1
|
Meyer T, Stockfleth E. Treatment and Prevention of HPV-Associated Skin Tumors by HPV Vaccination. Vaccines (Basel) 2024; 12:1439. [PMID: 39772099 PMCID: PMC11680430 DOI: 10.3390/vaccines12121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
HPV-associated dermatological diseases include benign lesions like cutaneous warts and external genital warts. In addition, HPV infection is associated with the development of epithelial skin cancers, in particular cutaneous squamous cell carcinoma (cSCC). In contrast to anogenital and oropharyngeal cancers caused by mucosal HPV types of genus alpha papillomavirus, cSCC-associated HPV types belong to the genus beta papillomavirus. Currently available HPV vaccines that target mucosal HPV types associated with anogenital cancer and genital warts are type-specific and provide no cross-protection against beta HPV. When implementing vaccination to beta HPV to prevent skin tumors, it must be considered that acquisition of these HPV types occurs early in childhood and that the risk for cSCC increases with growing age and decreasing immune surveillance. Thus, individuals considered for beta HPV vaccination usually have pre-existing infection and are largely immunocompromised. On the other hand, worldwide increasing incidence rates of epithelial skin cancer reflect an urgent need for skin cancer prevention measures. Based on the pathogenic involvement of beta HPV, vaccination may represent a promising prevention strategy. Indeed, various procedures of prophylactic and therapeutic vaccination have been developed, and some of them have shown efficiency in animal models. Thus far, however, none of these vaccine candidates has been approved for application in humans.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Dermatology, St. Josef Hospital, Ruhr University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany;
| | | |
Collapse
|
2
|
Karabatić Knezović S, Knezović D, Matana A, Puizina Ivić N, Drmić Hofman I. Strong association of TLR2 and TLR3 polymorphisms with keratoacanthoma and common warts: a case-control study. Croat Med J 2024; 65:232-238. [PMID: 38868969 PMCID: PMC11157254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
AIM To determine variations in allele and genotype frequencies between keratoacanthoma (KA) and common warts (CW), compared with the control group, in three single nucleotide polymorphisms (SNPs) within the TLR2, TLR3, and TLR9 genes. METHODS This case-control study involved samples from 161 patients with KA, 152 patients with CW, and 469 controls. DNA was isolated from formalin-fixed paraffin-embedded tissue sections. Three SNPs - rs4696480 in TLR2, rs7657186 in TLR9, and rs35213 in TLR3 - were genotyped with TaqMan Genotyping Assays on the 7500 Real-Time PCR System. RESULTS TLR2 rs4696480 and TLR3 rs7657186 were significantly overrepresented in KA and CW compared with controls (P<0.001). The association was stronger for CW than for KA, as evidenced by higher frequencies of the A allele and AA genotype for rs4696480. Both KA and CW patients had higher frequencies of the G allele and GG genotype for rs7657186 than controls. rs7657186 was moderately associated with KA and CW, with the G allele and GG genotype being more prevalent in CW cases, where no AA homozygotes were found. CONCLUSION Genetic variants in TLR2 (rs4696480) and TLR3 (rs7657186) genes may affect KA and CW development, influencing immune responses and susceptibility to these skin lesions. Further research is required to elucidate TLR expression patterns and their role in KA development.
Collapse
Affiliation(s)
| | | | | | | | - Irena Drmić Hofman
- Irena Drmić Hofman, Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia,
| |
Collapse
|
3
|
Al-Soneidar WA, Harper S, Coutlée F, Gheit T, Tommasino M, Nicolau B. Prevalence of Alpha, Beta, and Gamma Human Papillomaviruses in Patients With Head and Neck Cancer and Noncancer Controls and Relation to Behavioral Factors. J Infect Dis 2024; 229:1088-1096. [PMID: 37584283 DOI: 10.1093/infdis/jiad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Human papillomaviruses (HPVs) cause head and neck cancer (HNC), which is increasing in incidence in developed countries. We investigated the prevalence of alpha (α), beta (β), and gamma (γ) HPVs among HNC cases and controls, and their relationship with sociodemographic, behavioral, and oral health factors. METHODS We obtained oral rinse and brush samples from incident HNC cases (n = 369) and hospital-based controls (n = 439) and tumor samples for a subsample of cases (n = 121). We genotyped samples using polymerase chain reaction with PGMY09-PGMY11 primers and linear array for α-HPV and type-specific multiplex genotyping assay for β-HPV and γ-HPV. Sociodemographic and behavioral data were obtained from interviews. RESULTS The prevalence of α-, β-, and γ-HPV among controls was 14%, 56%, and 24%, respectively, whereas prevalence among cases was 42%, 50%, and 33%, respectively. Prevalence of α- and γ-HPV, but not β-HPV, increased with increase in sexual activity, smoking, and drinking habits. No HPV genus was associated with oral health. Tumor samples included HPV genotypes exclusively from the α-genus, mostly HPV-16, in 80% of cases. CONCLUSIONS The distribution of α- and γ-HPV, but not β-HPV, seems to vary based on sociodemographic and behavioral characteristics. We did not observe the presence of cutaneous HPV in tumor tissues.
Collapse
Affiliation(s)
- Walid A Al-Soneidar
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine and Health Sciences, McGill University
- Faculty of Dental Medicine and Oral Health Sciences, McGill University
| | - Sam Harper
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine and Health Sciences, McGill University
| | - François Coutlée
- Department of Microbiology and Infectious Diseases, Hôpital Notre-Dame du Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Belinda Nicolau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University
| |
Collapse
|
4
|
Ko J, Lee MJ, Jeong W, Choi S, Shin E, An YH, Kim HJ, Lee UJ, Kim BG, Kwak SY, Hwang NS. Single-Walled Carbon Nanotube-Guided Topical Skin Delivery of Tyrosinase to Prevent Photoinduced Damage. ACS NANO 2023; 17:20473-20491. [PMID: 37793020 DOI: 10.1021/acsnano.3c06846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
When the skin is exposed to ultraviolet radiation (UV), it leads to the degradation of the extracellular matrix (ECM) and results in inflammation. Subsequently, melanocytes are triggered to induce tyrosinase-mediated melanin synthesis, protecting the skin. Here, we introduce a proactive approach to protect the skin from photodamage via the topical delivery of Streptomyces avermitilis-derived tyrosinase (SaTy) using single-walled carbon nanotube (SWNT). Utilizing a reverse electrodialysis (RED) battery, we facilitated the delivery of SaTy-SWNT complexes up to depths of approximately 300 μm, as analyzed by using confocal Raman microscopy. When applied to ex vivo porcine skin and in vivo albino mouse skin, SaTy-SWNT synthesized melanin, resulting in 4-fold greater UV/vis absorption at 475 nm than in mice without SaTy-SWNT. The synthesized melanin efficiently absorbed UV light and alleviated skin inflammation. In addition, the densification of dermal collagen, achieved through SaTy-mediated cross-linking, reduced photoinduced wrinkles by 66.3% in the affected area. Our findings suggest that SWNT-mediated topical protein delivery holds promise in tissue engineering applications.
Collapse
Affiliation(s)
- Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Jeong Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woojin Jeong
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Subin Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhye Shin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Jin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Veitch M, Beaumont K, Pouwer R, Chew HY, Frazer IH, Soyer HP, Campbell S, Dymock BW, Harvey A, Cock TA, Wells JW. Local blockade of tacrolimus promotes T-cell-mediated tumor regression in systemically immunosuppressed hosts. J Immunother Cancer 2023; 11:e006783. [PMID: 37678918 PMCID: PMC10496666 DOI: 10.1136/jitc-2023-006783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Immunosuppressive drugs such as tacrolimus have revolutionized our ability to transplant organs between individuals. Tacrolimus acts systemically to suppress the activity of T-cells within and around transplanted organs. However, tacrolimus also suppresses T-cell function in the skin, contributing to a high incidence of skin cancer and associated mortality and morbidity in solid organ transplant recipients. Here, we aimed to identify a compound capable of re-establishing antitumor T-cell control in the skin despite the presence of tacrolimus. METHODS In this study, we performed time-resolved fluorescence resonance energy transfer to identify molecules capable of antagonizing the interaction between tacrolimus and FKBP12. The capacity of these molecules to rescue mouse and human T-cell function in the presence of tacrolimus was determined in vitro, and the antitumor effect of the lead compound, Q-2361, was assessed in "regressor" models of skin cancer in immunosuppressed mice. Systemic CD8 T-cell depletion and analyses of intratumoral T-cell activation markers and effector molecule production were performed to determine the mechanism of tumor rejection. Pharmacokinetic studies of topically applied Q-2361 were performed to assess skin and systemic drug exposure. RESULTS Q-2361 potently blocked the interaction between tacrolimus and FKBP12 and reversed the inhibition of the nuclear factor of activated T cells activation by tacrolimus following T-cell receptor engagement in human Jurkat cells. Q-2361 rescued T-cell function in the presence of tacrolimus, rapamycin, and everolimus. Intratumoral injection of Q-2361-induced tumor regression in mice systemically immune suppressed with tacrolimus. Mechanistically, Q-2361 treatment permitted T-cell activation, proliferation, and effector function within tumors. When CD8 T cells were depleted, Q-2361 could not induce tumor regression. A simple solution-based Q-2361 topical formulation achieved high and sustained residence in the skin with negligible drug in the blood. CONCLUSIONS Our findings demonstrate that the local application of Q-2361 permits T-cells to become activated driving tumor rejection in the presence of tacrolimus. The data presented here suggests that topically applied Q-2361 has great potential for the reactivation of T-cells in the skin but not systemically, and therefore represents a promising strategy to prevent or treat skin malignancies in immunosuppressed organ transplant recipients.
