1
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2025; 169:e16213. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
2
|
Gao S, Gao L, Yuan D, Lin X, van der Veen S. Gonococcal OMV-delivered PorB induces epithelial cell mitophagy. Nat Commun 2024; 15:1669. [PMID: 38396029 PMCID: PMC10891091 DOI: 10.1038/s41467-024-45961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial pathogen Neisseria gonorrhoeae is able to invade epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, the mechanistic details for interactions between gonococcal OMVs and epithelial cells and their impact on intracellular survival are currently not established. Here, we show that gonococcal OMVs induce epithelial cell mitophagy to reduce mitochondrial secretion of reactive oxygen species (ROS) and enhance intracellular survival. We demonstrate that OMVs deliver PorB to mitochondria to dissipate the mitochondrial membrane potential, resulting in mitophagy induction through a conventional PINK1 and OPTN/NDP52 mechanism. Furthermore, PorB directly recruits the E3 ubiquitin ligase RNF213, which decorates PorB lysine residue 171 with K63-linked polyubiquitin to induce mitophagy in a p62-dependent manner. These results demonstrate a mechanism in which polyubiquitination of a bacterial virulence factor that targets mitochondria directs mitophagy processes to this organelle to prevent its secretion of deleterious ROS.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Lingyu Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Dailin Yuan
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, PR China
| | - Xu'ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, PR China.
| |
Collapse
|
3
|
Priya A, Chandel S, Joon A, Ghosh S. Molecular mechanism of Enteroaggregative Escherichia coli induced apoptosis in cultured human intestinal epithelial cells. J Med Microbiol 2023; 72. [PMID: 37846959 DOI: 10.1099/jmm.0.001760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Background. Enteroaggregative Escherichia coli (EAEC) is an evolving etiological agent of acute and persistent diarrhoea worldwide. The previous study from our laboratory has reported the apoptosis-inducing activity of EAEC in human small intestinal and colonic epithelial cell lines. In the present investigation, we have explored the underlying mechanism of EAEC-induced apoptosis in human intestinal epithelial cell lines.Methods. INT-407 and HCT-15 cells were infected with EAEC-T8 and EAEC-pT8 (plasmid cured strain of EAEC-T8) separately. Cells cultured in the absence of bacteria served as a negative control in all the experiments. For the subsequent experiments, the molecular mechanism(s) of epithelial cell aposptosis was measured in EAEC infecting both the cell lines by flow cytometry, real-time PCR and Western blotting.Results and conclusions. EAEC was found to activate the intrinsic/mitochondrial apoptotic pathway in both the cell lines through upregulation of pro-apoptotic Bax and Bak, un-alteration/reduction in the level of anti-apoptotic Bcl-2 and Bcl-XL, decrease in mitochondrial transmembrane potential, accumulation of cytosolic cytochrome c leading to activation of procaspase-9 and procaspase-3, which ultimately resulted in DNA fragmentation and apoptosis. Further, an increased expression of Fas, activation of procaspase-8 and upregulation of pro-apoptotic Bid in the EAEC-infected cells indicated the involvement of extrinsic apoptotic pathway too in this process. Our finding has undoubtedly led to an increased understanding of EAEC pathogenesis, which may be helpful to develop an improved strategy to combat the infection.
Collapse
Affiliation(s)
- Anshu Priya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Shipra Chandel
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
4
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Chen S, Lei Q, Zou X, Ma D. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front Immunol 2023; 14:1157813. [PMID: 37398647 PMCID: PMC10313905 DOI: 10.3389/fimmu.2023.1157813] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, bilayered, and nanosized membrane vesicles that are secreted from gram-negative bacteria. OMVs play a pivotal role in delivering lipopolysaccharide, proteins and other virulence factors to target cells. Multiple studies have found that OMVs participate in various inflammatory diseases, including periodontal disease, gastrointestinal inflammation, pulmonary inflammation and sepsis, by triggering pattern recognition receptors, activating inflammasomes and inducing mitochondrial dysfunction. OMVs also affect inflammation in distant organs or tissues via long-distance cargo transport in various diseases, including atherosclerosis and Alzheimer's disease. In this review, we primarily summarize the role of OMVs in inflammatory diseases, describe the mechanism through which OMVs participate in inflammatory signal cascades, and discuss the effects of OMVs on pathogenic processes in distant organs or tissues with the aim of providing novel insights into the role and mechanism of OMVs in inflammatory diseases and the prevention and treatment of OMV-mediated inflammatory diseases.
Collapse
|
6
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Mahmud SA, Qureshi MA, Pellegrino MW. On the offense and defense: mitochondrial recovery programs amidst targeted pathogenic assault. FEBS J 2022; 289:7014-7037. [PMID: 34270874 PMCID: PMC9192128 DOI: 10.1111/febs.16126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Bacterial pathogens employ a variety of tactics to persist in their host and promote infection. Pathogens often target host organelles in order to benefit their survival, either through manipulation or subversion of their function. Mitochondria are regularly targeted by bacterial pathogens owing to their diverse cellular roles, including energy production and regulation of programmed cell death. However, disruption of normal mitochondrial function during infection can be detrimental to cell viability because of their essential nature. In response, cells use multiple quality control programs to mitigate mitochondrial dysfunction and promote recovery. In this review, we will provide an overview of mitochondrial recovery programs including mitochondrial dynamics, the mitochondrial unfolded protein response (UPRmt ), and mitophagy. We will then discuss the various approaches used by bacterial pathogens to target mitochondria, which result in mitochondrial dysfunction. Lastly, we will discuss how cells leverage mitochondrial recovery programs beyond their role in organelle repair, to promote host defense against pathogen infection.
