC, chitinase, and CLE effector proteins. Further functional analysis of identified candidate genes will provide new insights into the genetic mechanisms by which SCN overcomes soybean resistance and inform the development of molecular markers for rapidly screening the virulence profile of an SCN-infested field.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| | - João P G Viana
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kimberly K O Walden
- Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Soulé S, Huang K, Mulet K, Mejias J, Bazin J, Truong NM, Kika JL, Jaubert S, Abad P, Zhao J, Favery B, Quentin M. The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism. MOLECULAR PLANT PATHOLOGY 2024; 25:e13491. [PMID: 38961768 PMCID: PMC11222708 DOI: 10.1111/mpp.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.
Collapse
Affiliation(s)
- Salomé Soulé
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Kaiwei Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Karine Mulet
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Joffrey Mejias
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
- Present address:
CIRAD, UMR PHIMMontpellierFrance
| | - Jérémie Bazin
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRS, INRAE, Université Paris Saclay – Evry, Université de ParisGif sur YvetteFrance
| | - Nhat My Truong
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
- Present address:
Vietnamese‐German Center for Medical Research108 Military Central HospitalHa NoiVietnam.
| | - Junior Lusu Kika
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Stéphanie Jaubert
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Pierre Abad
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Bruno Favery
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Michaël Quentin
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| |
Collapse
|
4
|
Bali S, Gleason C. Unveiling the Diversity: Plant Parasitic Nematode Effectors and Their Plant Interaction Partners. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:179-189. [PMID: 37870371 DOI: 10.1094/mpmi-09-23-0124-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Sapinder Bali
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| |
Collapse
|
5
|
Parada-Rojas CH, Stahr M, Childs KL, Quesada-Ocampo LM. Effector Repertoire of the Sweetpotato Black Rot Fungal Pathogen Ceratocystis fimbriata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:315-326. [PMID: 38353601 DOI: 10.1094/mpmi-09-23-0146-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In 2015, sweetpotato producers in the United States experienced one of the worst outbreaks of black rot recorded in history, with up to 60% losses reported in the field and packing houses and at shipping ports. Host resistance remains the ideal management tool to decrease crop losses. Lack of knowledge of Ceratocystis fimbriata biology represents a critical barrier for the deployment of resistance to black rot in sweetpotato. In this study, we scanned the recent near chromosomal-level assembly for putative secreted effectors in the sweetpotato C. fimbriata isolate AS236 using a custom fungal effector annotation pipeline. We identified a set of 188 putative effectors on the basis of secretion signal and in silico prediction in EffectorP. We conducted a deep RNA time-course sequencing experiment to determine whether C. fimbriata modulates effectors in planta and to define a candidate list of effectors expressed during infection. We examined the expression profile of two C. fimbriata isolates, a pre-epidemic (1990s) isolate and a post-epidemic (2015) isolate. Our in planta expression profiling revealed clusters of co-expressed secreted effector candidates. Based on fold-change differences of putative effectors in both isolates and over the course of infection, we suggested prioritization of 31 effectors for functional characterization. Among this set, we identified several effectors that provide evidence for a marked biotrophic phase in C. fimbriata during infection of sweetpotato storage roots. Our study revealed a catalog of effector proteins that provide insight into C. fimbriata infection mechanisms and represent a core catalog to implement effector-assisted breeding in sweetpotato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Camilo H Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Madison Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lina M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| |
Collapse
|
6
|
Dayi M. Evolution of parasitism genes in the plant parasitic nematodes. Sci Rep 2024; 14:3733. [PMID: 38355886 PMCID: PMC10866927 DOI: 10.1038/s41598-024-54330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
The plant-parasitic nematodes are considered as one of the most destructive pests, from which the migratory and sedentary endoparasitic plant parasitic nematodes infect more than 4000 plant species and cause over $100 billion crop losses annually worldwide. These nematodes use multiple strategies to infect their host and to establish a successful parasitism inside the host such as cell-wall degradation enzymes, inhibition of host defense proteins, and molecular mimicry. In the present study, the main parasitism-associated gene families were identified and compared between the migratory and sedentary endoparasitic nematodes. The results showed that the migratory and sedentary endoparasitic nematodes share a core conserved parasitism mechanism established throughout the evolution of parasitism. However, genes involved in pectin degradation and hydrolase activity are rapidly evolving in the migratory endoparasitic nematodes. Additionally, cell-wall degrading enzymes such as GH45 cellulases and pectate lyase and peptidase and peptidase inhibitors were expanded in the migratory endoparasitic nematodes. The molecular mimicry mechanism was another key finding that differs between the endoparasitic and sedentary parasitic nematodes. The PL22 gene family, which is believed to play a significant role in the molecular mechanisms of nematode parasitism, has been found to be present exclusively in migratory endoparasitic nematodes. Phylogenetic analysis has suggested that it was de novo born in these nematodes. This discovery sheds new light on the molecular evolution of these parasites and has significant implications for our understanding of their biology and pathogenicity. This study contributes to our understanding of core parasitism mechanisms conserved throughout the nematodes and provides unique clues on the evolution of parasitism and the direction shaped by the host.
Collapse
Affiliation(s)
- Mehmet Dayi
- Forestry Vocational School, Düzce University, Konuralp Campus, 81620, Düzce, Turkey.
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan.
| |
Collapse
|
7
|
Chen S, Tran TTT, Yeh AYC, Yang H, Chen J, Yang Y, Wang X. The Globodera rostochiensis Gr29D09 Effector with a Role in Defense Suppression Targets the Potato Hexokinase 1 Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:25-35. [PMID: 37717227 DOI: 10.1094/mpmi-07-23-0095-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The potato cyst nematode (Globodera rostochiensis) is an obligate root pathogen of potatoes. G. rostochiensis encodes several highly expanded effector gene families, including the Gr4D06 family; however, little is known about the function of this effector family. We cloned four 29D09 genes from G. rostochiensis (named Gr29D09v1/v2/v3/v4) that share high sequence similarity and are homologous to the Hg29D09 and Hg4D06 effector genes from the soybean cyst nematode (Heterodera glycines). Phylogenetic analysis revealed that Gr29D09 genes belong to a subgroup of the Gr4D06 family. We showed that Gr29D09 genes are expressed exclusively within the nematode's dorsal gland cell and are dramatically upregulated in parasitic stages, indicating involvement of Gr29D09 effectors in nematode parasitism. Transgenic potato lines overexpressing Gr29D09 variants showed increased susceptibility to G. rostochiensis. Transient expression assays in Nicotiana benthamiana demonstrated that Gr29D09v3 could suppress reactive oxygen species (ROS) production and defense gene expression induced by flg22 and cell death mediated by immune receptors. These results suggest a critical role of Gr29D09 effectors in defense suppression. The use of affinity purification coupled with nanoliquid chromatography-tandem mass spectrometry identified potato hexokinase 1 (StHXK1) as a candidate target of Gr29D09. The Gr29D09-StHXK1 interaction was further confirmed using in planta protein-protein interaction assays. Plant HXKs have been implicated in defense regulation against pathogen infection. Interestingly, we found that StHXK1 could enhance flg22-induced ROS production, consistent with a positive role of plant HXKs in defense. Altogether, our results suggest that targeting StHXK1 by Gr29D09 effectors may impair the positive function of StHXK1 in plant immunity, thereby aiding nematode parasitism. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Tien Thi Thuy Tran
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Athena Yi-Chun Yeh
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Huijun Yang
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, U.S.A
| | - Jiansong Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, U.S.A
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, U.S.A
| |
Collapse
|
8
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
9
|
Wang X, Cheng R, Xu D, Huang R, Li H, Jin L, Wu Y, Tang J, Sun C, Peng D, Chu C, Guo X. MG1 interacts with a protease inhibitor and confers resistance to rice root-knot nematode. Nat Commun 2023; 14:3354. [PMID: 37291108 PMCID: PMC10250356 DOI: 10.1038/s41467-023-39080-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