Collapse
Affiliation(s)
- Margaret Veitch
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kimberly Beaumont
- Queensland Emory Drug Discovery Initiative, UniQuest, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca Pouwer
- Queensland Emory Drug Discovery Initiative, UniQuest, The University of Queensland, Brisbane, Queensland, Australia
| | - Hui Yi Chew
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian H Frazer
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - H Peter Soyer
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Scott Campbell
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Brian W Dymock
- Queensland Emory Drug Discovery Initiative, UniQuest, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Harvey
- Queensland Emory Drug Discovery Initiative, UniQuest, The University of Queensland, Brisbane, Queensland, Australia
| | - Terrie-Anne Cock
- Queensland Emory Drug Discovery Initiative, UniQuest, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Romero-Masters JC, Grace M, Lee D, Lei J, DePamphilis M, Buehler D, Hu R, Ward-Shaw E, Blaine-Sauer S, Lavoie N, White EA, Munger K, Lambert PF. MmuPV1 E7's interaction with PTPN14 delays Epithelial differentiation and contributes to virus-induced skin disease. PLoS Pathog 2023; 19:e1011215. [PMID: 37036883 PMCID: PMC10085053 DOI: 10.1371/journal.ppat.1011215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Joshua Lei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Melanie DePamphilis
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathalie Lavoie
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Elizabeth A. White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Transcription Properties of Beta-HPV8 and HPV38 Genomes in Human Keratinocytes. J Virol 2022; 96:e0149822. [PMID: 36394329 PMCID: PMC9749460 DOI: 10.1128/jvi.01498-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Persistent infections with high-risk human papillomaviruses (HR-HPV) from the genus alpha are established risk factors for the development of anogenital and oropharyngeal cancers. In contrast, HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Keratinocytes are the in vivo target cells for HPV, but keratinocyte models to investigate the replication and oncogenic activities of beta-HPV genomes have not been established. A recent study revealed, that beta-HPV49 immortalizes normal human keratinocytes (NHK) only, when the viral E8^E2 repressor (E8-) is inactivated (T. M. Rehm, E. Straub, T. Iftner, and F. Stubenrauch, Proc Natl Acad Sci U S A 119:e2118930119, 2022, https://doi.org/10.1073/pnas.2118930119). We now demonstrate that beta-HPV8 and HPV38 wild-type or E8- genomes are unable to immortalize NHK. Nevertheless, HPV8 and HPV38 express E6 and E7 oncogenes and other transcripts in transfected NHK. Inactivation of the conserved E1 and E2 replication genes reduces viral transcription, whereas E8- genomes display enhanced viral transcription, suggesting that beta-HPV genomes replicate in NHK. Furthermore, growth of HPV8- or HPV38-transfected NHK in organotypic cultures, which are routinely used to analyze the productive replication cycle of HR-HPV, induces transcripts encoding the L1 capsid gene, suggesting that the productive cycle is initiated. In addition, transcription patterns in HPV8 organotypic cultures and in an HPV8-positive lesion from an EV patient show similarities. Taken together, these data indicate that NHK are a suitable system to analyze beta-HPV8 and HPV38 replication. IMPORTANCE High-risk HPV, from the genus alpha, can cause anogenital or oropharyngeal malignancies. The oncogenic properties of high-risk HPV are important for their differentiation-dependent replication in human keratinocytes, the natural target cell for HPV. HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Currently, the replication cycle of beta-HPV has not been studied in human keratinocytes. We now provide evidence that beta-HPV8 and 38 are transcriptionally active in human keratinocytes. Inactivation of the viral E8^E2 repressor protein greatly increases genome replication and transcription of the E6 and E7 oncogenes, but surprisingly, this does not result in immortalization of keratinocytes. Differentiation of HPV8- or HPV38-transfected keratinocytes in organotypic cultures induces transcripts encoding the L1 capsid gene, suggesting that productive replication is initiated. This indicates that human keratinocytes are suited as a model to investigate beta-HPV replication.
Collapse
|
8
|
Borgogna C, Martuscelli L, Olivero C, Lo Cigno I, De Andrea M, Caneparo V, Boldorini R, Patel G, Gariglio M. Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice. J Invest Dermatol 2022; 143:740-750.e4. [PMID: 36481357 DOI: 10.1016/j.jid.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Valeria Caneparo
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy.
| |
Collapse
|
9
|
Olczak P, Wong M, Tsai HL, Wang H, Kirnbauer R, Griffith AJ, Lambert PF, Roden R. Vaccination with human alphapapillomavirus-derived L2 multimer protects against human betapapillomavirus challenge, including in epidermodysplasia verruciformis model mice. Virology 2022; 575:63-73. [PMID: 36070626 PMCID: PMC9710205 DOI: 10.1016/j.virol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Human alphapapillomaviruses (αHPV) infect genital mucosa, and a high-risk subset is a necessary cause of cervical cancer. Licensed L1 virus-like particle (VLP) vaccines offer immunity against the nine most common αHPV associated with cervical cancer and genital warts. However, vaccination with an αHPV L2-based multimer vaccine, α11-88x5, protected mice and rabbits from vaginal and skin challenge with diverse αHPV types. While generally clinically inapparent, human betapapillomaviruses (βHPV) are possibly associated with cutaneous squamous cell carcinoma (CSCC) in epidermodysplasia verruciformis (EV) and immunocompromised patients. Here we show that α11-88x5 vaccination protected wild type and EV model mice against HPV5 challenge. Passive transfer of antiserum conferred protection independently of Fc receptors (FcR) or Gr-1+ phagocytes. Antisera demonstrated robust antibody titers against ten βHPV by L1/L2 VLP ELISA and neutralized and protected against challenge by 3 additional βHPV (HPV49/76/96). Thus, unlike the licensed vaccines, α11-88x5 vaccination elicits broad immunity against αHPV and βHPV.
Collapse
Affiliation(s)
- Pola Olczak
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States
| | - Hua-Ling Tsai
- Department of Biostatistics, Johns Hopkins University, 550 N Broadway, Baltimore, MD, 21205, United States
| | - Hao Wang
- Department of Biostatistics, Johns Hopkins University, 550 N Broadway, Baltimore, MD, 21205, United States
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andrew J Griffith
- Department of Otolaryngology Head-Neck Surgery, College of Medicine-Memphis, University of Tennessee Health Sciences Center, 910 Madison Ave, Memphis, TN, 38163, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, United States
| | - Richard Roden
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States.