Collapse
Affiliation(s)
- Siraje A Mahmud
- Department of Biology, University of Texas Arlington, TX, USA
| | | | | |
Collapse
|
9
|
Villageliu DN, Samuelson DR. The Role of Bacterial Membrane Vesicles in Human Health and Disease. Front Microbiol 2022; 13:828704. [PMID: 35300484 PMCID: PMC8923303 DOI: 10.3389/fmicb.2022.828704] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are nanoparticles derived from the membrane components of bacteria that transport microbial derived substances. MVs are ubiquitous across a variety of terrestrial and marine environments and vary widely in their composition and function. Membrane vesicle functional diversity is staggering: MVs facilitate intercellular communication by delivering quorum signals, genetic information, and small molecules active against a variety of receptors. MVs can deliver destructive virulence factors, alter the composition of the microbiota, take part in the formation of biofilms, assist in the uptake of nutrients, and serve as a chemical waste removal system for bacteria. MVs also facilitate host-microbe interactions including communication. Released in mass, MVs overwhelm the host immune system and injure host tissues; however, there is also evidence that vesicles may take part in processes which promote host health. This review will examine the ascribed functions of MVs within the context of human health and disease.
Collapse
Affiliation(s)
| | - Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
10
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
11
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
12
|
Marchi S, Morroni G, Pinton P, Galluzzi L. Control of host mitochondria by bacterial pathogens. Trends Microbiol 2021; 30:452-465. [PMID: 34656395 DOI: 10.1016/j.tim.2021.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Mitochondria control various processes that are integral to cellular and organismal homeostasis, including Ca2+ fluxes, bioenergetic metabolism, and cell death. Perhaps not surprisingly, multiple pathogenic bacteria have evolved strategies to subvert mitochondrial functions in support of their survival and dissemination. Here, we discuss nonimmunological pathogenic mechanisms that converge on the ability of bacteria to control the mitochondrial compartment of host cells.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| | - Gianluca Morroni
- Department of Biomedical Sciences & Public Health, Marche Polytechnic University, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
13
|
Bartsch A, Ives CM, Kattner C, Pein F, Diehn M, Tanabe M, Munk A, Zachariae U, Steinem C, Llabrés S. An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183601. [PMID: 33675718 PMCID: PMC8047873 DOI: 10.1016/j.bbamem.2021.183601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Gram-negative bacteria cause the majority of highly drug-resistant bacterial infections. To cross the outer membrane of the complex Gram-negative cell envelope, antibiotics permeate through porins, trimeric channel proteins that enable the exchange of small polar molecules. Mutations in porins contribute to the development of drug-resistant phenotypes. In this work, we show that a single point mutation in the porin PorB from Neisseria meningitidis, the causative agent of bacterial meningitis, can strongly affect the binding and permeation of beta-lactam antibiotics. Using X-ray crystallography, high-resolution electrophysiology, atomistic biomolecular simulation, and liposome swelling experiments, we demonstrate differences in drug binding affinity, ion selectivity and drug permeability of PorB. Our work further reveals distinct interactions between the transversal electric field in the porin eyelet and the zwitterionic drugs, which manifest themselves under applied electric fields in electrophysiology and are altered by the mutation. These observations may apply more broadly to drug-porin interactions in other channels. Our results improve the molecular understanding of porin-based drug-resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Annika Bartsch
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Callum M Ives
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Christof Kattner
- ZIK HALOmem, Membrane Protein Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Straße 3, 06120 Halle (Saale), Germany
| | - Florian Pein
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077 Göttingen, Germany
| | - Manuel Diehn
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077 Göttingen, Germany
| | - Mikio Tanabe
- Institute of Materials Structure Science, Structural Biology Research Center, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Axel Munk
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077 Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4NH, UK.
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstraße 2, 37077 Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany.
| | - Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
14
|
Affiliation(s)
- Neville Vassallo
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
| |
Collapse
|
15
|
Dubey RK, Dhamija E, Kumar Mishra A, Soam D, Mohanrao Yabaji S, Srivastava K, Srivastava KK. Mycobacterial origin protein Rv0674 localizes into mitochondria, interacts with D-loop and regulates OXPHOS for intracellular persistence of Mycobacterium tuberculosis. Mitochondrion 2020; 57:241-256. [PMID: 33279599 DOI: 10.1016/j.mito.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) employs diverse strategies to survive inside the host macrophages. In this study, we have identified a conserved hypothetical protein of Mtb; Rv0674, which is present in the mitochondria of the host cell. The genetic knock-out of rv0674 (Mtb-KO) showed increased growth of Mtb. The intracellular infection with recombinant Mycobacterium smegmatis (MSMEG) expressing Rv0674 (MS_Rv0674), established that the protein is involved in promoting the apoptotic cell death of the macrophage. To investigate the mechanism incurred in mitochondria, we observed that the protein physically interacts with the control region (D-loop) of the mitochondrial DNA (LSP and HSP promoters of the loop) of the macrophages and facilitates the increased expression of mRNA in all the complexes of mitochondrial encoded OXPHOS subunits. The changes in OXPHOS levels corroborated with the ATP synthesis, mitochondrial membrane potential and superoxide production. The infection with MS_Rv0674 confirmed the role of this protein in effecting the intracellular infection. The fluorescent and confocal microscopy confirmed that the protein is localized in the mitochondria of infected macrophages and in the cells of BAL of TB patients. Together these findings indicate towards the novel function of the protein which is unlike to the earlier established mechanisms of mycobacterial physiology.
Collapse
Affiliation(s)
- Rikesh Kumar Dubey
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ekta Dhamija
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Alok Kumar Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dheeraj Soam
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shivraj Mohanrao Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research, India; Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research, India; Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
16
|
Fielden LF, Scott NE, Palmer CS, Khoo CA, Newton HJ, Stojanovski D. Proteomic Identification of Coxiella burnetii Effector Proteins Targeted to the Host Cell Mitochondria During Infection. Mol Cell Proteomics 2020; 20:100005. [PMID: 33177156 PMCID: PMC7950127 DOI: 10.1074/mcp.ra120.002370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 11/06/2022] Open
Abstract
Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed "effector proteins" into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterized, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here, we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify four novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localization of ectopically expressed proteins confirmed their mitochondrial localization, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localizes to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the subcellular localization of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.