The rice root-knot nematode (Meloidogyne graminicola) is one of the most destructive pests threatening rice (Oryza sativa L.) production in Asia; however, no rice resistance genes have been cloned. Here, we demonstrate that M. GRAMINICOLA-RESISTANCE GENE 1 (MG1), an R gene highly expressed at the site of nematode invasion, determines resistance against the nematode in several rice varieties. Introgressing MG1 into susceptible varieties increases resistance comparable to resistant varieties, for which the leucine-rich repeat domain is critical for recognizing root-knot nematode invasion. We also report transcriptome and cytological changes that are correlated with a rapid and robust response during the incompatible interaction that occurs in resistant rice upon nematode invasion. Furthermore, we identified a putative protease inhibitor that directly interacts with MG1 during MG1-mediated resistance. Our findings provide insight into the molecular basis of nematode resistance as well as valuable resources for developing rice varieties with improved nematode resistance.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daochao Xu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Renliang Huang
- Nanchang Subcenter of Rice National Engineering Laboratory, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haoxing Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Jin
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 625014, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Lozano‐Torres J, Putker V, Thorpe P, Goverse A, Sterken M, Smant G, Helder J. Comparative genomics among cyst nematodes reveals distinct evolutionary histories among effector families and an irregular distribution of effector-associated promoter motifs. Mol Ecol 2023; 32:1515-1529. [PMID: 35560992 PMCID: PMC10946958 DOI: 10.1111/mec.16505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Potato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are essential for PCN control. However, the poor delineation of G. pallida pathotypes has hampered the efficient use of available host plant resistances. Long-read sequencing technology allowed us to generate a new reference genome of G. pallida population D383 and, as compared to the current reference, the new genome assembly is 42 times less fragmented. For comparison of diversification patterns of six effector families between G. pallida and G. rostochiensis, an additional reference genome was generated for an outgroup, the beet cyst nematode Heterodera schachtii (IRS population). Large evolutionary contrasts in effector family topologies were observed. While VAPs (venom allergen-like proteins) diversified before the split between the three cyst nematode species, the families GLAND5 and GLAND13 only expanded in PCNs after their separation from the genus Heterodera. Although DNA motifs in the promoter regions thought to be involved in the orchestration of effector expression ("DOG boxes") were present in all three cyst nematode species, their presence is not a necessity for dorsal gland-produced effectors. Notably, DOG box dosage was only loosely correlated with the expression level of individual effector variants. Comparison of the G. pallida genome with those of two other cyst nematodes underlined the fundamental differences in evolutionary history between effector families. Resequencing of PCN populations with different virulence characteristics will allow for the linking of these characteristics to the composition of the effector repertoire as well as for the mapping of PCN diversification patterns resulting from extreme anthropogenic range expansion.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
- SolyntaWageningenThe Netherlands
| | | | - Vera Putker
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological SciencesUniversity of St. AndrewsSt AndrewsUK
| | - Aska Goverse
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Johannes Helder
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
11
|
Kumar A, Fitoussi N, Sanadhya P, Sichov N, Bucki P, Bornstein M, Belausuv E, Brown Miyara S. Two Candidate Meloidogyne javanica Effector Genes, MjShKT and MjPUT3: A Functional Investigation of Their Roles in Regulating Nematode Parasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:79-94. [PMID: 36324054 DOI: 10.1094/mpmi-10-22-0212-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During parasitism, root-knot nematode Meloidogyne spp. inject molecules termed effectors that have multifunctional roles in construction and maintenance of nematode feeding sites. As an outcome of transcriptomic analysis of Meloidogyne javanica, we identified and characterized two differentially expressed genes encoding the predicted proteins MjShKT, carrying a Stichodactyla toxin (ShKT) domain, and MjPUT3, carrying a ground-like domain, both expressed during nematode parasitism of the tomato plant. Fluorescence in-situ hybridization revealed expression of MjShKT and MjPUT3 in the dorsal esophageal glands, suggesting their injection into host cells. MjShKT expression was upregulated during the parasitic life stages, to a maximum at the mature female stage, whereas MjPUT3 expression increased in third- to fourth-stage juveniles. Subcellular in-planta localization of MjShKT and MjPUT3 using a fused fluorescence marker indicated MjShKT co-occurrence with the endoplasmic reticulum, the perinuclear endoplasmatic reticulum, and the Golgi organelle markers, while MjPUT3 localized, to some extent, within the endoplasmatic reticulum and was clearly observed within the nucleoplasm. MjShKT inhibited programmed cell death induced by overexpression of MAPKKKα and Gpa2/RBP-1. Overexpression of MjShKT in tomato hairy roots allowed an increase in nematode reproduction, as indicated by the high number of eggs produced on roots overexpressing MjShKT. Roots overexpressing MjPUT3 were characterized by enhanced root growth, with no effect on nematode development on those roots. Investigation of the two candidate effectors suggested that MjShKT is mainly involved in manipulating the plant effector-triggered immune response toward establishment and maintenance of active feeding sites, whereas MjPUT3 might modulate roots morphology in favor of nematode fitness in the host roots. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Payal Sanadhya
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Menachem Bornstein
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
12
|
Chen J, Chen S, Xu C, Yang H, Achom M, Wang X. A key virulence effector from cyst nematodes targets host autophagy to promote nematode parasitism. THE NEW PHYTOLOGIST 2023; 237:1374-1390. [PMID: 36349395 DOI: 10.1111/nph.18609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Autophagy, an intracellular degradation system conserved in eukaryotes, has been increasingly recognized as a key battlefield in plant-pathogen interactions. However, the role of plant autophagy in nematode parasitism is mostly unknown. We report here the identification of a novel and conserved effector, Nematode Manipulator of Autophagy System 1 (NMAS1), from plant-parasitic cyst nematodes (Heterodera and Globodera spp.). We used molecular and genetic analyses to demonstrate that NMAS1 is required for nematode parasitism. The NMAS1 effectors are potent suppressors of reactive oxygen species (ROS) induced by flg22 and cell death mediated by immune receptors in Nicotiana benthamiana, suggesting a key role of NMAS1 effectors in nematode virulence. Arabidopsis atg mutants defective in autophagy showed reduced susceptibility to nematode infection. The NMAS1 effectors contain predicted AuTophaGy-related protein 8 (ATG8)-interacting motif (AIM) sequences. In planta protein-protein interaction assays further demonstrated that NMAS1 effectors specifically interact with host plant ATG8 proteins. Interestingly, mutation in AIM2 of GrNMAS1 from the potato cyst nematode Globodera rostochiensis abolishes its interaction with potato StATG8 proteins and its activity in ROS suppression. Collectively, our results reveal for the first time that cyst nematodes employ a conserved AIM-containing virulence effector capable of targeting a key component of host autophagy to promote disease.
Collapse
Affiliation(s)
- Jiansong Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chunling Xu
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Huijun Yang
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| | - Mingkee Achom
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
Chen S, Mitchum MG, Wang X. Characterization and response of two potato receptor-like kinases to cyst nematode infection. PLANT SIGNALING & BEHAVIOR 2022; 17:2148372. [PMID: 36416182 PMCID: PMC9704377 DOI: 10.1080/15592324.2022.2148372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Plant-parasitic cyst nematodes (Heterodera and Globodera spp.) secrete CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) effector proteins, which act as ligand mimics of plant CLE peptides to promote successful nematode infection. Previous studies of the Arabidopsis-beet cyst nematode (BCN; H. schachtii) pathosystem showed that Arabidopsis CLE receptors including CLAVATA1 (CLV1), CLV2, and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) are required for BCN CLE signaling. Studies further revealed that nematode CLE signaling through GmCLV2 and StCLV2, an Arabidopsis CLV2 orthologue from soybean (Glycines max) and potato (Solanum tuberosum), respectively, is required for the soybean cyst nematode (SCN; H. glycines) and the potato cyst nematode (PCN; G. rostochiensis) to induce disease in their respective host plant. In this study, we identified and characterized two additional potato receptors, StRPK2 and StCLV1, homologues of Arabidopsis RPK2 and CLV1, for a role in PCN parasitism. Using promoter-reporter lines we showed that both StRPK2 and StCLV1 are expressed in the potato root but vary in their spatial expression patterns. Interestingly, StRPK2 but not StCLV1 was found to be expressed and upregulated at PCN infection sites. Nematode infection assays on StRPK2-knockdown lines revealed a decrease in nematode infection. Collectively, our results suggest that parallel CLE signaling pathways involving StCLV2 and StRPK2 are important for PCN parasitism and that manipulation of nematode CLE signaling may represent a viable means to engineer nematode resistance in crop plants including potato.