| |
Collapse
|
10
|
Romero-Masters JC, Lambert PF, Munger K. Molecular Mechanisms of MmuPV1 E6 and E7 and Implications for Human Disease. Viruses 2022; 14:2138. [PMID: 36298698 PMCID: PMC9611894 DOI: 10.3390/v14102138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a substantial amount of human disease from benign disease such as warts to malignant cancers including cervical carcinoma, head and neck cancer, and non-melanoma skin cancer. Our ability to model HPV-induced malignant disease has been impeded by species specific barriers and pre-clinical animal models have been challenging to develop. The recent discovery of a murine papillomavirus, MmuPV1, that infects laboratory mice and causes the same range of malignancies caused by HPVs provides the papillomavirus field the opportunity to test mechanistic hypotheses in a genetically manipulatable laboratory animal species in the context of natural infections. The E6 and E7 proteins encoded by high-risk HPVs, which are the HPV genotypes associated with human cancers, are multifunctional proteins that contribute to HPV-induced cancers in multiple ways. In this review, we describe the known activities of the MmuPV1-encoded E6 and E7 proteins and how those activities relate to the activities of HPV E6 and E7 oncoproteins encoded by mucosal and cutaneous high-risk HPV genotypes.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
11
|
Lim J, Frecot DI, Stubenrauch F, Iftner T, Simon C. Cottontail rabbit papillomavirus E6 proteins: Interaction with MAML1 and modulation of the Notch signaling pathway. Virology 2022; 576:52-60. [PMID: 36155393 DOI: 10.1016/j.virol.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022]
Abstract
Animal models are necessary to study how cutaneous human papillomaviruses (HPVs) are associated with carcinogenesis. The cottontail rabbit papillomavirus (CRPV) induces papilloma in the -cutaneous skin of rabbits and serves as an established animal model for HPVlinked carcinogenesis where viral E6 proteins play crucial roles. Several studies have reported the dysregulation of the Notch signaling pathway by cutaneous beta HPV, bovine PV and mouse PV E6 via their association with Mastermind-like 1 protein (MAML1), thus interfering with cell proliferation and differentiation. However, the CRPV E6 gene encodes an elongated E6 protein (long E6, LE6) and an N-terminally truncated product (short E6, SE6) making it unique from other E6 proteins. Here, we describe the interaction between both CRPV E6 proteins and MAML1 and their ability to downregulate the Notch signaling pathway which could be a way CRPV infection induces carcinogenesis similar to beta HPV.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Desiree Isabella Frecot
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
12
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
13
|
Hu C, Wallace N. Beta HPV Deregulates Double-Strand Break Repair. Viruses 2022; 14:948. [PMID: 35632690 PMCID: PMC9146468 DOI: 10.3390/v14050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts.
Collapse
Affiliation(s)
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
14
|
Lee U, Ko J, Kim S, Lee P, An Y, Yun H, Flood DT, Dawson PE, Hwang NS, Kim B. Light-Triggered In Situ Biosynthesis of Artificial Melanin for Skin Protection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103503. [PMID: 34989175 PMCID: PMC8895148 DOI: 10.1002/advs.202103503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/29/2021] [Indexed: 05/05/2023]
Abstract
Tyrosinase-mediated melanin synthesis is an essential biological process that can protect skin from UV radiation and radical species. This work reports on in situ biosynthesis of artificial melanin in native skin using photoactivatable tyrosinase (PaTy). The I41Y mutant of Streptomyces avermitilis tyrosinase (SaTy) shows enzymatic activity comparable to that of wild-type SaTy. This Y41 is replaced with photocleavable o-nitrobenzyl tyrosine (ONBY) using the introduction of amber codon and ONBY-tRNA synthetase/tRNA pairs. The ONBY efficiently blocks the active site and tyrosinase activity is rapidly recovered by the photo-cleavage of ONBY. The activated PaTy successfully oxidizes L-tyrosine and tyramine-conjugated hyaluronic acid (HA_T) to synthesize melanin particles and hydrogel, respectively. To produce artificial melanin in living tissues, PaTy is encapsulated into lipid nanoparticles as an artificial melanosome. Using liposomes containing PaTy (PaTy_Lip), PaTy is transdermally delivered into ex vivo porcine skin and in vivo mouse skin tissues, thus achieving the in situ biosynthesis of artificial melanin for skin tissue protection under UV irradiation. The results of this study demonstrate that this biomimetic system can recapitulate the biosynthetic analogs of naturally occurring melanin. It should therefore be considered to be a promising strategy for producing protective biological molecules within living systems for tissue protection.
Collapse
Affiliation(s)
- Uk‐Jae Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
| | - Junghyeon Ko
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
| | - Su‐Hwan Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Department of Chemical Engineering (BK 21 FOUR)Dong‐A UniversityBusan49315South Korea
| | - Pyung‐Gang Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
| | - Young‐Hyeon An
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk UniversitySeoul05029South Korea
| | - Dillon T. Flood
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Philip E. Dawson
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
- Institute for Engineering ResearchSeoul National UniversitySeoul08826South Korea
| | - Byung‐Gee Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
- Institute for Sustainable Development(ISD)Seoul National UniversitySeoul08826South Korea
| |
Collapse
|
15
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
16
|
Rollison DE, Amorrortu RP, Zhao Y, Messina JL, Schell MJ, Fenske NA, Cherpelis BS, Giuliano AR, Sondak VK, Pawlita M, McKay-Chopin S, Gheit T, Waterboer T, Tommasino M. Cutaneous Human Papillomaviruses and the Risk of Keratinocyte Carcinomas. Cancer Res 2021; 81:4628-4638. [PMID: 34266893 PMCID: PMC8416805 DOI: 10.1158/0008-5472.can-21-0805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Cutaneous human papillomavirus (cuHPV) infections may be novel targets for skin cancer prevention and treatment, but critical information regarding the development of virus-positive skin cancers following cuHPV infection has been lacking. In this study, baseline cuHPV infection was measured by serology and viral DNA detection in eyebrow hairs (EBH) and forearm skin swabs (SSW) among 1,008 individuals undergoing routine skin cancer screening exams and followed for incidence of basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cuSCC). Baseline β-HPV detection, particularly in SSW, significantly predicted cuSCC (HR = 4.32; 95% confidence interval, 1.00-18.66), whereas serologic evidence of past β-HPV infection was not associated with cuSCC. Less than 5% of baseline β-HPV types detected in SSW were present in subsequent cuSCC tumors, and cuHPV detected in SSW with higher mean fluorescence intensity values were more likely to be present in cuSCC compared with those with lower levels (P < 0.001). β-HPV-positive cuSCC occurred more often in areas of highly sun-damaged skin than did β-HPV-negative cuSCC. Overall, no clear patterns were observed between baseline β-HPV detection and subsequent development of BCC, or between baseline γ-HPV detection and either cuSCC or BCC. Collectively, these results demonstrate that β-HPV detection in SSW is a significant predictor of cuSCC risk, although evidence suggests only a small subset of cuSCC is etiologically linked to β-HPV infection. SIGNIFICANCE: β-HPV positivity may be a useful biomarker for identifying individuals who could benefit from increased screening or novel cutaneous squamous cell carcinoma prevention strategies.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alphapapillomavirus
- Biomarkers, Tumor/metabolism
- Carcinoma, Basal Cell/diagnosis
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/virology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/virology
- DNA, Viral
- Early Detection of Cancer
- Female
- Follow-Up Studies
- Hair/metabolism
- Humans
- Keratinocytes/cytology
- Male
- Middle Aged
- Neoplasms, Basal Cell/diagnosis
- Neoplasms, Basal Cell/metabolism
- Neoplasms, Basal Cell/virology
- Papillomavirus Infections/diagnosis
- Papillomavirus Infections/metabolism
- Prospective Studies
- Risk Factors
- Skin Neoplasms/diagnosis
- Skin Neoplasms/metabolism
- Skin Neoplasms/virology
- Specimen Handling
- Surveys and Questionnaires
Collapse
Affiliation(s)
- Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida.
| | | | - Yayi Zhao
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Jane L Messina
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael J Schell
- Biostatistics and Bioinformatics Shared Resource, Moffitt Cancer Center, Tampa, Florida
| | - Neil A Fenske
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Basil S Cherpelis
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tarik Gheit
- International Agency for Research on Cancer, WHO, Lyon, France
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
17
|
Choi J, West CE, Roh YS, Sutaria N, Kwatra SG, Kwatra MM. Mouse models for actinic keratoses. J Pharmacol Toxicol Methods 2021; 110:107071. [PMID: 33933627 DOI: 10.1016/j.vascn.2021.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Actinic keratoses (AKs) represent a premalignant skin condition due to chronic sun damage that dramatically increases in prevalence in the aging population. Currently, animal models of AKs utilize photocarcinogenesis, chemical carcinogens, or targeted gene modulation, and each method possesses unique strengths and weaknesses. Models using photodamage most comprehensively describe methods for preferentially selecting AK lesions, while replicating the pathogenesis of AKs with greater fidelity than models utilizing other carcinogenic methods. The following review of current murine models of AKs will aid in the selection of mouse models appropriate for future in vivo studies to test the efficacy of novel therapeutic agents for the treatment of AKs.