Collapse
Affiliation(s)
- Laura F Fielden
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Farrugia MY, Caruana M, Ghio S, Camilleri A, Farrugia C, Cauchi RJ, Cappelli S, Chiti F, Vassallo N. Toxic oligomers of the amyloidogenic HypF-N protein form pores in mitochondrial membranes. Sci Rep 2020; 10:17733. [PMID: 33082392 PMCID: PMC7575562 DOI: 10.1038/s41598-020-74841-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022] Open
Abstract
Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-β, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.
Collapse
Affiliation(s)
- Maria Ylenia Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mario Caruana
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Stephanie Ghio
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Angelique Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Sara Cappelli
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
18
|
Kunz TC, Götz R, Gao S, Sauer M, Kozjak-Pavlovic V. Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae. Front Cell Dev Biol 2020; 8:617. [PMID: 32760723 PMCID: PMC7373753 DOI: 10.3389/fcell.2020.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4–4.5, improving the resolution to 60–70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria.
Collapse
Affiliation(s)
- Tobias C Kunz
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Shiqiang Gao
- Department of Botany I, Julius-Maximilans-Universität Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Ghio S, Camilleri A, Caruana M, Ruf VC, Schmidt F, Leonov A, Ryazanov S, Griesinger C, Cauchi RJ, Kamp F, Giese A, Vassallo N. Cardiolipin Promotes Pore-Forming Activity of Alpha-Synuclein Oligomers in Mitochondrial Membranes. ACS Chem Neurosci 2019; 10:3815-3829. [PMID: 31356747 DOI: 10.1021/acschemneuro.9b00320] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of the amyloid-forming α-synuclein (αS) protein is closely associated with the etiology of Parkinson's disease (PD), the most common motor neurodegenerative disorder. Many studies have shown that soluble aggregation intermediates of αS, termed oligomers, permeabilize a variety of phospholipid membranes; thus, membrane disruption may represent a key pathogenic mechanism of αS toxicity. Given the centrality of mitochondrial dysfunction in PD, we therefore probed the formation of ion-permeable pores by αS oligomers in planar lipid bilayers reflecting the complex phospholipid composition of mitochondrial membranes. Using single-channel electrophysiology, we recorded distinct multilevel conductances (100-400 pS) with stepwise current transitions, typical of protein-bound nanopores, in mitochondrial-like membranes. Crucially, we observed that the presence of cardiolipin (CL), the signature phospholipid of mitochondrial membranes, enhanced αS-lipid interaction and the membrane pore-forming activity of αS oligomers. Further, preincubation of isolated mitochondria with a CL-specific dye protected against αS oligomer-induced mitochondrial swelling and release of cytochrome c. Hence, we favor a scenario in which αS oligomers directly porate a local lipid environment rich in CL, for instance outer mitochondrial contact sites or the inner mitochondrial membrane, to induce mitochondrial dysfunction. Pharmacological modulation of αS pore complex formation might thus preserve mitochondrial membrane integrity and alleviate mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Stephanie Ghio
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Angelique Camilleri
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mario Caruana
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Felix Schmidt
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Andrei Leonov
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- MODAG GmbH, Wendelsheim, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ruben J. Cauchi
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Frits Kamp
- Biomedical Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Neville Vassallo
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
20
|
Naderer T, Fulcher MC. Targeting apoptosis pathways in infections. J Leukoc Biol 2019; 103:275-285. [PMID: 29372933 DOI: 10.1189/jlb.4mr0717-286r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022] Open
Abstract
The programmed cell death pathway of apoptosis is essential for mammalian development and immunity as it eliminates unwanted and dangerous cells. As part of the cellular immune response, apoptosis removes the replicative niche of intracellular pathogens and enables the resolution of infections. To subvert apoptosis, pathogens have evolved a diverse range of mechanisms. In some circumstances, however, pathogens express effector molecules that induce apoptotic cell death. In this review, we focus on selected host-pathogen interactions that affect apoptotic pathways. We discuss how pathogens control the fate of host cells and how this determines the outcome of infections. Finally, small molecule inhibitors that activate apoptosis in cancer cells can also induce apoptotic cell death of infected cells. This suggests that targeting host death factors to kill infected cells is a potential therapeutic option to treat infectious diseases.
Collapse
Affiliation(s)
- Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Maria Cecilia Fulcher
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
21
|
Prasad GVRK, Dhar V, Mukhopadhaya A. Vibrio cholerae OmpU Mediates CD36-Dependent Reactive Oxygen Species Generation Triggering an Additional Pathway of MAPK Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:2431-2450. [PMID: 30867241 DOI: 10.4049/jimmunol.1800389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/06/2019] [Indexed: 01/18/2023]
Abstract
OmpU, one of the porins of Gram-negative bacteria Vibrio cholerae, induces TLR1/2-MyD88-NF-κB-dependent proinflammatory cytokine production by monocytes and macrophages of human and mouse origin. In this study, we report that in both the cell types, OmpU-induced proinflammatory responses involve activation of MAPKs (p38 and JNK). Interestingly, we observed that in OmpU-treated macrophages, p38 activation is TLR2 dependent, but JNK activation happens through a separate pathway involving reactive oxygen species (ROS) generation by NADPH oxidase complex and mitochondrial ROS. Further, we observed that OmpU-mediated mitochondrial ROS generation probably depends on OmpU translocation to mitochondria and NADPH oxidase-mediated ROS production is due to activation of scavenger receptor CD36. For the first time, to our knowledge, we are reporting that a Gram-negative bacterial protein can activate CD36 as a pattern recognition receptor. Additionally, we found that in OmpU-treated monocytes, both JNK and p38 activation is linked to the TLR2 activation only. Therefore, the ability of macrophages to employ multiple receptors such as TLR2 and CD36 to recognize a single ligand, as in this case OmpU, probably explains the very basic nature of macrophages being more proinflammatory than monocytes.