Collapse
Affiliation(s)
- Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA30602, USA
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| |
Collapse
|
14
|
Kranse OP, Ko I, Healey R, Sonawala U, Wei S, Senatori B, De Batté F, Zhou J, Eves-van den Akker S. A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana. PLANT METHODS 2022; 18:134. [PMID: 36503537 PMCID: PMC9743603 DOI: 10.1186/s13007-022-00963-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cyst nematodes are one of the major groups of plant-parasitic nematode, responsible for considerable crop losses worldwide. Improving genetic resources, and therefore resistant cultivars, is an ongoing focus of many pest management strategies. One of the major bottlenecks in identifying the plant genes that impact the infection, and thus the yield, is phenotyping. The current available screening method is slow, has unidimensional quantification of infection limiting the range of scorable parameters, and does not account for phenotypic variation of the host. The ever-evolving field of computer vision may be the solution for both the above-mentioned issues. To utilise these tools, a specialised imaging platform is required to take consistent images of nematode infection in quick succession. RESULTS Here, we describe an open-source, easy to adopt, imaging hardware and trait analysis software method based on a pre-existing nematode infection screening method in axenic culture. A cost-effective, easy-to-build and -use, 3D-printed imaging device was developed to acquire images of the root system of Arabidopsis thaliana infected with the cyst nematode Heterodera schachtii, replacing costly microscopy equipment. Coupling the output of this device to simple analysis scripts allowed the measurement of some key traits such as nematode number and size from collected images, in a semi-automated manner. Additionally, we used this combined solution to quantify an additional trait, root area before infection, and showed both the confounding relationship of this trait on nematode infection and a method to account for it. CONCLUSION Taken together, this manuscript provides a low-cost and open-source method for nematode phenotyping that includes the biologically relevant nematode size as a scorable parameter, and a method to account for phenotypic variation of the host. Together these tools highlight great potential in aiding our understanding of nematode parasitism.
Collapse
Affiliation(s)
- Olaf Prosper Kranse
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Itsuhiro Ko
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
- Plant Pathology Department, Washington State University, Pullman, WA, 99164, USA
| | - Roberta Healey
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Unnati Sonawala
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Siyuan Wei
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Beatrice Senatori
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francesco De Batté
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Ji Zhou
- Jiangsu Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Cambridge Crop Research, National Institute of Agricultural Botany (NIAB), Cambridge, CB3 0LE, UK
| | | |
Collapse
|
15
|
Sukarta OCA, Zheng Q, Slootweg EJ, Mekken M, Mendel M, Putker V, Bertran A, Brand A, Overmars H, Pomp R, Roosien J, Boeren S, Smant G, Goverse A. GLYCINE-RICH RNA-BINDING PROTEIN 7 potentiates effector-triggered immunity through an RNA recognition motif. PLANT PHYSIOLOGY 2022; 189:972-987. [PMID: 35218353 PMCID: PMC9157115 DOI: 10.1093/plphys/kiac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The activity of intracellular plant nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors is fine-tuned by interactions between the receptors and their partners. Identifying NB-LRR interacting proteins is therefore crucial to advance our understanding of how these receptors function. A co-immunoprecipitation/mass spectrometry screening was performed in Nicotiana benthamiana to identify host proteins associated with the resistance protein Gpa2, a CC-NB-LRR immune receptor conferring resistance against the potato cyst nematode Globodera pallida. A combination of biochemical, cellular, and functional assays was used to assess the role of a candidate interactor in defense. A N. benthamiana homolog of the GLYCINE-RICH RNA-BINDING PROTEIN7 (NbGRP7) protein was prioritized as a Gpa2-interacting protein for further investigations. NbGRP7 also associates in planta with the homologous Rx1 receptor, which confers immunity to Potato Virus X. We show that NbGRP7 positively regulates extreme resistance by Rx1 and cell death by Gpa2. Mutating the NbGRP7 RNA recognition motif (RRM) compromises its role in Rx1-mediated defense. Strikingly, ectopic NbGRP7 expression is likely to impact the steady-state levels of Rx1, which relies on an intact RRM. Our findings illustrate that NbGRP7 is a pro-immune component in effector-triggered immunity by regulating Gpa2/Rx1 function at a posttranscriptional level.
Collapse
Affiliation(s)
- Octavina C A Sukarta
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Qi Zheng
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erik J Slootweg
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark Mekken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Melanie Mendel
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Vera Putker
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - André Bertran
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Anouk Brand
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rikus Pomp
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan Roosien
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
16
|
Goverse A, Mitchum MG. At the molecular plant-nematode interface: New players and emerging paradigms. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102225. [PMID: 35537283 DOI: 10.1016/j.pbi.2022.102225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Plant-parasitic nematodes (PPNs) secrete an array of molecules that can lead to their detection by or promote infection of their hosts. However, the function of these molecules in plant cells is often unknown or limited to phenotypic observations. Similarly, how plant cells detect and/or respond to these molecules is still poorly understood. Here, we highlight recent advances in mechanistic insights into the molecular dialogue between PPNs and plants at the cellular level. New discoveries reveal a) the essential roles of extra- and intracellular plant receptors in PPN perception and the manipulation of host immune- or developmental pathways during infection and b) how PPNs target such receptors to manipulate their hosts. Finally, the plant secretory pathway has emerged as a critical player in PPN peptide delivery, feeding site formation and non-canonical resistance.
Collapse
Affiliation(s)
- Aska Goverse
- Laboratory of Nematology, Dept of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
17
|
Handayani ND, Lestari P, van As W, Holterman M, van den Elsen S, Dikin A, Bert W, Helder J, Van Steenbrugge JJM. Genomic Reconstruction of the Introduction and Diversification of Golden Potato Cyst Nematode Populations in Indonesia. PHYTOPATHOLOGY 2022; 112:396-403. [PMID: 34129357 DOI: 10.1094/phyto-04-21-0150-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potato cyst nematodes (PCNs), the umbrella term for Globodera rostochiensis and G. pallida, coevolved with their Solanaceous hosts in the Andean Mountain region. From there, PCN proliferated worldwide to virtually all potato production areas. PCN is a major factor limiting the potato production in Indonesia. In our survey, only G. rostochiensis was found. Fourteen field populations were collected on Java and Sumatra, and unique variants were called by mapping resequencing data on a G. rostochiensis reference genome. A phylogenetic tree based on 1.4 million unique variants showed a genotypic separation between the outgroup, a Scottish Ro1 population, and all Indonesian populations. This separation was comparable in size with the genotypic distinction between the Javanese and the Sumatran PCN populations. Next, variants within PCN effector gene families SPRYSEC, 1106, 4D06, and venom allergen-like protein (VAL) that all interfere with the host innate immune system were compared. Distinct selective pressures acted on these effector families; while SPRYSECs (4,341 single-nucleotide polymorphisms [SNPs]/insertions or deletions of bases [indels]) behaved like neutral genes, the phylogenetic trees of 1106, 4D06, and VAL proteins (235, 790, and 150 SNPs/indels, respectively) showed deviating topologies. Our data suggest that PCN was introduced on Java not too long after the introduction of potato in the middle of the eighteenth century. Soon thereafter, the pathogen established on Sumatra and started to diversify independently. This scenario was corroborated by diversification patterns of the effector families 1106, 4D06, and VAL. Our data demonstrate how genome resequencing data from a nonindigenous pathogen can be used to reconstruct the introduction and diversification process.
Collapse
Affiliation(s)
- Nurul Dwi Handayani
- Indonesian Agricultural Quarantine Agency, Ministry of Agriculture, Ragunan, Jakarta 12550, Indonesia
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Prabowo Lestari
- Indonesian Agricultural Quarantine Agency, Ministry of Agriculture, Ragunan, Jakarta 12550, Indonesia
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Wouter van As
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Solynta, 6703 HA Wageningen, The Netherlands
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Antarjo Dikin
- Directorate General of Estate Crops, Ministry of Agriculture, Ragunan, Jakarta 12550, Indonesia
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Hassanaly-Goulamhoussen R, De Carvalho Augusto R, Marteu-Garello N, Péré A, Favery B, Da Rocha M, Danchin EGJ, Abad P, Grunau C, Perfus-Barbeoch L. Chromatin Landscape Dynamics in the Early Development of the Plant Parasitic Nematode Meloidogyne incognita. Front Cell Dev Biol 2021; 9:765690. [PMID: 34938734 PMCID: PMC8685519 DOI: 10.3389/fcell.2021.765690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
In model organisms, epigenome dynamics underlies a plethora of biological processes. The role of epigenetic modifications in development and parasitism in nematode pests remains unknown. The root-knot nematode Meloidogyne incognita adapts rapidly to unfavorable conditions, despite its asexual reproduction. However, the mechanisms underlying this remarkable plasticity and their potential impact on gene expression remain unknown. This study provides the first insight into contribution of epigenetic mechanisms to this plasticity, by studying histone modifications in M. incognita. The distribution of five histone modifications revealed the existence of strong epigenetic signatures, similar to those found in the model nematode Caenorhabditis elegans. We investigated their impact on chromatin structure and their distribution relative to transposable elements (TE) loci. We assessed the influence of the chromatin landscape on gene expression at two developmental stages: eggs, and pre-parasitic juveniles. H3K4me3 histone modification was strongly correlated with high levels of expression for protein-coding genes implicated in stage-specific processes during M. incognita development. We provided new insights in the dynamic regulation of parasitism genes kept under histone modifications silencing. In this pioneering study, we establish a comprehensive framework for the importance of epigenetic mechanisms in the regulation of the genome expression and its stability in plant-parasitic nematodes.