Collapse
Affiliation(s)
- Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Youkyung S Roh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
18
|
IFN-γ Critically Enables the Intratumoural Infiltration of CXCR3 + CD8 + T Cells to Drive Squamous Cell Carcinoma Regression. Cancers (Basel) 2021; 13:cancers13092131. [PMID: 33925140 PMCID: PMC8124943 DOI: 10.3390/cancers13092131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Cutaneous squamous cell carcinoma (SCC) is prevalent in aged individuals and individuals with compromised or weakened immune systems, indicating a close association between immune function and SCC control. The aim of our study was to uncover the identity of key immune subsets that mediate SCC control, and to elucidate the mechanistic role of the proinflammatory cytokine Interferon-gamma in this process. We established a SCC regressor model, which we used to determine that: (1) CD8+ T cells, not CD4+ T cells or NK cells, are essential for SCC regression; (2) the neutralisation of Interferon-gamma prevents CD8+ T cell infiltration and SCC regression; (3) CD8+ T cell migration into SCC critically depends upon Interferon-gamma-induced chemokine expression. Thus, our model can be used to understand the key immune mechanisms involved in SCC regression, which will support targeted investigations into the integrity of these mechanisms in patients with progressive disease. Abstract Ultraviolet (UV) radiation-induced tumours carry a high mutational load, are highly immunogenic, and often fail to grow when transplanted into normal, syngeneic mice. The aim of this study was to investigate factors critical for the immune-mediated rejection of cutaneous squamous cell carcinoma (SCC). In our rejection model, transplanted SCC establish and grow in mice immunosuppressed with tacrolimus. When tacrolimus is withdrawn, established SCC tumours subsequently undergo immune-mediated tumour rejection. Through the depletion of individual immune subsets at the time of tacrolimus withdrawal, we established a critical role for CD8+ T cells, but not CD4+ T cells, γδ T cells, or NK cells, in driving the regression of SCC. Regression was critically dependent on IFN-γ, although IFN-γ was not directly cytotoxic to SCC cells. IFN-γ-neutralisation abrogated SCC regression, significantly reduced CD8+ T cell-infiltration into SCC, and significantly impaired the secretion of CXCL9, CXCL10 and CCL5 within the tumour microenvironment. A strong positive correlation was revealed between CXCL10 expression and CD8+ T cell abundance in tumours. Indeed, blockade of the CXCL10 receptor CXCR3 at the time of tacrolimus withdrawal prevented CD8+ T cell infiltration and the regression of SCC. Chimeric models revealed an important role for immune cells as producers of IFN-γ, but not as recipients of IFN-γ signals via the IFN-γ receptor. Together, these findings suggest a key role for IFN-γ in driving the expression of chemokines within the tumour environment essential for the destruction of established SCC by CD8+ T cells.
Collapse
|
19
|
Dorfer S, Strasser K, Schröckenfuchs G, Bonelli M, Bauer W, Kittler H, Cataisson C, Fischer MB, Lichtenberger BM, Handisurya A. Mus musculus papillomavirus 1 is a key driver of skin cancer development upon immunosuppression. Am J Transplant 2021; 21:525-539. [PMID: 33063442 PMCID: PMC7894140 DOI: 10.1111/ajt.16358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023]
Abstract
Epidemiological and experimental data implicate cutaneous human papillomavirus infection as co-factor in the development of cutaneous squamous cell carcinomas (cSCCs), particularly in immunocompromised organ transplant recipients (OTRs). Herein, we established and characterized a skin cancer model, in which Mus musculus papillomavirus 1 (MmuPV1) infection caused cSCCs in cyclosporine A (CsA)-treated mice, even in the absence of UV light. Development of cSCCs and their precursors were observed in 70% of MmuPV1-infected, CsA-treated mice on back as well as on tail skin. Immunosuppression by systemic CsA, but not UV-B irradiation, was a prerequisite, as immunocompetent or UV-B-irradiated mice did not develop skin malignancies after infection. In the virus-driven cSCCs the MmuPV1-E6/E7 oncogenes were abundantly expressed, and transcriptional activity and productive infection demonstrated. MmuPV1 infection induced the expression of phosphorylated H2AX, but not degradation of proapoptotic BAK in the cSCCs. Transfer of primary cells, established from a MmuPV1-induced cSCC from back skin, into athymic nude mice gave rise to secondary cSCCs, which lacked viral DNA, demonstrating that maintenance of the malignant phenotype was virus independent. This papillomavirus-induced skin cancer model opens future investigations into viral involvement, pathogenesis, and cancer surveillance, aiming at understanding and controlling the high incidence of skin cancer in OTRs.
Collapse
Affiliation(s)
- Sonja Dorfer
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | | | - Michael Bonelli
- Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Wolfgang Bauer
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Harald Kittler
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Christophe Cataisson
- Laboratory of Cancer Biology and GeneticsNational Institutes of HealthNational Cancer InstituteBethesdaMDUSA
| | - Michael B. Fischer
- Department of Transfusion MedicineMedical University of ViennaViennaAustria
| | | | | |
Collapse
|
20
|
Zhao Y, Amorrortu RP, Fenske NA, Cherpelis B, Messina JL, Sondak VK, Giuliano AR, Schell MJ, Waterboer T, Pawlita M, McKay‐Chopin S, Gheit T, Tommasino M, Rollison DE. Cutaneous viral infections associated with ultraviolet radiation exposure. Int J Cancer 2021; 148:448-458. [PMID: 32818302 PMCID: PMC7754468 DOI: 10.1002/ijc.33263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023]
Abstract
The complex interplay between ultraviolet radiation (UVR) and cutaneous viral infections in the context of cancer etiology is challenging to unravel, given the limited information on the independent association between UVR and cutaneous viral infections. Using multiple biomarkers of infection with 24 types of cutaneous human papillomavirus (HPV) and 4 types of polyomaviruses (HPyV), we investigated cross-sectional associations with recent UVR exposure, using skin pigmentation measured by spectrophotometer. Age- and sex-adjusted associations between UVR and viral seropositivity, viral DNA present in eyebrow hairs (EBH) and skin swabs (SSW) were estimated using logistic regression. Beta-HPV seropositivity was associated with viral DNA positivity in EBH (OR = 1.40, 95% CI = 1.05-1.88) and SSW (OR = 1.86, 95% CI = 1.25-2.74). Similar associations were observed for Merkel cell polyomavirus. Participants in the highest tertile of UVR exposure were more likely to be seropositive for beta-HPV (OR = 1.81, 95% CI = 1.16-2.38), and have beta-HPV DNA in EBH (OR = 1.57, 95% CI = 1.06-2.33) and SSW (OR = 2.22, 95% CI = 1.25-3.96), compared to participants with the lowest tertile of UVR exposure. UVR exposure was positively associated with three different markers of beta-HPV infection. Therefore, future studies of HPV associated KC development should address more directly the role of HPV and UVR exposure as potential co-carcinogens.
Collapse
Affiliation(s)
- Yayi Zhao
- Department of Cancer EpidemiologyMoffitt Cancer CenterTampaFloridaUSA
| | | | - Neil A. Fenske
- Department of Dermatology and Cutaneous SurgeryUniversity of South Florida College of MedicineTampaFloridaUSA
| | - Basil Cherpelis
- Department of Dermatology and Cutaneous SurgeryUniversity of South Florida College of MedicineTampaFloridaUSA
| | - Jane L. Messina
- Department of Dermatology and Cutaneous SurgeryUniversity of South Florida College of MedicineTampaFloridaUSA
- Department of Anatomic PathologyMoffitt Cancer CenterTampaFloridaUSA
- Department of Cutaneous OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Vernon K. Sondak
- Department of Cutaneous OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Anna R. Giuliano
- Center for Immunization and Infection Research in CancerMoffitt Cancer CenterTampaFloridaUSA
| | - Michael J. Schell
- Biostatistics and Bioinformatics Shared ResourceMoffitt Cancer CenterTampaFloridaUSA
| | - Tim Waterboer
- Infections and Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Pawlita
- Infections and Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sandrine McKay‐Chopin
- Infections and Cancer Biology GroupInternational Agency for Research on Cancer‐World Health OrganizationLyonFrance
| | - Tarik Gheit
- Infections and Cancer Biology GroupInternational Agency for Research on Cancer‐World Health OrganizationLyonFrance
| | - Massimo Tommasino
- Infections and Cancer Biology GroupInternational Agency for Research on Cancer‐World Health OrganizationLyonFrance
| | - Dana E. Rollison
- Department of Cancer EpidemiologyMoffitt Cancer CenterTampaFloridaUSA
| |
Collapse
|
21
|
Magnotti F, Valsesia S, Gupta P, Flechtenmacher C, Contard P, Viarisio D, Venuti A, Wencker M, Tommasino M, Marvel J, Henry T. The Inflammasome Adaptor ASC Delays UV-Induced Skin Tumorigenesis in Beta HPV38 E6 and E7 Transgenic Mice. J Invest Dermatol 2021; 141:236-238.e2. [PMID: 32470340 DOI: 10.1016/j.jid.2020.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Flora Magnotti
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Séverine Valsesia
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Purnima Gupta
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Pierre Contard
- Anira-PBES, SFR Biosciences, UMS3444/CNRS, US8/Inserm, ENS de Lyon, Université Claude Bernard Lyon (UCBL), Univ Lyon, Lyon, France
| | - Daniele Viarisio
- Infection and Cancer Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Assunta Venuti
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Mélanie Wencker
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France.