Collapse
Affiliation(s)
- G V R Krishna Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, 140306 Punjab, India
| | - Vinica Dhar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, 140306 Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, 140306 Punjab, India
| |
Collapse
|
22
|
|
23
|
Younas F, Soltanmohammadi N, Knapp O, Benz R. The major outer membrane protein of Legionella pneumophila Lpg1974 shows pore-forming characteristics similar to the human mitochondrial outer membrane pore, hVDAC1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1544-1553. [PMID: 29787733 DOI: 10.1016/j.bbamem.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Legionella pneumophila is an aerobic and nonspore-forming pathogenic Gram-negative bacterium of the genus Legionella. It is the causative agent of Legionnaires' disease, also known as Legionellosis. The hosts of this organism are diverse, ranging from simple water borne protozoans such as amoebae to more complex hosts such as macrophages in humans. Genome analyses have shown the presence of genes coding for eukaryotic like proteins in several Legionella species. The presence of these proteins may assist L. pneumophila in its adaptation to the eukaryotic host. We studied the characteristics of a protein (Lpg1974) of L. pneumophila that shows remarkable homologies in length of the primary sequence and for the identity/homology of many amino acids to the voltage dependent anion channel (human VDAC1, Porin 31HL) of human mitochondria. Two different forms of Lpg1974 were overexpressed in Escherichia coli and purified to homogeneity: the one containing a putative N-terminal signal sequence and one without it. Reconstituted protein containing the signal sequence formed ion-permeable pores in lipid bilayer membranes with a conductance of approximately 5.4 nS in 1 M KCl. When the predicted N-terminal signal peptide of Lpg1974 comprising an α-helical structure similar to that at the N-terminus of hVDAC1 was removed, the channels formed in reconstitution experiments had a conductance of 7.6 nS in 1 M KCl. Both Lpg1974 proteins formed pores that were voltage-dependent and anion-selective similar to the pores formed by hVDAC1. These results suggest that Lpg1974 of L. pneumophila is indeed a structural and functional homologue to hVDAC1.
Collapse
Affiliation(s)
- Farhan Younas
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Nafiseh Soltanmohammadi
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Oliver Knapp
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany.
| |
Collapse
|
24
|
Zhu W, Tomberg J, Knilans KJ, Anderson JE, McKinnon KP, Sempowski GD, Nicholas RA, Duncan JA. Properly folded and functional PorB from Neisseria gonorrhoeae inhibits dendritic cell stimulation of CD4 + T cell proliferation. J Biol Chem 2018; 293:11218-11229. [PMID: 29752412 DOI: 10.1074/jbc.ra117.001209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Neisseria gonorrhoeae is an exclusive human pathogen that evades the host immune system through multiple mechanisms. We have shown that N. gonorrhoeae suppresses the capacity of antigen-presenting cells to induce CD4+ T cell proliferation. In this study, we sought to determine the gonococcal factors involved in this adaptive immune suppression. We show that suppression of the capacity of antigen-pulsed dendritic cells to induce T cell proliferation is recapitulated by administration of a high-molecular-weight fraction of conditioned medium from N. gonorrhoeae cultures, which includes outer membrane vesicles that are shed during growth of the bacteria. N. gonorrhoeae PorB is the most abundant protein in N. gonorrhoeae-derived vesicles, and treatment of dendritic cells with purified recombinant PorB inhibited the capacity of the cells to stimulate T cell proliferation. This immunosuppressive feature of purified PorB depended on proper folding of the protein. PorB from N. gonorrhoeae, as well as other Neisseria species and other Gram-negative bacterial species, are known to activate host Toll-like receptor 2 (TLR2) signaling. Published studies have demonstrated that purified Neisseria PorB forms proteinacious nanoparticles, termed proteosomes, when detergent micelles are removed. Unlike folded, detergent-solubilized PorB, PorB proteosomes stimulate immune responses. We now demonstrate that the formation of PorB proteosomes from structurally intact PorB eliminates the immunosuppressive property of the protein while enhancing TLR2 stimulation. These findings suggest that gonococcal PorB present in shed outer membrane vesicles plays a role in suppression of adaptive immune responses to this immune-evasive pathogen.
Collapse
Affiliation(s)
- Weiyan Zhu
- From the Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joshua Tomberg
- the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kayla J Knilans
- the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James E Anderson
- From the Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Karen P McKinnon
- the Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, and.,the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gregory D Sempowski
- the Department of Medicine and Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Robert A Nicholas
- the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, .,the Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Joseph A Duncan
- From the Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina 27599, .,the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599.,the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
25
|
Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, Elgass KD, Jiang JH, Ramm G, Gabriel K, Dougan G, Lithgow T, Heinz E, Naderer T. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog 2018; 14:e1006945. [PMID: 29601598 PMCID: PMC5877877 DOI: 10.1371/journal.ppat.1006945] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/21/2018] [Indexed: 01/31/2023] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity. Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea in more than 100 million people worldwide every year. The bacteria replicate in the reproductive tract by evading innate and adaptive immunity. In the absence of effective vaccines and the rise of antibiotic resistance, understanding the molecular interactions between innate immune cells and N. gonorrhoeae may lead to new strategies to combat bacterial growth and the symptoms of gonorrhoea. It has long been known that the N. gonorrhoeae porin, PorB, promotes bacterial survival but also targets host mitochondria in infections. The mechanism by which PorB traffics form the bacterial outer membrane to host mitochondria remains unclear. Here, we utilized proteomics and super-resolution microscopy to show that N. gonorrhoeae secretes PorB via outer membrane vesicles. These vesicles are taken up by macrophages and deliver PorB to mitochondria. Macrophages treated with N. gonorrhoeae vesicles contained damaged mitochondria and active caspase-3. A caspase inhibitor prevented apoptosis of macrophages treated with N. gonorrhoeae vesicles. This suggests that N. gonorrhoeae secretes membrane vesicles, which are readily detectable in gonorrhoea patients, to target macrophages and to promote infections.