Collapse
Affiliation(s)
| | - Ronaldo De Carvalho Augusto
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France.,Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | | | - Arthur Péré
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Bruno Favery
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Martine Da Rocha
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | | | - Pierre Abad
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | | |
Collapse
|
19
|
Song H, Lin B, Huang Q, Sun T, Wang W, Liao J, Zhuo K. The Meloidogyne javanica effector Mj2G02 interferes with jasmonic acid signalling to suppress cell death and promote parasitism in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:1288-1301. [PMID: 34339585 PMCID: PMC8435226 DOI: 10.1111/mpp.13111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 05/22/2023]
Abstract
Plant-parasitic nematodes can cause devastating damage to crops. These nematodes secrete effectors that suppress the host immune responses to enhance their survival. In this study, Mj2G02, an effector from Meloidogyne javanica, is described. In situ hybridization and transcriptional analysis showed that Mj2G02 was highly expressed in the early infection stages and exclusively expressed in the nematode subventral oesophageal gland cells. In planta RNA interference targeting Mj2G02 impaired M. javanica parasitism, and Mj2G02-transgenic Arabidopsis lines displayed more susceptibility to M. javanica. Using an Agrobacterium-mediated transient expression system and plant immune response assays, we demonstrated that Mj2G02 localized in the plant cell nuclei and could suppress Gpa2/RBP-1-induced cell death. Moreover, by RNA-Seq and quantitative reverse transcription PCR analyses, we showed that Mj2G02 was capable of interfering with the host jasmonic acid (JA) signalling pathway. Multiple jasmonate ZIM-domain (JAZ) genes were significantly upregulated, whereas the JAR1 gene and four JA-responsive genes, MYC3, UPI, THI2.1, and WRKY75, were significantly downregulated. In addition, HPLC analysis showed that the endogenous jasmonoyl-isoleucine (JA-Ile) level in Mj2G02-transgenic Arabidopsis lines was significantly decreased compared to that in wildtype plants. Our results indicate that the M. javanica effector Mj2G02 suppresses the plant immune response, therefore facilitating nematode parasitism. This process is probably mediated by a JA-Ile reduction and JAZ enhancement to repress JA-responsive genes.
Collapse
Affiliation(s)
- Handa Song
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Borong Lin
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory of Lingnan Modern AgricultureGuangzhouChina
| | - Qiuling Huang
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Tianlin Sun
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Wenjun Wang
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Jinling Liao
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Research Center of Plant Pest Management and Bioenvironmental Health TechnologyGuangdong Eco‐Engineering PolytechnicGuangzhouChina
| | - Kan Zhuo
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory of Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
20
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P, Goverse A, Smant G, Helder J. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genomics 2021; 22:611. [PMID: 34380421 PMCID: PMC8359618 DOI: 10.1186/s12864-021-07914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner. RESULTS We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants. CONCLUSIONS Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands.,Solynta, Dreijenlaan 2, 6703 HA, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological Sciences, University of St. Andrews, North Haugh, St Andrews, United Kingdom
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Song H, Lin B, Huang Q, Sun L, Chen J, Hu L, Zhuo K, Liao J. The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5638-5655. [PMID: 33974693 DOI: 10.1093/jxb/erab208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/07/2021] [Indexed: 05/14/2023]
Abstract
Recent studies have reported that plant-parasitic nematodes facilitate their infection by suppressing plant immunity via effectors, but the inhibitory mechanisms remain poorly understood. This study found that a novel effector MgMO289 is exclusively expressed in the dorsal esophageal gland of Meloidogyne graminicola and is up-regulated at parasitic third-/fourth-stage juveniles. In planta silencing of MgMO289 substantially increased plant resistance to M. graminicola. Moreover, we found that MgMO289 interacts with a new rice copper metallochaperone heavy metal-associated plant protein 04 (OsHPP04), and that rice cytosolic COPPER/ZINC -SUPEROXIDE DISMUTASE 2 (cCu/Zn-SOD2) is the target of OsHPP04. Rice plants overexpressing OsHPP04 or MgMO289 exhibited an increased susceptibility to M. graminicola and a higher Cu/Zn-SOD activity, but lower O2•- content, when compared with wild-type plants. Meanwhile, immune response assays showed that MgMO289 could suppress host innate immunity. These findings reveal a novel pathway for a plant pathogen effector that utilizes the host O2•--scavenging system to eliminate O2•- and suppress plant immunity.
Collapse
Affiliation(s)
- Handa Song
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Qiuling Huang
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Longhua Sun
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jiansong Chen
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Lili Hu
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| |
Collapse
|
22
|
Sacristán S, Goss EM, Eves-van den Akker S. How Do Pathogens Evolve Novel Virulence Activities? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:576-586. [PMID: 33522842 DOI: 10.1094/mpmi-09-20-0258-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, U.S.A
| | | |
Collapse
|
23
|
Price JA, Coyne D, Blok VC, Jones JT. Potato cyst nematodes Globodera rostochiensis and G. pallida. MOLECULAR PLANT PATHOLOGY 2021; 22:495-507. [PMID: 33709540 PMCID: PMC8035638 DOI: 10.1111/mpp.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 05/12/2023]
Abstract
TAXONOMY Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES Genomic information for PCN is accessible through WormBase ParaSite.
Collapse
Affiliation(s)
- James A. Price
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Vivian C. Blok
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - John T. Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
24
|
Li J, Xu C, Yang S, Chen C, Tang S, Wang J, Xie H. A Venom Allergen-Like Protein, RsVAP, the First Discovered Effector Protein of Radopholus similis That Inhibits Plant Defense and Facilitates Parasitism. Int J Mol Sci 2021; 22:4782. [PMID: 33946385 PMCID: PMC8125365 DOI: 10.3390/ijms22094782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Radopholus similis is a migratory endoparasitic nematode that is extremely harmful to host plants. Venom allergen-like proteins (VAPs) are members of the cysteine-rich secretory protein family that are widely present in plants and animals. In this study, we cloned a VAP gene from R. similis, designated as RsVAP. RsVAP contains an open reading frame of 1089 bp encoding 362 amino acids. RsVAP is specifically expressed in the esophageal gland, and the expression levels of RsVAP are significantly higher in juveniles than in other life stages of R. similis. This expression pattern of RsVAP was consistent with the biological characteristics of juveniles of R. similis, which have the ability of infection and are the main infection stages of R. similis. The pathogenicity and reproduction rate of R. similis in tomato was significantly attenuated after RsVAP was silenced. In tobacco leaves transiently expressing RsVAP, the pathogen-associated molecular pattern-triggered immunity (PTI) induced by a bacterial flagellin fragment (flg22) was inhibited, while the cell death induced by two sets of immune elicitors (BAX and Gpa2/RBP-1) was repressed. The RsVAP-interacting, ras-related protein RABA1d (LeRabA1d) was identified in tomato hosts by yeast two-hybrid and co-immunoprecipitation assays. RsVAP may interact with LeRabA1d to affect the host defense response, which in turn facilitates nematode infection. This study provides the first evidence for the inhibition of plant defense response by a VAP from migratory plant-parasitic nematodes, and, for the first time, the target protein of R. similis in its host was identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Xie
- Research Center of Nematodes of Plant Quarantine, Laboratory of Plant Nematology, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.X.); (S.Y.); (C.C.); (S.T.); (J.W.)
| |
Collapse
|
25
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
26
|
Gartner U, Hein I, Brown LH, Chen X, Mantelin S, Sharma SK, Dandurand LM, Kuhl JC, Jones JT, Bryan GJ, Blok VC. Resisting Potato Cyst Nematodes With Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:661194. [PMID: 33841485 PMCID: PMC8027921 DOI: 10.3389/fpls.2021.661194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 05/17/2023]
Abstract
Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.