| |
Collapse
|
22
|
|
23
|
Lambert PF, Münger K, Rösl F, Hasche D, Tommasino M. Beta human papillomaviruses and skin cancer. Nature 2020; 588:E20-E21. [PMID: 33328661 DOI: 10.1038/s41586-020-3023-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
| | - Karl Münger
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hasche
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France.
| |
Collapse
|
24
|
Romero-Medina MC, Venuti A, Melita G, Robitaille A, Ceraolo MG, Pacini L, Sirand C, Viarisio D, Taverniti V, Gupta P, Scalise M, Indiveri C, Accardi R, Tommasino M. Human papillomavirus type 38 alters wild-type p53 activity to promote cell proliferation via the downregulation of integrin alpha 1 expression. PLoS Pathog 2020; 16:e1008792. [PMID: 32813746 PMCID: PMC7458291 DOI: 10.1371/journal.ppat.1008792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/31/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Tumor suppressors can exert pro-proliferation functions in specific contexts. In the beta human papillomavirus type 38 (HPV38) experimental model, the viral proteins E6 and E7 promote accumulation of a wild-type (WT) p53 form in human keratinocytes (HKs), promoting cellular proliferation. Inactivation of p53 by different means strongly decreases the proliferation of HPV38 E6/E7 HKs. This p53 form is phosphorylated at S392 by the double-stranded RNA-dependent protein kinase PKR, which is highly activated by HPV38. PKR-mediated S392 p53 phosphorylation promotes the formation of a p53/DNMT1 complex, which inhibits expression of integrin alpha 1 (ITGA1), a repressor of epidermal growth factor receptor (EGFR) signaling. Ectopic expression of ITGA1 in HPV38 E6/E7 HKs promotes EGFR degradation, inhibition of cellular proliferation, and cellular death. Itga1 expression was also inhibited in the skin of HPV38 transgenic mice that have an elevated susceptibility to UV-induced skin carcinogenesis. In summary, these findings reveal the existence of a specific WT p53 form that displays pro-proliferation properties.
Collapse
Affiliation(s)
- Maria Carmen Romero-Medina
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Giusi Melita
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Maria Grazia Ceraolo
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Laura Pacini
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Cecilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Daniele Viarisio
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Valerio Taverniti
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Purnima Gupta
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Rosita Accardi
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| |
Collapse
|
25
|
Squarzanti DF, Zavattaro E, Pizzimenti S, Amoruso A, Savoia P, Azzimonti B. Non-Melanoma Skin Cancer: news from microbiota research. Crit Rev Microbiol 2020; 46:433-449. [PMID: 32692305 DOI: 10.1080/1040841x.2020.1794792] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, research has been deeply focusing on the role of the microbiota in numerous diseases, either affecting the skin or other organs. What it is well established is that its dysregulation promotes several cutaneous disorders (i.e. psoriasis and atopic dermatitis). To date, little is known about its composition, mediators and role in the genesis, progression and response to therapy of Non-Melanoma Skin Cancer (NMSC). Starting from a bibliographic study, we classified the selected articles into four sections: i) normal skin microbiota; ii) in vitro study models; iii) microbiota and NMSC and iv) probiotics, antibiotics and NMSC. What has emerged is how skin microflora changes, mainly represented by increases of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa strains, modifications in the mutual quantity of β-Human papillomavirus genotypes, of Epstein Barr Virus and Malassezia or candidiasis, may contribute to the induction of a state of chronic self-maintaining inflammation, leading to cancer. In this context, the role of S. aureus and that of specific antimicrobial peptides look to be prominent. Moreover, although antibiotics may contribute to carcinogenesis, due to their ability to influence the microbiota balance, specific probiotics, such as Lacticaseibacillus rhamnosus GG, Lactobacillus johnsonii NCC 533 and Bifidobacteria spp., may be protective.
Collapse
Affiliation(s)
- Diletta Francesca Squarzanti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Novara, Italy
| | - Elisa Zavattaro
- Department of Translational Medicine (DiMeT), UPO, Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences (DSCB), University of Turin, Turin, Italy
| | | | - Paola Savoia
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy
| | - Barbara Azzimonti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Novara, Italy
| |
Collapse
|
26
|
Bandolin L, Borsetto D, Fussey J, Da Mosto MC, Nicolai P, Menegaldo A, Calabrese L, Tommasino M, Boscolo-Rizzo P. Beta human papillomaviruses infection and skin carcinogenesis. Rev Med Virol 2020; 30:e2104. [PMID: 32232924 DOI: 10.1002/rmv.2104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022]
Abstract
During the last decade, the worldwide incidence of keratinocyte carcinomas (KC) has increased significantly. They are now the most common malignancy, representing approximately 30% of all cancers. The role of ultraviolet (UV) radiation as a major environmental risk factor for skin cancers is well recognized. The aim of this review is to analyse the current understanding of the nature of beta-human papillomavirus (HPV) and its association with KC and explore the implications for the management and prevention of these cancers. A comprehensive review of the literature on beta-HPV and its association with KC was undertaken, the results reported in the form of a narrative review. A subgroup of HPV that infects the mucosal epithelia of the genital tract has been firmly associated with carcinogenesis. In addition, some HPV types with cutaneous tropism have been proposed to cooperate with UV in the development of KC. The first evidence for this association was reported in 1922 in patients with epidermodysplasia verruciformis (EV). Since then, epidemiological studies have highlighted the higher risk of skin cancer in patients with EV and certain cutaneous HPV types, and in vitro studies have elucidated molecular mechanisms and transforming properties of beta-HPV. Furthermore, in vivo research conducted on transgenic mice models has shown the possible role of beta-HPV in cutaneous carcinogenesis as a co-factor with UV radiation and immunosuppression. There is good evidence supporting the role of beta-HPV in the oncogenesis of KC. The high prevalence of beta-HPV in human skin and the worldwide burden of KC makes the search for an effective vaccine relevant and worthwhile.
Collapse
Affiliation(s)
- Luigia Bandolin
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | | | - Jonathan Fussey
- Department of Otolaryngology, Royal Devon and Exeter Hospital, Exeter, UK
| | | | - Piero Nicolai
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Anna Menegaldo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Luca Calabrese
- Head and Neck Department, Ospedale di Bolzano, Bolzano, Italy
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Paolo Boscolo-Rizzo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Galati L, Brancaccio RN, Robitaille A, Cuenin C, Luzi F, Fiorucci G, Chiantore MV, Marascio N, Matera G, Liberto MC, Donà MG, Di Bonito P, Gheit T, Tommasino M. Detection of human papillomaviruses in paired healthy skin and actinic keratosis by next generation sequencing. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2020; 9:100196. [PMID: 32222599 PMCID: PMC7118314 DOI: 10.1016/j.pvr.2020.100196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
Actinic keratosis (AK) arises on photo-damaged skin and is considered to be the precursor lesion of cutaneous squamous cell carcinoma (cSCC). Many findings support the involvement of β human papillomaviruses (HPVs) in cSCC, while very little is known on γ HPV types. The objective of this study was to characterize the spectrum of PV types in healthy skin (HS) and AK samples of the same immunocompetent individuals using next generation sequencing (NGS). Viral DNA of 244 AK and 242 HS specimens were amplified by PCR using two different sets of primers (FAP59/64 and FAPM1). Purified amplicons were pooled and sequenced using NGS. The study resulted in the identification of a large number of known β and γ PV types. In addition, 27 putative novel β and 16 γ and 4 unclassified PVs were isolated. HPV types of species γ-1 (e.g. HPV4) appeared to be strongly enriched in AK versus HS. The NGS analysis revealed that a large spectrum of known and novel PVs is present in HS and AK. The evidence that species γ-1 HPV types appears to be enriched in AK in comparison to HS warrants further studies to evaluate their role in development of skin (pre)cancerous lesions.