Collapse
Affiliation(s)
- Pankaj Deo
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Seong H Chow
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Iain D Hay
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Oded Kleifeld
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Jhih-Hang Jiang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia.,Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Kipros Gabriel
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gordon Dougan
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor Lithgow
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Eva Heinz
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.,Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Bankapalli LK, Mishra RC, Raychaudhuri S. VopE, a Vibrio cholerae Type III Effector, Attenuates the Activation of CWI-MAPK Pathway in Yeast Model System. Front Cell Infect Microbiol 2017; 7:82. [PMID: 28373966 PMCID: PMC5357651 DOI: 10.3389/fcimb.2017.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023] Open
Abstract
VopE, a mitochondrial targeting T3SS effector protein of Vibrio cholerae, perturbs innate immunity by modulating mitochondrial dynamics. In the current study, ectopic expression of VopE was found to be toxic in a yeast model system and toxicity was further aggravated in the presence of various stressors. Interestingly, a VopE variant lacking predicted mitochondrial targeting sequence (MTS) also exhibited partial lethality in the yeast system. With the aid of yeast genetic tools and different stressors, we have demonstrated that VopE and its derivative VopEΔMTS modulate cell wall integrity (CWI-MAPK) signaling pathway and have identified several critical residues contributing to the lethality of VopE. Furthermore, co-expression of two effectors VopEΔMTS and VopX, interfering with the CWI-MAPK cellular pathway can partially suppress the VopX mediated yeast growth inhibition. Taken together, these results suggest that VopE alters signaling through the CWI-MAPK pathway, and demonstrates the usefulness of yeast model system to gain additional insights on the functionality of VopE.
Collapse
Affiliation(s)
- Leela K Bankapalli
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Rahul C Mishra
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Saumya Raychaudhuri
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
27
|
Di DD, Jiang H, Tian LL, Kang JL, Zhang W, Yi XP, Ye F, Zhong Q, Ni B, He YY, Xia L, Yu Y, Cui BY, Mao X, Fan WX. Comparative genomic analysis between newly sequenced Brucella suis Vaccine Strain S2 and the Virulent Brucella suis Strain 1330. BMC Genomics 2016; 17:741. [PMID: 27645563 PMCID: PMC5029015 DOI: 10.1186/s12864-016-3076-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Background Brucellosis is a bacterial disease caused by Brucella infection. In the late fifties, Brucella suis vaccine strain S2 with reduced virulence was obtained by serial transfer of a virulent B. suis biovar 1 strain in China. It has been widely used for vaccination in China since 1971. Until now, the mechanisms underlie virulence attenuation of S2 are still unknown. Results In this paper, the whole genome sequencing of S2 was carried out by Illumina Hiseq2000 sequencing method. We further performed the comparative genomic analysis to find out the differences between S2 and the virulent Brucella suis strain 1330. We found premature stops in outer membrane autotransporter omaA and eryD genes. Single mutations were found in phosphatidylcholine synthase, phosphorglucosamine mutase, pyruvate kinase and FliF, which have been reported to be related to the virulence of Brucella or other bacteria. Of the other different proteins between S2 and 1330, such as Omp2b, periplasmic sugar-binding protein, and oligopeptide ABC transporter, no definitive implications related to bacterial virulence were found, which await further investigation. Conclusions The data presented here provided the rational basis for designing Brucella vaccines that could be used in other strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Dong Di
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Li-Li Tian
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jing-Li Kang
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xin-Ping Yi
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Feng Ye
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Qi Zhong
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Bo Ni
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - You-Yu He
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Lin Xia
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Yao Yu
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Bu-Yun Cui
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| | - Xiang Mao
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China.
| | - Wei-Xing Fan
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China.
| |
Collapse
|
28
|
Peak IR, Chen A, Jen FEC, Jennings C, Schulz BL, Saunders NJ, Khan A, Seifert HS, Jennings MP. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils. J Proteome Res 2016; 15:2356-65. [PMID: 26562068 DOI: 10.1021/acs.jproteome.5b00938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells.
Collapse
Affiliation(s)
- Ian R Peak
- School of Medical Science, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia.,Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Adrienne Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Freda E-C Jen
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Courtney Jennings
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St. Lucia, Brisbane, QLD 4072, Australia
| | - Nigel J Saunders
- Centre for Systems and Synthetic Biology, Brunel University , Uxbridge, Middlesex UB8 3PH, U.K
| | - Arshad Khan
- Centre for Systems and Synthetic Biology, Brunel University , Uxbridge, Middlesex UB8 3PH, U.K
| | - H Steven Seifert
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Michael P Jennings
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| |
Collapse
|
29
|
Peroxisomal protein import pores. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:821-7. [DOI: 10.1016/j.bbamcr.2015.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
|
30
|
Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016; 18:466-74. [PMID: 26833712 DOI: 10.1111/cmi.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.
Collapse
Affiliation(s)
- Seong H Chow
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|
31
|
Sakharwade SC, Mukhopadhaya A. Vibrio cholerae porin OmpU induces LPS tolerance by attenuating TLR-mediated signaling. Mol Immunol 2015; 68:312-24. [PMID: 26454478 DOI: 10.1016/j.molimm.2015.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Porins can act as pathogen-associated molecular patterns, can be recognized by the host immune system and modulate immune responses. Vibrio choleraeporin OmpU aids in bacterial survival in the human gut by increasing resistance against bile acids and anti-microbial peptides. V. choleraeOmpU is pro-inflammatory in nature. However, interestingly, it can also down-regulate LPS-mediated pro-inflammatory responses. In this study, we have explored how OmpU-pretreatment affects LPS-mediated responses. Our study indicates that OmpU-pretreatment followed by LPS-activation does not induce M2-polarization of macrophages/monocytes. Further, OmpU attenuates LPS-mediated TLR2/TLR6 signaling by decreasing the association of TLRs along with recruitment of MyD88 and IRAKs to the receptor complex. This results in decreased translocation of NFκB in the nucleus. Additionally, OmpU-pretreatment up-regulates expression of IRAK-M, a negative regulator of TLR signaling, in RAW 264.7 mouse macrophage cells upon LPS-stimulation. Suppressor cytokine IL-10 is partially involved in OmpU-induced down-regulation of LPS-mediated TNFα production in human PBMCs. Furthermore, OmpU-pretreatment also affects macrophage function, by enhancing phagocytosis in LPS-treated RAW 264.7 cells, and down-regulates LPS-induced cell surface expression of co-stimulatory molecules. Altogether, OmpU causes suppression of LPS-mediated responses by attenuating the LPS-mediated TLR signaling pathway.