Collapse
Affiliation(s)
- Ulrike Gartner
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lynn H. Brown
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Xinwei Chen
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sophie Mantelin
- INRAE UMR Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Sanjeev K. Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Louise-Marie Dandurand
- Entomology, Plant Pathology and Nematology Department, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - John T. Jones
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Vivian C. Blok,
| |
Collapse
|
27
|
Ramos RN, Martin GB, Pombo MA, Rosli HG. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2021; 105:65-82. [PMID: 32909182 DOI: 10.1007/s11103-020-01069-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE NbWRKY22 and NbWRKY25 are required for full activation of bacteria-associated pattern- and effector-triggered immunity as well as for the response to other non-bacterial defense elicitors. Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from flagellin including flg22. Pseudomonas syringae pv. tomato (Pst) delivers effector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specific effectors leading to the activation of effector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst effectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identified two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial effector/R protein pairs. An increase in disease symptoms was observed in silenced plants infiltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with flg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.
Collapse
Affiliation(s)
- Romina N Ramos
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
28
|
Zheng Q, Putker V, Goverse A. Molecular and Cellular Mechanisms Involved in Host-Specific Resistance to Cyst Nematodes in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:641582. [PMID: 33767723 PMCID: PMC7986850 DOI: 10.3389/fpls.2021.641582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 05/17/2023]
Abstract
Cyst nematodes are able to infect a wide range of crop species and are regarded as a major threat in crop production. In response to invasion of cyst nematodes, plants activate their innate immune system to defend themselves by conferring basal and host-specific defense responses depending on the plant genotype. Basal defense is dependent on the detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), while host-specific defense mainly relies on the activation of canonical and non-canonical resistance (R) genes or quantitative trait loci (QTL). Currently, application of R genes and QTLs in crop species is a major approach to control cyst nematode in crop cultivation. However, emerging virulent cyst nematode field populations are threatening crop production due to host genetic selection by the application of a limited set of resistance genes in current crop cultivars. To counteract this problem, increased knowledge about the mechanisms involved in host-specific resistance mediated by R genes and QTLs to cyst nematodes is indispensable to improve their efficient and sustainable use in field crops. Despite the identification of an increasing number of resistance traits to cyst nematodes in various crops, the underlying genes and defense mechanisms are often unknown. In the last decade, indebt studies on the functioning of a number of cyst nematode R genes and QTLs have revealed novel insights in how plants respond to cyst nematode infection by the activation of host-specific defense responses. This review presents current knowledge of molecular and cellular mechanisms involved in the recognition of cyst nematodes, the activation of defense signaling and resistance response types mediated by R genes or QTLs. Finally, future directions for research are proposed to develop management strategies to better control cyst nematodes in crop cultivation.
Collapse
Affiliation(s)
- Qi Zheng
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Vera Putker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
29
|
Montarry J, Mimee B, Danchin EGJ, Koutsovoulos GD, Ste-Croix DT, Grenier E. Recent Advances in Population Genomics of Plant-Parasitic Nematodes. PHYTOPATHOLOGY 2021; 111:40-48. [PMID: 33151824 DOI: 10.1094/phyto-09-20-0418-rvw] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant-parasitic nematodes are a costly burden of crop production. Ubiquitous in nature, phytoparasitic nematodes are associated with nearly every important agricultural crop and represent a significant constraint on global food security. Population genetics is a key discipline in plant nematology to understand aspects of the life strategies of these parasites, in particular their modes of reproduction, geographic origins, evolutionary histories, and dispersion abilities. Advances in high-throughput sequencing technologies have enabled a recent but active effort in genomic analyses of plant-parasitic nematodes. Such genomic approaches applied to multiple populations are providing new insights into the molecular and evolutionary processes that underpin the establishment of these nematodes and into a better understanding of the genetic and mechanistic basis of their pathogenicity and adaptation to their host plants. In this review, we attempt to update information about genome resources and genotyping techniques useful for nematologists who are thinking about initiating population genomics or genome sequencing projects. This review is intended also to foster the development of population genomics in plant-parasitic nematodes through highlighting recent publications that illustrate the potential for this approach to identify novel molecular markers or genes of interest and improve our knowledge of the genome variability, pathogenicity, and evolutionary potential of plant-parasitic nematodes.
Collapse
Affiliation(s)
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | | | - Dave T Ste-Croix
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Eric Grenier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35650, Le Rheu, France
| |
Collapse
|
30
|
Ste-Croix DT, St-Marseille AFG, Lord E, Bélanger RR, Brodeur J, Mimee B. Genomic Profiling of Virulence in the Soybean Cyst Nematode Using Single-Nematode Sequencing. PHYTOPATHOLOGY 2021; 111:137-148. [PMID: 33100145 DOI: 10.1094/phyto-08-20-0348-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soybean cyst nematode (SCN) is one of the most important diseases in soybean. Currently, the main management strategy relies on planting resistant cultivars. However, the overuse of a single resistance source has led to the selection of virulent SCN populations, although the mechanisms by which the nematode overcomes the resistance genes remain unknown. In this study, we used a nematode-adapted single-cell RNA-seq approach to identify SCN genes potentially involved in resistance breakdown in Peking and PI 88788 parental soybean lines. We established for the first time the full transcriptome of single SCN individuals allowing us to identify a list of putative virulence genes against both major SCN resistance sources. Our analysis identified 48 differentially expressed putative effectors (secreted proteins required for infection) alongside 40 effectors showing evidence of novel structural variants, and 11 effector genes containing phenotype-specific sequence polymorphisms. Additionally, a differential expression analysis revealed an interesting phenomenon of coexpressed gene regions with some containing putative effectors. The selection of virulent SCN individuals on Peking resulted in a profoundly altered transcriptome, especially for genes known to be involved in parasitism. Several sequence polymorphisms were also specific to these virulent nematodes and could potentially play a role in the acquisition of nematode virulence. On the other hand, the transcriptome of virulent individuals on PI 88788 was very similar to avirulent ones with the exception of a few genes, which suggest a distinct virulence strategy to Peking.
Collapse
Affiliation(s)
- Dave T Ste-Croix
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
- Département de phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC, Canada, G1V 0A6
| | - Anne-Frédérique Gendron St-Marseille
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Etienne Lord
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Richard R Bélanger
- Département de phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC, Canada, G1V 0A6
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| |
Collapse
|
31
|
Tian Z, Wang Z, Munawar M, Zheng J. Identification and Characterization of a Novel Protein Disulfide Isomerase Gene ( MgPDI2) from Meloidogyne graminicola. Int J Mol Sci 2020; 21:E9586. [PMID: 33339262 PMCID: PMC7767112 DOI: 10.3390/ijms21249586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a multifunctional enzyme that catalyzes rate-limiting reactions such as disulfide bond formation, isomerization, and reduction. There is some evidence that indicates that PDI is also involved in host-pathogen interactions in plants. In this study, we show that the rice root-knot nematode, Meloidogyne graminicola, has evolved a secreted effector, MgPDI2, which is expressed in the subventral esophageal glands and up-regulated during the early parasitic stage of M. graminicola. Purified recombinant MgPDI2 functions as an insulin disulfide reductase and protects plasmid DNA from nicking. As an effector, MgPDI2 contributes to nematode parasitism. Silencing of MgPDI2 by RNA interference in the pre-parasitic second-stage juveniles (J2s) reduced M. graminicola multiplication and also increased M. graminicola mortality under H2O2 stress. In addition, an Agrobacterium-mediated transient expression assay found that MgPDI2 caused noticeable cell death in Nicotiana benthamiana. An intact C-terminal region containing the first catalytic domain (a) with an active motif (Cys-Gly-His-Cys, CGHC) and the two non-active domains (b and b') is required for cell death induction in N. benthamiana. This research may provide a promising target for the development of new strategies to combat M. graminicola infections.
Collapse
Affiliation(s)
- Zhongling Tian
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.T.); (M.M.)
| | - Zehua Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Maria Munawar
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.T.); (M.M.)
| | - Jingwu Zheng
- Laboratory of Plant Nematology, Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.T.); (M.M.)
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
32
|
The Genomic Impact of Selection for Virulence against Resistance in the Potato Cyst Nematode, Globodera pallida. Genes (Basel) 2020; 11:genes11121429. [PMID: 33260722 PMCID: PMC7760817 DOI: 10.3390/genes11121429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.
Collapse
|
33
|
Kooliyottil R, Rao Gadhachanda K, Solo N, Dandurand LM. ATP-Binding Cassette (ABC) Transporter Genes in Plant-Parasitic Nematodes: An Opinion for Development of Novel Control Strategy. FRONTIERS IN PLANT SCIENCE 2020; 11:582424. [PMID: 33329645 PMCID: PMC7715011 DOI: 10.3389/fpls.2020.582424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Affiliation(s)
- Rinu Kooliyottil
- Citrus Budwood Registration Program, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, La Crosse, FL, United States
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | | | - Nejra Solo
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
34
|
Lin X, Armstrong M, Baker K, Wouters D, Visser RGF, Wolters PJ, Hein I, Vleeshouwers VGAA. RLP/K enrichment sequencing; a novel method to identify receptor-like protein (RLP) and receptor-like kinase (RLK) genes. THE NEW PHYTOLOGIST 2020; 227:1264-1276. [PMID: 32285454 PMCID: PMC7383770 DOI: 10.1111/nph.16608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 05/29/2023]
Abstract
The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.