Collapse
Affiliation(s)
- Luisa Galati
- International Agency for Research on Cancer-World Health Organization, Lyon, France; "Magna Graecia" University, Catanzaro, Italy
| | | | - Alexis Robitaille
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Cyrille Cuenin
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Gianna Fiorucci
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Rome, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | | | | | | - Paola Di Bonito
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Tarik Gheit
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer-World Health Organization, Lyon, France.
| |
Collapse
|
28
|
Beta Human Papillomavirus 8E6 Attenuates LATS Phosphorylation after Failed Cytokinesis. J Virol 2020; 94:JVI.02184-19. [PMID: 32238586 DOI: 10.1128/jvi.02184-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 11/20/2022] Open
Abstract
Beta genus human papillomaviruses (β-HPVs) cause cutaneous squamous cell carcinomas (cSCCs) in a subset of immunocompromised patients. However, β-HPVs are not necessary for tumor maintenance in the general population. Instead, they may destabilize the genome in the early stages of cancer development. Supporting this idea, β-HPV's 8E6 protein attenuates p53 accumulation after failed cytokinesis. This paper offers mechanistic insight into how β-HPV E6 causes this change in cell signaling. An in silico screen and characterization of HCT 116 cells lacking p300 suggested that the histone acetyltransferase is a negative regulator of Hippo pathway (HP) gene expression. HP activation restricts growth in response to stimuli, including failed cytokinesis. Loss of p300 resulted in increased HP gene expression, including proproliferative genes associated with HP inactivation. β-HPV 8E6 expression recapitulates some of these phenotypes. We used a chemical inhibitor of cytokinesis (dihydrocytochalasin B [H2CB]) to induce failed cytokinesis. This system allowed us to show that β-HPV 8E6 reduced activation of large tumor suppressor kinase (LATS), an HP kinase. LATS is required for p53 accumulation following failed cytokinesis. These phenotypes were dependent on β-HPV 8E6 destabilizing p300 and did not completely attenuate the HP. It did not alter H2CB-induced nuclear exclusion of the transcription factor YAP. β-HPV 8E6 also did not decrease HP activation in cells grown to a high density. Although our group and others have previously described inhibition of DNA repair, to the best of our knowledge, this marks the first time that a β-HPV E6 protein has been shown to hinder HP signaling.IMPORTANCE β-HPVs contribute to cSCC development in immunocompromised populations. However, it is unclear if these common cutaneous viruses are tumorigenic in the general population. Thus, a more thorough investigation of β-HPV biology is warranted. If β-HPV infections do promote cSCCs, they are hypothesized to destabilize the cellular genome. In vitro data support this idea by demonstrating the ability of the β-HPV E6 protein to disrupt DNA repair signaling events following UV exposure. We show that β-HPV E6 more broadly impairs cellular signaling, indicating that the viral protein dysregulates the HP. The HP protects genome fidelity by regulating cell growth and apoptosis in response to a myriad of deleterious stimuli, including failed cytokinesis. After failed cytokinesis, β-HPV 8E6 attenuates phosphorylation of the HP kinase (LATS). This decreases some, but not all, HP signaling events. Notably, β-HPV 8E6 does not limit senescence associated with failed cytokinesis.
Collapse
|
29
|
Development of a β-HPV vaccine: Updates on an emerging frontier of skin cancer prevention. J Clin Virol 2020; 126:104348. [PMID: 32334327 DOI: 10.1016/j.jcv.2020.104348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Human papillomaviruses (HPVs) are small, non-enveloped, doublestranded DNA viruses. Over 200 subtypes of HPV have been identified, organized into five major genera. β-HPVs are a group of approximately 50 HPV subtypes that preferentially infect cutaneous sites. While α-HPVs are primarily responsible for genital lesions and mucosal cancers, growing evidence has established an association between β-HPVs and the development of cutaneous squamous cell carcinomas. Given this association, the development of a vaccine against β-HPVs has become an important topic of research; however, currently licensed vaccines only provide coverage for genital HPVs, leaving β-HPV infections and their associated skin cancers unaddressed. In this review, we summarize the current advances in β-HPV vaccine development, including progress made in preclinical testing and limited clinical data. We also discuss novel findings in the viral pathomechanisms involved in β-HPV cutaneous tumorigenesis that may play a large role in future vaccine development. We hope that synthesizing the available data and advances surrounding β- HPV vaccine development will not only lead to increased dedication to vaccine development, but also heightened awareness of a future vaccine among clinicians and the public.
Collapse
|
30
|
Spurgeon ME, Lambert PF. Mus musculus Papillomavirus 1: a New Frontier in Animal Models of Papillomavirus Pathogenesis. J Virol 2020; 94:e00002-20. [PMID: 32051276 PMCID: PMC7163119 DOI: 10.1128/jvi.00002-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Animal models of viral pathogenesis are essential tools in human disease research. Human papillomaviruses (HPVs) are a significant public health issue due to their widespread sexual transmission and oncogenic potential. Infection-based models of papillomavirus pathogenesis have been complicated by their strict species and tissue specificity. In this Gem, we discuss the discovery of a murine papillomavirus, Mus musculus papillomavirus 1 (MmuPV1), and how its experimental use represents a major advancement in models of papillomavirus-induced pathogenesis/carcinogenesis, and their transmission.
Collapse
Affiliation(s)
- Megan E Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|
32
|
Human Papillomavirus and carcinogenesis: Novel mechanisms of cell communication involving extracellular vesicles. Cytokine Growth Factor Rev 2020; 51:92-98. [PMID: 31973992 PMCID: PMC7108386 DOI: 10.1016/j.cytogfr.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A group of mucosal HPVs are the causative agents of cervical cancer and are associated to other cancers. Certain cutaneous HPVs are involved in the development of cutaneous squamous cell carcinoma. EVs released by HPV+ cells convey a specific cargo of mRNAs and microRNAs. The EV delivery from HPV+ cells to non-infected recipient cells may represent a novel mechanism of tumorigenesis promotion.
A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.
Collapse
|
33
|
Winer RL, Gheit T, Feng Q, Stern JE, Lin J, Cherne S, Tommasino M. Prevalence and Correlates of β- and γ-Human Papillomavirus Detection in Oral Samples From Mid-Adult Women. J Infect Dis 2020; 219:1067-1075. [PMID: 30395247 DOI: 10.1093/infdis/jiy632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Little is known about the epidemiology of β and γ human papillomaviruses (HPVs) in oral cavities of healthy women. METHODS We performed multiplex polymerase chain reaction analysis for detection of 46 β-HPVs and 51 γ-HPVs in stored oral rinse samples from healthy mid-adult women (age, 30-50 years). A total of 407 women were tested for β-HPVs, and 310 were tested for γ-HPVs. We used log-binomial regression to identify determinants of β-HPV and γ-HPV in separate models. Using paired fingernail data from a subset of 184 women, we also evaluated whether fingernail β-HPV detection was associated with concurrent detection of the same type in the oral cavity. RESULTS Oral HPV prevalence was 20.6% for β-HPV and 10.7% for γ-HPV. In multivariate analysis, oral β-HPV detection was associated with increasing age (adjusted prevalence ratio [aPR] per 5-year difference, 1.37; 95% confidence interval [CI], 1.01-1.86) and a greater lifetime number of oral sex partners (aPR for reporting ≥6 vs 0-5 partners, 2.06; 95% CI, 1.01-4.20). In a separate model, concurrent detection of the same β-HPV type in fingernails was strongly associated with oral β-HPV detection (aPR, 31.44; 95% CI, 19.81-49.49). No significant determinants of γ-HPV detection were identified. CONCLUSIONS Our results suggest a sexual transmission route for β-HPVs and support the hypothesis that fingers may serve as a source of transmission or autoinoculation of β-HPVs to the oral cavity.