Collapse
Affiliation(s)
- Sanica C Sakharwade
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Manauli, 140306 Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Manauli, 140306 Punjab, India.
| |
Collapse
|
32
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
33
|
Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition. J Struct Biol 2014; 185:440-7. [PMID: 24361688 PMCID: PMC3943661 DOI: 10.1016/j.jsb.2013.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 01/07/2023]
Abstract
Among all Neisseriae species, Neisseria meningitidis and Neisseria gonorrhoeae are the only human pathogens, causative agents of bacterial meningitis and gonorrhoea, respectively. PorB, a pan-Neisseriae trimeric porin that mediates diffusive transport of essential molecules across the bacterial outer membrane, is also known to activate host innate immunity via Toll-like receptor 2 (TLR2)-mediated signaling. The molecular mechanism of PorB binding to TLR2 is not known, but it has been hypothesized that electrostatic interactions contribute to ligand/receptor binding. Strain-specific sequence variability in the surface-exposed loops of PorB which are potentially implicated in TLR2 binding, may explain the difference in TLR2-mediated cell activation in vitro by PorB homologs from the commensal Neisseriae lactamica and the pathogen N. meningitidis. Here, we report a comparative structural analysis of PorB from N. meningitidis serogroup B strain 8765 (63% sequence homology with PorB from N. meningitidis serogroup W135) and a mutant in which amino acid substitutions in the extracellular loop 7 lead to significantly reduced TLR2-dependent activity in vitro. We observe that this mutation both alters the loop conformation and causes dramatic changes of electrostatic surface charge, both of which may affect TLR2 recognition and signaling.
Collapse
|
34
|
Jayamani E, Mylonakis E. Effector triggered manipulation of host immune response elicited by different pathotypes of Escherichia coli. Virulence 2014; 5:733-9. [PMID: 25513774 PMCID: PMC4189879 DOI: 10.4161/viru.29948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Effectors are virulence factors that are secreted by bacteria during an infection in order to subvert cellular processes or induce the surveillance system of the host. Pathogenic microorganisms encode effectors, toxins and components of secretion systems that inject the effectors to the host. Escherichia coli is part of the innocuous commensal microbial flora of the gastrointestinal tract. However, pathogenic E. coli can cause diarrheal and extraintestinal diseases. Pathogenic E. coli uses secretion systems to inject an array of effector proteins directly into the host cells. Herein, we discuss the effectors secreted by different pathotypes of E. coli and provide an overview of strategies employed by effectors to target the host cellular and subcellular processes as well as their role in triggering host immune response.
Collapse
Affiliation(s)
- Elamparithi Jayamani
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| |
Collapse
|
35
|
Saturating mutagenesis of an essential gene: a majority of the Neisseria gonorrhoeae major outer membrane porin (PorB) is mutable. J Bacteriol 2013; 196:540-7. [PMID: 24244002 DOI: 10.1128/jb.01073-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The major outer membrane porin (PorB) of Neisseria gonorrhoeae is an essential protein that mediates ion exchange between the organism and its environment and also plays multiple roles in human host pathogenesis. To facilitate structure-function studies of porin's multiple roles, we performed saturating mutagenesis at the porB locus and used deep sequencing to identify essential versus mutable residues. Random mutations in porB were generated in a plasmid vector, and mutant gene pools were transformed into N. gonorrhoeae to select for alleles that maintained bacterial viability. Deep sequencing of the input plasmid pools and the output N. gonorrhoeae genomic DNA pools identified mutations present in each, and the mutations in both pools were compared to determine which changes could be tolerated by the organism. We examined the mutability of 328 amino acids in the mature PorB protein and found that 308 of them were likely to be mutable and that 20 amino acids were likely to be nonmutable. A subset of these predictions was validated experimentally. This approach to identifying essential amino acids in a protein of interest introduces an additional application for next-generation sequencing technology and provides a template for future studies of both porin and other essential bacterial genes.
Collapse
|
36
|
Sun CB. Characterization of the small RNA transcriptome in plant-microbe (Brassica/Erwinia) interactions by high-throughput sequencing. Biotechnol Lett 2013; 36:371-81. [PMID: 24126536 DOI: 10.1007/s10529-013-1362-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022]
Abstract
Non-coding, small RNAs (sRNAs) have been identified in a wide spectrum of organisms ranging from bacteria to humans; however, the role and mechanisms of these sRNA in plant immunity is largely unknown. To determine possible roles of sRNA in plant-pathogen interaction, we carried out a high-throughput sRNA sequencing of Brassica campestris using non-infected plants and plants infected with Erwinia carotovora. Consistent with our hypothesis that distinct classes of host sRNAs alerts their expression levels in response to infection, we found that: (1) host 28-nt sRNAs were strongly increased under pathogen infection; and (2) a group of host sRNAs homologous to the pathogen genome also accumulated at significantly higher level. Our data thus suggest several distinct classes of the host sRNAs may enhance their function by up-regulation of their expression/stability in response to bacterial pathogen challenges.