Collapse
Affiliation(s)
- Xiao Lin
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Miles Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Doret Wouters
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Richard G. F. Visser
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Pieter J. Wolters
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeDD2 5DAUK
| | | |
Collapse
|
35
|
Pokhare SS, Thorpe P, Hedley P, Morris J, Habash SS, Elashry A, Eves-van den Akker S, Grundler FMW, Jones JT. Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1263-1274. [PMID: 32623778 DOI: 10.1111/tpj.14910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.
Collapse
Affiliation(s)
- Somnath S Pokhare
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Peter Thorpe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Pete Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jennifer Morris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Samer S Habash
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - Abdelnaser Elashry
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | | | - Florian M W Grundler
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
36
|
Grenier E, Kiewnick S, Smant G, Fournet S, Montarry J, Holterman M, Helder J, Goverse A. Monitoring and tackling genetic selection in the potato cyst nematode Globodera pallida. EFSA SUPPORTING PUBLICATIONS 2020; 17. [PMID: 0 DOI: 10.2903/sp.efsa.2020.en-1874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- E. Grenier
- INRAE UMR IGEPP ‐ Institute of Genetic, Environment and Plant Protection – Domaine de la Motte France
| | | | - G. Smant
- Wageningen University Laboratory of Nematology The Netherlands
| | - S. Fournet
- INRAE UMR IGEPP ‐ Institute of Genetic, Environment and Plant Protection – Domaine de la Motte France
| | - J. Montarry
- INRAE UMR IGEPP ‐ Institute of Genetic, Environment and Plant Protection – Domaine de la Motte France
| | - M. Holterman
- Wageningen University Laboratory of Nematology The Netherlands
| | - J. Helder
- Wageningen University Laboratory of Nematology The Netherlands
| | - A. Goverse
- Wageningen University Laboratory of Nematology The Netherlands
| |
Collapse
|
37
|
Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC Genomics 2020; 21:250. [PMID: 32293256 PMCID: PMC7092525 DOI: 10.1186/s12864-020-6654-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background The Mi-1 gene was the first identified and cloned gene that provides resistance to root-knot nematodes (RKNs) in cultivated tomato. However, owing to its temperature sensitivity, this gene does not meet the need for breeding disease-resistant plants that grow under high temperature. In this study, Mi-3 was isolated from the wild species PI 126443 (LA3858) and was shown to display heat-stable resistance to RKNs. However, the mechanism that regulates this resistance remains unknown. Results In this study, 4760, 1024 and 137 differentially expressed genes (DEGs) were enriched on the basis of pairwise comparisons (34 °C vs. 25 °C) at 0 (before inoculation), 3 and 6 days post-inoculation (dpi), respectively. A total of 7035 DEGs were identified from line LA3858 in the respective groups under the different soil temperature treatments. At 3 dpi, most DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant biotic responses, such as “plant-pathogen interaction” and “plant hormone signal transduction”. Significantly enriched DEGs were found to encode key proteins such as R proteins and heat-shock proteins (HSPs). Moreover, other DEGs were found to participate in Ca2+ signal transduction; the production of ROS; DEGs encoding transcription factors (TFs) from the bHLH, TGA, ERF, heat-shock transcription factor (HSF) and WRKY families were highly expressed, which contribute to be involved into the formation of phytohormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), the expression of most was upregulated at 3 dpi at the 25 °C soil temperature compared with the 34 °C soil temperature. Conclusion Taken together, the results of our study revealed reliable candidate genes from wild materials LA3858, that are related to Mi-3-mediate resistance to Meloidogyne incognita. A large number of vital pathways and DEGs were expressed specifically in accession LA3858 grown at 34 °C and 25 °C soil temperatures at 3 dpi. Upon infection by RKNs, pattern-recognition receptors (PRRs) specifically recognized conserved pathogen-associated molecular patterns (PAMPs) as a result of pathogen-triggered immunity (PTI), and the downstream defensive signal transduction pathway was likely activated through Ca2+ signal channels. The expression of various TFs was induced to synthesize phytohormones and activate R proteins related to resistance, resulting in the development of effector-triggered immunity (ETI). Last, a hypersensitive response in the roots occurred, which was probably induced by the accumulation of ROS.
Collapse
Affiliation(s)
- Chong Du
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dongye Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhentong Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
38
|
Diaz‐Granados A, Sterken MG, Overmars H, Ariaans R, Holterman M, Pokhare SS, Yuan Y, Pomp R, Finkers‐Tomczak A, Roosien J, Slootweg E, Elashry A, Grundler FM, Xiao F, Goverse A, Smant G. The effector GpRbp-1 of Globodera pallida targets a nuclear HECT E3 ubiquitin ligase to modulate gene expression in the host. MOLECULAR PLANT PATHOLOGY 2020; 21:66-82. [PMID: 31756029 PMCID: PMC6913204 DOI: 10.1111/mpp.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida. Here, we show that GpRbp-1 interacts in yeast and in planta with a functional potato homologue of the Homology to E6-AP C-Terminus (HECT)-type ubiquitin E3 ligase UPL3, which is located in the nucleus. Potato lines lacking StUPL3 are not available, but the Arabidopsis mutant upl3-5 displaying a reduced UPL3 expression showed a consistently small but not significant decrease in susceptibility to cyst nematodes. We observed a major impact on the root transcriptome by the lower levels of AtUPL3 in the upl3-5 mutant, but surprisingly only in association with infections by cyst nematodes. To our knowledge, this is the first example that a HECT-type ubiquitin E3 ligase is targeted by a pathogen effector and that a member of this class of proteins specifically regulates gene expression under biotic stress conditions. Together, our data suggest that GpRbp-1 targets a specific component of the plant ubiquitination machinery to manipulate the stress response in host cells.