Collapse
Affiliation(s)
| | - Tarik Gheit
- Department of Pathology, University of Washington
| | - Qinghua Feng
- Department of Global Health, University of Washington
| | - Joshua E Stern
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John Lin
- Department of Epidemiology, University of Washington
| | | | | |
Collapse
|
34
|
Amorrortu RP, Fenske NA, Cherpelis BS, Vijayan L, Zhao Y, Balliu J, Messina JL, Sondak VK, Giuliano AR, Waterboer T, Pawlita M, Gheit T, Tommasino M, Rollison DE. Viruses in Skin Cancer (VIRUSCAN): Study Design and Baseline Characteristics of a Prospective Clinic-Based Cohort Study. Cancer Epidemiol Biomarkers Prev 2020; 29:39-48. [PMID: 31427307 PMCID: PMC6954275 DOI: 10.1158/1055-9965.epi-19-0446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/26/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that cutaneous viral infections are risk factors for the development of keratinocyte carcinomas. The Viruses in Skin Cancer (VIRUSCAN) Study, a prospective cohort study, was established in 2014 to investigate the risk of keratinocyte carcinoma associated with cutaneous human papillomavirus and polyomavirus infection and the possible interaction with ultraviolet radiation exposure (UVR). METHODS/RESULTS VIRUSCAN incorporates repeated measures of viral infection using multiple markers of infection and quantitative measures of UVR using a spectrophotometer. Participants were recruited between July 14, 2014 and August 31, 2017 at the University of South Florida Dermatology Clinic in Tampa, FL. After excluding 124 individuals with prevalent keratinocyte carcinomas at baseline, 1,179 participants (53.2% women, 46.8% men, all ages 60 years and older) were followed for up to 4 years with routine skin exams occurring every 6 to 12 months. Here, we present the VIRUSCAN Study design, methods, and baseline characteristics, including demographics, sun exposure behavior, quantitative UVR exposure measurements, and cutaneous viral prevalence, for the full study cohort. CONCLUSIONS The VIRUSCAN Study will provide critical temporal evidence needed to assess the causality of the role cutaneous viral infections play in the development of keratinocyte carcinomas, as well as the potential interaction between cutaneous viral infections and UVR exposure. IMPACT Study findings will be valuable in future development of novel keratinocyte carcinoma prevention strategies.
Collapse
MESH Headings
- Aged
- Carcinoma, Basal Cell/epidemiology
- Carcinoma, Basal Cell/etiology
- Carcinoma, Basal Cell/pathology
- Carcinoma, Merkel Cell/diagnosis
- Carcinoma, Merkel Cell/epidemiology
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/virology
- Carcinoma, Squamous Cell/epidemiology
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Female
- Follow-Up Studies
- Humans
- Keratinocytes/pathology
- Keratinocytes/radiation effects
- Keratinocytes/virology
- Male
- Middle Aged
- Prevalence
- Prospective Studies
- Research Design
- Risk Factors
- Skin/cytology
- Skin/pathology
- Skin/radiation effects
- Skin/virology
- Skin Neoplasms/diagnosis
- Skin Neoplasms/epidemiology
- Skin Neoplasms/etiology
- Skin Neoplasms/pathology
- Spectrophotometry, Ultraviolet
- Ultraviolet Rays/adverse effects
- Warts/diagnosis
- Warts/epidemiology
- Warts/pathology
- Warts/virology
Collapse
Affiliation(s)
| | - Neil A Fenske
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Basil S Cherpelis
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Laxmi Vijayan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Yayi Zhao
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Juliana Balliu
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Jane L Messina
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, Florida
| | - Tim Waterboer
- Infections and Cancer Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Pawlita
- Infections and Cancer Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida.
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
35
|
Abstract
Human papillomaviruses (HPVs) infect squamous epithelia and can induce hyperproliferative lesions. More than 220 different HPV types have been characterized and classified into five different genera. While mucosal high-risk HPVs have a well-established causal role in anogenital carcinogenesis, the biology of cutaneous HPVs is less well understood.From patients with the rare genetic disorder epidermodysplasia verruciformis (EV) and animal models, evidence is accumulating that cutaneous PV of genus β synergize with ultraviolet (UV) radiation in the development of cutaneous squamous cell carcinoma (cSCC). In 2009, the International Agency for Research on Cancer (IARC) classified the genus β-HPV types 5 and 8 as "possible carcinogenic" biological agents (group 2B) in EV disease. Epidemiological and biological studies indicate that genus β-PV infection may also play a role in UV-mediated skin carcinogenesis in non-EV patients. However, they rather act at early stages of carcinogenesis and become dispensable for the maintenance of the malignant phenotype, compatible with a "hit-and-run" mechanism.This chapter will give an overview on genus β-PV infections and discuss similarities and differences of cutaneous and genus α mucosal high-risk HPV in epithelial carcinogenesis.
Collapse
|
36
|
Viarisio D, Robitaille A, Müller-Decker K, Flechtenmacher C, Gissmann L, Tommasino M. Cancer susceptibility of beta HPV49 E6 and E7 transgenic mice to 4-nitroquinoline 1-oxide treatment correlates with mutational signatures of tobacco exposure. Virology 2019; 538:53-60. [PMID: 31569015 DOI: 10.1016/j.virol.2019.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
We have previously showed that a transgenic (Tg) mouse model with cytokeratin 14 promoter (K14)-driven expression of E6 and E7 from beta-3 HPV49 in the basal layer of the epidermis and of the mucosal epithelia of the digestive tract (K14 HPV49 E6/E7 Tg mice) are highly susceptible to upper digestive tract carcinogenesis upon exposure to 4-nitroquinoline 1-oxide (4NQO). Using whole-exome sequencing, we show that in K14 HPV49 E6/E7 Tg mice, development of 4NQO-induced cancers tightly correlates with the accumulation of somatic mutations in cancer-related genes. The mutational signature in 4NQO-treated mice was similar to the signature observed in humans exposed to tobacco smoking and tobacco chewing. Similar results were obtained with K14 Tg animals expressing mucosal high-risk HPV16 E6 and E7 oncogenes. Thus, beta-3 HPV49 share some functional similarities with HPV16 in Tg animals.
Collapse
Affiliation(s)
- Daniele Viarisio
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Karin Müller-Decker
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christa Flechtenmacher
- Department of Pathology, University Hospital of Heidelberg, Im Neuenheimer Feld 220, 69120, Heidelberg, Germany
| | - Lutz Gissmann
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Department of Botany and Microbiology (honorary MMember), King Saud University, Riyadh, Saudi Arabia
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France.
| |
Collapse
|
37
|
Kricker A, Weber MF, Brenner N, Banks E, Pawlita M, Sitas F, Hodgkinson VS, Rahman B, van Kemenade CH, Armstrong BK, Waterboer T. High Ambient Solar UV Correlates with Greater Beta HPV Seropositivity in New South Wales, Australia. Cancer Epidemiol Biomarkers Prev 2019; 29:49-56. [PMID: 31597664 DOI: 10.1158/1055-9965.epi-19-0400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) infection is highly prevalent worldwide and may have a role, with sun exposure, in causing cutaneous squamous cell carcinoma. Little is known about the relationship of UV exposure and seroprevalence of cutaneous HPVs in the general population. METHODS Using multiplex serology, we estimated the seroprevalence of 23 beta and 7 gamma HPVs and 7 other antigens (mu HPV1, HPV63, nu HPV41, alpha HPV16; polyomaviruses HPyV7 and MCV; p53) in a population-based sample of 1,161 Australian 45 and Up Study participants with valid data from blood specimens collected from 2010 to 2012. We calculated prevalence ratios (PR) for the association of each antigen with residential ambient solar UV and other UV-related variables. RESULTS Seropositivity for at least one beta or gamma HPV was high at 88% (beta HPVs 74%, gamma HPVs 70%), and less in women than men [e.g., PR beta-2 HPV38 = 0.70; 95% confidence interval (CI), 0.56-0.87; any gamma = 0.90; 95% CI, 0.84-0.97]. A high ambient UV level in the 10 years before study enrollment was associated with elevated seroprevalence for genus beta (PRtertile3vs1 any beta = 1.17; 95% CI, 1.07-1.28), and beta-1 to beta-3 species, but not for gamma HPVs. Other UV-related measures had less or no evidence of an association. CONCLUSIONS Seroprevalence of cutaneous beta HPVs is higher with higher ambient UV exposure in the past 10 years. IMPACT The observed association between ambient UV in the past 10 years and cutaneous HPVs supports further study of the possible joint role of solar UV and HPV in causing skin cancer.