Collapse
Affiliation(s)
- Chuan Bao Sun
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China,
| |
Collapse
|
37
|
Structure-function studies of the Neisseria gonorrhoeae major outer membrane porin. Infect Immun 2013; 81:4383-91. [PMID: 24042111 DOI: 10.1128/iai.00367-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The major outer membrane porin (PorB) expressed by Neisseria gonorrhoeae plays multiple roles during infection, in addition to its function as an outer membrane pore. We have generated a panel of mutants of N. gonorrhoeae strain FA1090 expressing a variety of mutant porB genes that all function as porins. We identified multiple regions of porin that are involved in its binding to the complement regulatory factors C4b-binding protein and factor H and confirmed that the ability to bind at least one factor is required for FA1090 to survive the bactericidal effects of human serum. We tested the ability of these mutants to inhibit both apoptosis and the oxidative burst in polymorphonuclear leukocytes but were unable to identify the porin domains required for either function. This study has identified nonessential porin domains and some potentially essential portions of the protein and has further expanded our understanding of the contribution of the porin domains required for complement regulation.
Collapse
|
38
|
Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Högen T, Schmidt F, Giese A, Vassallo N. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2532-43. [PMID: 23817009 DOI: 10.1016/j.bbamem.2013.06.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function, initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of soluble prefibrillar forms, but not monomers, of amyloid-beta (Aβ42 peptide), wild-type α-synuclein (α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organelles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phospholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mitochondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aβ42, α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most potent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Requirements for the import of neisserial Omp85 into the outer membrane of human mitochondria. Biosci Rep 2013; 33:e00028. [PMID: 23368846 PMCID: PMC3596097 DOI: 10.1042/bsr20130007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
β-Barrel proteins are present only in the outer membranes of Gram-negative bacteria, chloroplasts and mitochondria. Fungal mitochondria were shown to readily import and assemble bacterial β-barrel proteins, but human mitochondria exhibit certain selectivity. Whereas enterobacterial β-barrel proteins are not imported, neisserial ones are. Of those, solely neisserial Omp85 is integrated into the outer membrane of mitochondria. In this study, we wanted to identify the signal that targets neisserial β-barrel proteins to mitochondria. We exchanged parts of neisserial Omp85 and PorB with their Escherichia coli homologues BamA and OmpC. For PorB, we could show that its C-terminal quarter can direct OmpC to mitochondria. In the case of Omp85, we could identify several amino acids of the C-terminal β-sorting signal as crucial for mitochondrial targeting. Additionally, we found that at least two POTRA (polypeptide-transport associated) domains and not only the β-sorting signal of Omp85 are needed for its membrane integration and function in human mitochondria. We conclude that the signal that directs neisserial β-barrel proteins to mitochondria is not conserved between these proteins. Furthermore, a linear mitochondrial targeting signal probably does not exist. It is possible that the secondary structure of β-barrel proteins plays a role in directing these proteins to mitochondria.
Collapse
|
40
|
Abstract
The outer membrane of Gram-negative bacteria contains a large number of channel-forming proteins, porins, for the uptake of small nutrient molecules. Neisseria gonorrhoeae PorBIA (PorB of serotype A) are associated with disseminating diseases and mediate a rapid bacterial invasion into host cells in a phosphate-sensitive manner. To gain insights into this structure-function relationship we analysed PorBIA by X-ray crystallography in the presence of phosphate and ATP. The structure of PorBIA in the complex solved at a resolution of 3.3 Å (1 Å=0.1 nm) displays a surplus of positive charges inside the channel. ATP ligand-binding in the channel is co-ordinated by the positively charged residues of the channel interior. These residues ligate the aromatic, sugar and pyrophosphate moieties of the ligand. Two phosphate ions were observed in the structure, one of which clamped by two arginine residues (Arg92 and Arg124) localized at the extraplasmic channel exit. A short β-bulge in β2-strand together with the long L3 loop narrow the barrel diameter significantly and further support substrate specificity through hydrogen bond interactions. Interestingly the structure also comprised a small peptide as a remnant of a periplasmic protein which physically links porin molecules to the peptidoglycan network. To test the importance of Arg92 on bacterial invasion the residue was mutated. In vivo assays of bacteria carrying a R92S mutation confirmed the importance of this residue for host-cell invasion. Furthermore systematic sequence and structure comparisons of PorBIA from Neisseriaceae indicated Arg92 to be unique in disseminating N. gonorrhoeae thereby possibly distinguishing invasion-promoting porins from other neisserial porins.
Collapse
|
41
|
Kattner C, Zaucha J, Jaenecke F, Zachariae U, Tanabe M. Identification of a cation transport pathway in Neisseria meningitidis PorB. Proteins 2013; 81:830-40. [PMID: 23255122 DOI: 10.1002/prot.24241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/10/2022]
Abstract
Neisseria meningitidis is the main causative agent of bacterial meningitis. In its outer membrane, the trimeric Neisserial porin PorB is responsible for the diffusive transport of essential hydrophilic solutes across the bilayer. Previous molecular dynamics simulations based on the recent crystal structure of PorB have suggested the presence of distinct solute translocation pathways through this channel. Although PorB has been electrophysiologically characterized as anion-selective, cation translocation through nucleotide-bound PorB during pathogenesis is thought to be instrumental for host cell death. As a result, we were particularly interested in further characterizing cation transport through the pore. We combined a structural approach with additional computational analysis. Here, we present two crystal structures of PorB at 2.1 and 2.65 Å resolution. The new structures display additional electron densities around the protruding loop 3 (L3) inside the pore. We show that these electron densities can be identified as monovalent cations, in our case Cs(+), which are tightly bound to the inner channel. Molecular dynamics simulations reveal further ion interactions and the free energy landscape for ions inside PorB. Our results suggest that the crystallographically identified locations of Cs(+) form a cation transport pathway inside the pore. This finding suggests how positively charged ions are translocated through PorB when the channel is inserted into mitochondrial membranes during Neisserial infection, a process which is considered to dissipate the mitochondrial transmembrane potential gradient and thereby induce apoptosis.