Collapse
Affiliation(s)
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Hein Overmars
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Roel Ariaans
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Somnath S. Pokhare
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- ICAR National Rice Research InstituteCuttack753006India
| | - Yulin Yuan
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Rikus Pomp
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Anna Finkers‐Tomczak
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
- KeyGene N.V.WageningenNetherlands
| | - Jan Roosien
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Erik Slootweg
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Abdenaser Elashry
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Strube Research GmbHHauptstrasse 138387SöllingenGermany
| | | | - Fangming Xiao
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Aska Goverse
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
39
|
Hu Y, You J, Li C, Pan F, Wang C. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110271. [PMID: 31623793 DOI: 10.1016/j.plantsci.2019.110271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Soybean cyst nematode (Heterodera glycines Ichinohe) is a sedentary root endoparasite that causes serious yield losses on soybean (Glycine max) worldwide. H. glycines secrets effector proteins into host cells to facilitate the success of parasitism. Nowadays, a large number of candidate effectors were identified from the genome sequence of H. glycines. However, the precise functions of these effectors in the nematode-host plant interaction are unknown. Here, an effector gene of dorsal gland protein Hg16B09 from H. glycines was cloned and functionally characterized through generating the transgenic soybean hairy roots. In situ hybridization assay and qRT-PCR analysis indicated Hg16B09 is exclusively expressed in the dorsal esophageal cells and up-regulated in the parasitic-stage juveniles. The constitutive expression of Hg16B09 in soybean hairy roots caused an enhanced susceptibility to H. glycines. In contrast, in planta silencing of Hg16B09 exhibited that nematode reproduction in hairy roots was decreased compared to the empty vector control. In addition, Hg16B09 also suppressed the expression of soybean defense-related genes induced by the pathogen-associated molecular pattern flg22. These data indicate that the effector Hg16B09 might aid H. glycines parasitism through suppressing plant basal defenses in the early parasitic stages.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China; University of Chinese Academy of Science, Beijing, PR China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Fengjuan Pan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| |
Collapse
|
40
|
Kwon KM, Bekal S, Domier LL, Lambert KN. Active and inactive forms of biotin synthase occur in Heterodera glycines. J Nematol 2019; 51:e2019-69. [PMID: 34179812 PMCID: PMC6909392 DOI: 10.21307/jofnem-2019-069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/11/2022] Open
Abstract
Heterodera glycines, the soybean cyst nematode (SCN), is a plant-parasitic nematode capable of manipulating host plant biochemistry and development. Many studies have suggested that the nematode has acquired genes from bacteria via horizontal gene transfer events (HGTs) that have the potential to enhance nematode parasitism. A recent allelic imbalance analysis identified two candidate virulence genes, which also appear to have entered the SCN genome through HGTs. One of the candidate genes, H. glycines biotin synthase (HgBioB), contained sequence polymorphisms between avirulent and virulent inbred SCN strains. To test the function of these HgBioB alleles, a complementation experiment using biotin synthase-deficient Escherichia coli was conducted. Here, we report that avirulent nematodes produce an active biotin synthase while virulent ones contain an inactive form of the enzyme. Moreover, sequencing analysis of HgBioB genes from SCN field populations indicates the presence of diverse mixture of HgBioB alleles with the virulent form being the most prevalent. We hypothesize that the mutations in the inactive HgBioB allele within the virulent SCN could result in a change in protein function that in some unknown way bolster its parasitic lifestyle.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Crop Sciences, University of Illinois, Urbana, IL.,Department of Plant Pathology and Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Sadia Bekal
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL.,United States Department of Agriculture - Agricultural Research Service, Urbana, IL
| | - Kris N Lambert
- Department of Crop Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
41
|
Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5943-5958. [PMID: 31365744 PMCID: PMC6812717 DOI: 10.1093/jxb/erz348] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Plant-parasitic nematodes secrete numerous effectors to facilitate parasitism, but detailed functions of nematode effectors and their plant targets remain largely unknown. Here, we characterized four macrophage migration inhibitory factors (MIFs) in Meloidogyne incognita resembling the MIFs secreted by human and animal parasites. Transcriptional data showed MiMIFs are up-regulated in parasitism. Immunolocalization provided evidence that MiMIF proteins are secreted from the nematode hypodermis to the parasite surface, detected in plant tissues and giant cells. In planta MiMIFs RNA interference in Arabidopsis decreased infection and nematode reproduction. Transient expression of MiMIF-2 could suppress Bax- and RBP1/Gpa2-induced cell death. MiMIF-2 ectopic expression led to higher levels of Arabidopsis susceptibility, suppressed immune responses triggered by flg22, and impaired [Ca2+]cyt influx induced by H2O2. The immunoprecipitation of MiMIF-2-interacting proteins, followed by co-immunoprecipitation and bimolecular fluorescence complementation validations, revealed specific interactions between MiMIF-2 and two Arabidopsis annexins, AnnAt1 and AnnAt4, involved in the transport of calcium ions, stress responses, and signal transduction. Suppression of expression or overexpression of these annexins modified nematode infection. Our results provide functional evidence that nematode effectors secreted from hypodermis to the parasite cuticle surface target host proteins and M. incognita uses MiMIFs to promote parasitism by interfering with the annexin-mediated plant immune responses.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lijuan Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Pei Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Shuang Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université de Nice Sophia Antipolis, Nice, France
| | | | - Pierre Abad
- Université Côte d’Azur, INRA, CNRS, ISA, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
42
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
43
|
Transcriptome analysis of Globodera pallida from the susceptible host Solanum tuberosum or the resistant plant Solanum sisymbriifolium. Sci Rep 2019; 9:13256. [PMID: 31519937 PMCID: PMC6744408 DOI: 10.1038/s41598-019-49725-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
A transcriptome analysis of G. pallida juveniles collected from S. tuberosum or S. sisymbriifolium 24 h post infestation was performed to provide insights into the parasitic process of this nematode. A total of 41 G. pallida genes were found to be significantly differentially expressed when parasitizing the two plant species. Among this set, 12 were overexpressed when G. pallida was parasitizing S. tuberosum and 29 were overexpressed when parasitizing S. sisymbriifolium. Out of the 12 genes, three code for secretory proteins; one is homologous to effector gene Rbp-4, the second is an uncharacterized protein with a signal peptide sequence, and the third is an ortholog of a Globodera rostochiensis effector belonging to the 1106 effector family. Other overexpressed genes from G. pallida when parasitizing S. tuberosum were either unknown, associated with a stress or defense response, or associated with sex differentiation. Effector genes namely Eng-1, Cathepsin S-like cysteine protease, cellulase, and two unknown genes with secretory characteristics were over expressed when G. pallida was parasitizing S. sisymbriifolium relative to expression from S. tuberosum. Our findings provide insight into gene regulation of G. pallida while infecting either the trap crop S. sisymbriifolium or the susceptible host, S. tuberosum.
Collapse
|
44
|
Mejias J, Truong NM, Abad P, Favery B, Quentin M. Plant Proteins and Processes Targeted by Parasitic Nematode Effectors. FRONTIERS IN PLANT SCIENCE 2019; 10:970. [PMID: 31417587 PMCID: PMC6682612 DOI: 10.3389/fpls.2019.00970] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/11/2019] [Indexed: 05/17/2023]
Abstract
Sedentary endoparasitic nematodes, such as root-knot nematodes (RKN; Meloidogyne spp.) and cyst nematodes (CN; Heterodera spp. and Globodera spp.) cause considerable damage to agricultural crops. RKN and CN spend most of their life cycle in plant roots, in which they induce the formation of multinucleate hypertrophied feeding cells, called "giant cells" and "syncytia," respectively. The giant cells result from nuclear divisions of vascular cells without cytokinesis. They are surrounded by small dividing cells and they form a new organ within the root known as a root knot or gall. CN infection leads to the fusion of several root cells into a unique syncytium. These dramatically modified host cells act as metabolic sinks from which the nematode withdraws nutrients throughout its life, and they are thus essential for nematode development. Both RKN and CN secrete effector proteins that are synthesized in the oesophageal glands and delivered to the appropriate cell in the host plant via a syringe-like stylet, triggering the ontogenesis of the feeding structures. Within the plant cell or in the apoplast, effectors associate with specific host proteins, enabling them to hijack important processes for cell morphogenesis and physiology or immunity. Here, we review recent findings on the identification and functional characterization of plant targets of RKN and CN effectors. A better understanding of the molecular determinants of these biotrophic relationships would enable us to improve the yields of crops infected with parasitic nematodes and to expand our comprehension of root development.
Collapse
Affiliation(s)
| | | | | | | | - Michaël Quentin
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
45
|
Zhao C, Wang H, Lu Y, Hu J, Qu L, Li Z, Wang D, He Y, Valls M, Coll NS, Chen Q, Lu H. Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:813-827. [PMID: 31140930 DOI: 10.1094/mpmi-10-18-0268-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacterial wilt caused by the bacterial pathogen Ralstonia solanacearum is one of the most devastating crop diseases worldwide. The molecular mechanisms controlling the early stage of R. solanacearum colonization in the root remain unknown. Aiming to better understand the mechanism of the establishment of R. solanacearum infection in root, we established four stages in the early interaction of the pathogen with Arabidopsis roots and determined the transcriptional profiles of these stages of infection. A total 2,698 genes were identified as differentially expressed genes during the initial 96 h after infection, with the majority of changes in gene expression occurring after pathogen-triggered root-hair development observed. Further analysis of differentially expressed genes indicated sequential activation of multiple hormone signaling cascades, including abscisic acid (ABA), auxin, jasmonic acid, and ethylene. Simultaneous impairment of ABA receptor genes promoted plant wilting symptoms after R. solanacearum infection but did not affect primary root growth inhibition or root-hair and lateral root formation caused by R. solanacearum. This indicated that ABA signaling positively regulates root defense to R. solanacearum. Moreover, transcriptional changes of genes involved in primary root, lateral root, and root-hair formation exhibited high temporal dynamics upon infection. Taken together, our results suggest that successful infection of R. solanacearum on roots is a highly programmed process involving in hormone crosstalk.