Collapse
Affiliation(s)
- Christof Kattner
- HALOmem, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
42
|
Bartsch P, Walter C, Selenschik P, Honigmann A, Wagner R. Horizontal Bilayer for Electrical and Optical Recordings. MATERIALS 2012. [PMCID: PMC5449052 DOI: 10.3390/ma5122705] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Philipp Bartsch
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
- Ionovation GmbH, Westerbreite 7, Osnabrueck 49084, Germany
| | - Claudius Walter
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
- Ionovation GmbH, Westerbreite 7, Osnabrueck 49084, Germany
| | - Philipp Selenschik
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
| | - Alf Honigmann
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
| | - Richard Wagner
- Biophysics, Department of Biology/Chemistry, University Osnabrueck, Barbarastr. 13, Osnabrueck 49076, Germany; E-Mails: (P.B.); (C.W.); (P.S.); (A.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-541-969-2398; Fax: +49-541-969-2243
| |
Collapse
|
43
|
Syed HC, Dubreuil JD. Escherichia coli STb toxin induces apoptosis in intestinal epithelial cell lines. Microb Pathog 2012; 53:147-53. [DOI: 10.1016/j.micpath.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/12/2012] [Accepted: 06/26/2012] [Indexed: 11/30/2022]
|
44
|
Harsman A, Niemann M, Pusnik M, Schmidt O, Burmann BM, Hiller S, Meisinger C, Schneider A, Wagner R. Bacterial origin of a mitochondrial outer membrane protein translocase: new perspectives from comparative single channel electrophysiology. J Biol Chem 2012; 287:31437-45. [PMID: 22778261 DOI: 10.1074/jbc.m112.392118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes.
Collapse
Affiliation(s)
- Anke Harsman
- Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, 49076 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and gram-negative bacteria. Int J Mol Sci 2012; 13:8038-8050. [PMID: 22942688 PMCID: PMC3430219 DOI: 10.3390/ijms13078038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
β-barrel proteins are the highly abundant in the outer membranes of Gram-negative bacteria and the mitochondria in eukaryotes. The assembly of β-barrels is mediated by two evolutionary conserved machineries; the β-barrel Assembly Machinery (BAM) in Gram-negative bacteria; and the Sorting and Assembly Machinery (SAM) in mitochondria. Although the BAM and SAM have functionally conserved roles in the membrane integration and folding of β-barrel proteins, apart from the central BamA and Sam50 proteins, the remaining components of each of the complexes have diverged remarkably. For example all of the accessory components of the BAM complex characterized to date are located in the bacterial periplasm, on the same side as the N-terminal domain of BamA. This is the same side of the membrane as the substrates that are delivered to the BAM. On the other hand, all of the accessory components of the SAM complex are located on the cytosolic side of the membrane, the opposite side of the membrane to the N-terminus of Sam50 and the substrate receiving side of the membrane. Despite the accessory subunits being located on opposite sides of the membrane in each system, it is clear that each system is functionally equivalent with bacterial proteins having the ability to use the eukaryotic SAM and vice versa. In this review, we summarize the similarities and differences between the BAM and SAM complexes, highlighting the possible selecting pressures on bacteria and eukaryotes during evolution. It is also now emerging that bacterial pathogens utilize the SAM to target toxins and effector proteins to host mitochondria and this will also be discussed from an evolutionary perspective.
Collapse
|
46
|
Smani Y, Docobo-Pérez F, López-Rojas R, Domínguez-Herrera J, Ibáñez-Martínez J, Pachón J. Platelet-activating factor receptor initiates contact of Acinetobacter baumannii expressing phosphorylcholine with host cells. J Biol Chem 2012; 287:26901-10. [PMID: 22689572 DOI: 10.1074/jbc.m112.344556] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adhesion is an initial and important step in Acinetobacter baumannii causing infections. However, the exact molecular mechanism of such a step between A. baumannii and the host cells remains unclear. Here, we demonstrated that the phosphorylcholine (ChoP)-containing outer membrane protein of A. baumannii binds to A549 cells through platelet-activating factor receptor (PAFR), resulting in activation of G protein and intracellular calcium. Upon A. baumannii expressing ChoP binding to PAFR, clathrin and β-arrestins, proteins involved in the direction of the vacuolar movement, are activated during invasion of A. baumannii. PAFR antagonism restricts the dissemination of A. baumannii in the pneumonia model. These results define a role for PAFR in A. baumannii interaction with host cells and suggest a mechanism for the entry of A. baumannii into the cytoplasm of host cells.
Collapse
Affiliation(s)
- Younes Smani
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Jiang JH, Tong J, Gabriel K. Hijacking Mitochondria: Bacterial Toxins that Modulate Mitochondrial Function. IUBMB Life 2012; 64:397-401. [DOI: 10.1002/iub.1021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Massari P, Wetzler LM. Analysis of parameters associated with prevention of cellular apoptosis by pathogenic Neisseriae and purified porins. Methods Mol Biol 2012; 799:319-41. [PMID: 21993654 DOI: 10.1007/978-1-61779-346-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The process of cellular apoptosis is mediated by a number of microbial pathogens to modulate host defense mechanisms. Inhibition of apoptosis is thought to favor microbial survival, replication or immune evasion, while induction of apoptosis is likely to promote escape of the organisms from host cells. Several studies have reported that infection with Neisseria spp. can inhibit or reduce apoptotic cell death, thus allowing adaptation, intracellular replication, and immune evasion, events that are likely to spread infection. In this chapter, various techniques are described for direct measurement of host cell responses to infection with Neisseria meningitidis and to treatment with pure Neisseria porins, the major proteins found in the outer membrane of the pathogen.
Collapse
Affiliation(s)
- Paola Massari
- Department of Medicine, Evans BioMedical Research Center, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
49
|
Graewe S, Stanway RR, Rennenberg A, Heussler VT. Chronicle of a death foretold:Plasmodiumliver stage parasites decide on the fate of the host cell. FEMS Microbiol Rev 2012; 36:111-30. [DOI: 10.1111/j.1574-6976.2011.00297.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022] Open
|
50
|
Jiang JH, Davies JK, Lithgow T, Strugnell RA, Gabriel K. Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of β-barrel protein assembly machines. Mol Microbiol 2011; 82:976-87. [DOI: 10.1111/j.1365-2958.2011.07880.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|