Collapse
Affiliation(s)
- Cuizhu Zhao
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinxue Hu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qu
- 2 National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zheqing Li
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongdong Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhe He
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Marc Valls
- 3 Genetics section, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Núria S Coll
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Qin Chen
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
46
|
Kud J, Wang W, Gross R, Fan Y, Huang L, Yuan Y, Gray A, Duarte A, Kuhl JC, Caplan A, Goverse A, Liu Y, Dandurand LM, Xiao F. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog 2019; 15:e1007720. [PMID: 30978251 PMCID: PMC6461251 DOI: 10.1371/journal.ppat.1007720] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Plant pathogens, such as bacteria, fungi, oomycetes and nematodes, rely on wide range of virulent effectors delivered into host cells to suppress plant immunity. Although phytobacterial effectors have been intensively investigated, little is known about the function of effectors of plant-parasitic nematodes, such as Globodera pallida, a cyst nematode responsible for vast losses in the potato and tomato industries. Here, we demonstrate using in vivo and in vitro ubiquitination assays the potato cyst nematode (Globodera pallida) effector RHA1B is an E3 ubiquitin ligase that employs multiple host plant E2 ubiquitin conjugation enzymes to catalyze ubiquitination. RHA1B was able to suppress effector-triggered immunity (ETI), as manifested by suppression of hypersensitive response (HR) mediated by a broad range of nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors, presumably via E3-dependent degradation of the NB-LRR receptors. RHA1B also blocked the flg22-triggered expression of Acre31 and WRKY22, marker genes of pathogen‐associated molecular pattern (PAMP)‐triggered immunity (PTI), but this did not require the E3 activity of RHA1B. Moreover, transgenic potato overexpressing the RHA1B transgene exhibited enhanced susceptibility to G. pallida. Thus, our data suggest RHA1B facilitates nematode parasitism not only by triggering degradation of NB-LRR immune receptors to block ETI signaling but also by suppressing PTI signaling via an as yet unknown E3-independent mechanism. Globodera pallida is a plant-parasitic cyst nematode that causes vast losses in economically important crops such as potato and tomato. To successfully parasitize host plants, G. pallida produces proteins called effectors to overcome plant defenses. Here, we report identification of a novel G. pallida effector RHA1B as an E3 ubiquitin ligase, which is responsible for ubiquitin-proteasome-mediated protein degradation in general. We found that RHA1B can suppress plant defense signaling via both E3-dependent and -independent manners. In particular, it promotes degradation of a broad range of NB-LRR immune receptors. In addition, expression of RHA1B in potato plants made the plants more susceptible to G. pallida infection, indicating that RHA1B acts as an effector that aids parasitism. Overall, we found RHA1B as the first effector with ubiquitin ligase activity identified from eukaryotic pathogen infecting plants or animals. Our data suggest nematode uses RHA1B as a powerful weapon to manipulate host cellular signaling pathways, thereby interfering with plant immunity for successful parasitism.
Collapse
Affiliation(s)
- Joanna Kud
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Wenjie Wang
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
- School of Food Science, Hefei University of Technology, Hefei, China
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Youhong Fan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
- School of Food Science, Hefei University of Technology, Hefei, China
| | - Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Amanda Gray
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States of America
| | - Aida Duarte
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States of America
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Allan Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Yongsheng Liu
- School of Food Science, Hefei University of Technology, Hefei, China
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States of America
- * E-mail: (LMD); (FX)
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail: (LMD); (FX)
| |
Collapse
|
47
|
Strachan SM, Armstrong MR, Kaur A, Wright KM, Lim TY, Baker K, Jones J, Bryan G, Blok V, Hein I. Mapping the H2 resistance effective against Globodera pallida pathotype Pa1 in tetraploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1283-1294. [PMID: 30666393 PMCID: PMC6449323 DOI: 10.1007/s00122-019-03278-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 05/26/2023]
Abstract
The nematode resistance gene H2 was mapped to the distal end of chromosome 5 in tetraploid potato. The H2 resistance gene, introduced into cultivated potatoes from the wild diploid species Solanum multidissectum, confers a high level of resistance to the Pa1 pathotype of the potato cyst nematode Globodera pallida. A cross between tetraploid H2-containing breeding clone P55/7 and susceptible potato variety Picasso yielded an F1 population that segregated approximately 1:1 for the resistance phenotype, which is consistent with a single dominant gene in a simplex configuration. Using genome reduction methodologies RenSeq and GenSeq, the segregating F1 population enabled the genetic characterisation of the resistance through a bulked segregant analysis. A diagnostic RenSeq analysis of the parents confirmed that the resistance in P55/7 cannot be explained by previously characterised resistance genes. Only the variety Picasso contained functionally characterised disease resistance genes Rpi-R1, Rpi-R3a, Rpi-R3b variant, Gpa2 and Rx, which was independently confirmed through effector vacuum infiltration assays. RenSeq and GenSeq independently identified sequence polymorphisms linked to the H2 resistance on the top end of potato chromosome 5. Allele-specific KASP markers further defined the locus containing the H2 gene to a 4.7 Mb interval on the distal short arm of potato chromosome 5 and to positions that correspond to 1.4 MB and 6.1 MB in the potato reference genome.
Collapse
Affiliation(s)
- Shona M Strachan
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Miles R Armstrong
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- School of Life Sciences, Division of Plant Sciences at the JHI, University of Dundee, Dundee, DD2 5DA, UK
| | - Amanpreet Kaur
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Kathryn M Wright
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Tze Yin Lim
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Columbia University, New York, NY, 10027, USA
| | - Katie Baker
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Synpromics, Edinburgh, EH25 9RG, UK
| | - John Jones
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Glenn Bryan
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Vivian Blok
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Ingo Hein
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK.
- School of Life Sciences, Division of Plant Sciences at the JHI, University of Dundee, Dundee, DD2 5DA, UK.
| |
Collapse
|
48
|
Yang S, Dai Y, Chen Y, Yang J, Yang D, Liu Q, Jian H. A Novel G16B09-Like Effector From Heterodera avenae Suppresses Plant Defenses and Promotes Parasitism. FRONTIERS IN PLANT SCIENCE 2019; 10:66. [PMID: 30800135 PMCID: PMC6376208 DOI: 10.3389/fpls.2019.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
Plant parasitic nematodes secrete effectors into host plant tissues to facilitate parasitism. In this study, we identified a G16B09-like effector protein family from the transcriptome of Heterodera avenae, and then verified that most of the members could suppress programmed cell death triggered by BAX in Nicotiana benthamiana. Ha18764, the most homologous to G16B09, was further characterized for its function. Our experimental evidence suggested that Ha18764 was specifically expressed in the dorsal gland and was dramatically upregulated in the J4 stage of nematode development. A Magnaporthe oryzae secretion system in barley showed that the signal peptide of Ha18764 had secretion activity to deliver mCherry into plant cells. Arabidopsis thaliana overexpressing Ha18764 or Hs18764 was more susceptible to Heterodera schachtii. In contrast, BSMV-based host-induced gene silencing (HIGS) targeting Ha18764 attenuated H. avenae parasitism and its reproduction in wheat plants. Transient expression of Ha18764 suppressed PsojNIP, Avr3a/R3a, RBP-1/Gpa2, and MAPK kinases (MKK1 and NPK1Nt)-related cell death in Nicotiana benthamiana. Co-expression assays indicated that Ha18764 also suppressed cell death triggered by four H. avenae putative cell-death-inducing effectors. Moreover, Ha18764 was also shown strong PTI suppression such as reducing the expression of plant defense-related genes, the burst of reactive oxygen species, and the deposition of cell wall callose. Together, our results indicate that Ha18764 promotes parasitism, probably by suppressing plant PTI and ETI signaling in the parasitic stages of H. avenae.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | | |
Collapse
|
49
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
50
|
Sato K, Kadota Y, Shirasu K. Plant Immune Responses to Parasitic Nematodes. FRONTIERS IN PLANT SCIENCE 2019; 10:1165. [PMID: 31616453 PMCID: PMC6775239 DOI: 10.3389/fpls.2019.01165] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/26/2019] [Indexed: 05/19/2023]
Abstract
Plant-parasitic nematodes (PPNs), such as root-knot nematodes (RKNs) and cyst nematodes (CNs), are among the most devastating pests in agriculture. RKNs and CNs induce redifferentiation of root cells into feeding cells, which provide water and nutrients to these nematodes. Plants trigger immune responses to PPN infection by recognizing PPN invasion through several different but complementary systems. Plants recognize pathogen-associated molecular patterns (PAMPs) sderived from PPNs by cell surface-localized pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI). Plants can also recognize tissue and cellular damage caused by invasion or migration of PPNs through PRR-based recognition of damage-associated molecular patterns (DAMPs). Resistant plants have the added ability to recognize PPN effectors via intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type immune receptors, leading to NLR-triggered immunity. Some PRRs may also recognize apoplastic PPN effectors and induce PTI. Plant immune responses against PPNs include the secretion of anti-nematode enzymes, the production of anti-nematode compounds, cell wall reinforcement, production of reactive oxygen species and nitric oxide, and hypersensitive response-mediated cell death. In this review, we summarize the recognition mechanisms for PPN infection and what is known about PPN-induced immune responses in plants.
Collapse
Affiliation(s)
- Kazuki Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yasuhiro Kadota
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Yasuhiro Kadota, ; Ken Shirasu,
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, University of Tokyo, Bunkyo, Japan
- *Correspondence: Yasuhiro Kadota, ; Ken Shirasu,
| |
Collapse
|