Collapse
Affiliation(s)
- Anne Kricker
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Marianne F Weber
- Cancer Research Division, Cancer Council New South Wales, Sydney, New South Wales, Australia
| | - Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emily Banks
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia.,Sax Institute, Sydney, New South Wales, Australia
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Freddy Sitas
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,School of Public Health and Community Medicine, University of New South Wales, New South Wales, Australia
| | | | - Bayzid Rahman
- School of Public Health and Community Medicine, University of New South Wales, New South Wales, Australia
| | - Cathelijne H van Kemenade
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bruce K Armstrong
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
38
|
Venuti A, Lohse S, Tommasino M, Smola S. Cross-talk of cutaneous beta human papillomaviruses and the immune system: determinants of disease penetrance. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180287. [PMID: 30955489 PMCID: PMC6501898 DOI: 10.1098/rstb.2018.0287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the epithelia of skin or mucosa, where they can induce hyperproliferative lesions. More than 220 different HPV types have been characterized and classified into five different genera. Mucosal high-risk HPVs are causative for cancers of the anogenital region and oropharynx. Clinical data from patients with the rare genetic disorder epidermodysplasia verruciformis (EV) indicate that genus beta-HPVs cooperate with ultraviolet (UV) radiation in the development of cutaneous squamous cell carcinoma. In addition, epidemiological and biological findings indicate that beta-HPV types play a role in UV-mediated skin carcinogenesis also in non-EV individuals. However, the mechanisms used by these cutaneous viruses to promote epithelial carcinogenesis differ significantly from those of mucosal HPVs. Recent studies point to a delicate cross-talk of beta-HPVs with the cell-autonomous immunity of the host keratinocytes and the local immune microenvironment that eventually determines the fate of cutaneous HPV infection and the penetrance of disease. This review gives an overview of the critical interactions of genus beta-HPVs with the local immune system that allow the virus to complete its life cycle, to escape from extrinsic immunity, and eventually to cause chronic inflammation contributing to skin carcinogenesis. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Assunta Venuti
- 1 Infections and Cancer Biology Group, International Agency for Research on Cancer , 150 Cours Albert Thomas, Lyon 69008 , France
| | - Stefan Lohse
- 2 Institute of Virology, Saarland University Medical Center , Kirrbergerstr. Building 47, 66421 Homburg/Saar , Germany
| | - Massimo Tommasino
- 1 Infections and Cancer Biology Group, International Agency for Research on Cancer , 150 Cours Albert Thomas, Lyon 69008 , France
| | - Sigrun Smola
- 2 Institute of Virology, Saarland University Medical Center , Kirrbergerstr. Building 47, 66421 Homburg/Saar , Germany
| |
Collapse
|
39
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Rollison DE, Viarisio D, Amorrortu RP, Gheit T, Tommasino M. An Emerging Issue in Oncogenic Virology: the Role of Beta Human Papillomavirus Types in the Development of Cutaneous Squamous Cell Carcinoma. J Virol 2019; 93:e01003-18. [PMID: 30700603 PMCID: PMC6430537 DOI: 10.1128/jvi.01003-18] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence suggests that beta human papillomaviruses (HPVs), together with ultraviolet radiation, contribute to the development of cutaneous squamous cell carcinoma. Beta HPVs appear to be not the main drivers of carcinogenesis but rather facilitators of the accumulation of ultraviolet-induced DNA mutations. Beta HPVs are promoters of skin carcinogenesis, although they are dispensable for the maintenance of the malignant phenotype. Therefore, beta HPV represents a target for skin cancer prevention, especially in high-risk populations.
Collapse
Affiliation(s)
- Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Daniele Viarisio
- Infection and Cancer Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
41
|
The Protein Tyrosine Phosphatase H1 PTPH1 Supports Proliferation of Keratinocytes and is a Target of the Human Papillomavirus Type 8 E6 Oncogene. Cells 2019; 8:cells8030244. [PMID: 30875834 PMCID: PMC6468676 DOI: 10.3390/cells8030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) replicate their DNA in the suprabasal layer of the infected mucosa or skin. In order to create a suitable environment for vegetative viral DNA replication HPV delay differentiation and sustain keratinocyte proliferation that can lead to hyperplasia. The mechanism underlying cell growth stimulation is not well characterized. Here, we show that the E6 oncoprotein of the βHPV type 8 (HPV8), which infects the cutaneous skin and is associated with skin cancer in Epidermodysplasia verruciformis patients and immunosuppressed organ transplant recipients, binds to the protein tyrosine phosphatase H1 (PTPH1), which resulted in increased protein expression and phosphatase activity of PTPH1. Suppression of PTPH1 in immortalized keratinocytes reduced cell proliferation as well as the level of epidermal growth factor receptor (EGFR). Furthermore, we report that HPV8E6 expressing keratinocytes have increased level of active, GTP-bound Ras. This effect was independent of PTPH1. Therefore, HPV8E6-mediated targeting of PTPH1 might result in higher level of EGFR and enhanced keratinocyte proliferation. The HPV8E6-mediated stimulation of Ras may be an additional step to induce cell growth. Our results provide novel insights into the mechanism how βHPVE6 proteins support proliferation of infected keratinocytes, thus creating an environment with increased risk of development of skin cancer particularly upon UV-induced DNA mutations.
Collapse
|
42
|
Crawford T, Fletcher N, Veitch M, Gonzalez Cruz JL, Pett N, Brereton I, Wells JW, Mobli M, Tesiram Y. Bacillus anthracis Protective Antigen Shows High Specificity for a UV Induced Mouse Model of Cutaneous Squamous Cell Carcinoma. Front Med (Lausanne) 2019; 6:22. [PMID: 30809524 PMCID: PMC6379334 DOI: 10.3389/fmed.2019.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Squamous cell carcinoma (SCC) accounts for the majority of non-melanoma skin cancer related deaths, particularly in immunosuppressed persons. Identification of biomarkers that could be used to identify or treat SCC would be of significant benefit. The anthrax toxin receptors, Tumor Endothelial Marker 8 (TEM8) and Capillary Morphogenesis Gene 2 (CMG2), are endothelial receptors involved in extracellular matrix homeostasis and angiogenesis that are selectively upregulated on numerous tumors. One method of targeting these receptors is Protective Antigen (PA), a protein produced by B. anthracis that mediates binding and translocation of anthrax toxins into cells. PA targeted toxins have been demonstrated to selectively inhibit tumor growth and angiogenesis, but tumor selectivity of PA is currently unknown. In this work fluorescently labeled PA was shown to maintain receptor dependent binding and internalization in vitro. Utilizing a human papillomavirus transgenic mouse model that develops cutaneous SCC in response to ultraviolet irradiation we identified tumor uptake of PA in vivo. The intravenously administered PA resulted in tumor specific localization, with exclusive tumor detection 24 h post injection. Ex vivo analysis identified significantly higher fluorescence in the tumor compared to adjacent healthy tissue and major clearance organs, demonstrating low non-specific uptake and rapid clearance. While both TEM8 and CMG2 were observed to be overexpressed in SCC tumor sections compared to control skin, the intravenously administered PA was primarily co-localized with TEM8. These results suggest that PA could be systemically administered for rapid identification of cutaneous SCC, with potential for further therapeutic development.
Collapse
Affiliation(s)
- Theo Crawford
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia.,Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council (ARC) Centre of Excellence in Convergent BioNano Science and Technology, Queensland Node, The University of Queensland, Brisbane, QLD, Australia
| | - Margaret Veitch
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Jazmina L Gonzalez Cruz
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Nicola Pett
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Ian Brereton
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| | - Yasvir Tesiram
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Sichero L, Rollison DE, Amorrortu RP, Tommasino M. Beta Human Papillomavirus and Associated Diseases. Acta Cytol 2019; 63:100-108. [PMID: 30673666 DOI: 10.1159/000492659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The cutaneous human papillomavirus (HPV), mostly from β- and γ-HPV genus, is ubiquitously distributed throughout the human body and may be part of the commensal flora. The association of β-HPVs and cutaneous squamous cell carcinoma (cSCC) development was initially reported in patients with the rare genetic disorder Epidermodysplasia verruciformis. Likewise, immunosuppressed organ transplant recipients have an increased susceptibility to β-HPV infections in the skin as well as to cSCC development. Although ultraviolet radiation (UVR) is the main risk factor of cSCC, experimental data points toward β-HPVs as co-carcinogens, which appear to be required solely at early stages of skin carcinogenesis by facilitating the accumulation of UVR-induced DNA mutations. Several epidemiological studies relying on different biomarkers of β-HPV infections have also been conducted in immunocompetent individuals to access their association with cSCC development. Additionally, in vivo and in vitro studies are presenting cumulative evidence that E6 and E7 proteins from specific β-HPVs exhibit transforming activities and may collaborate with different environmental factors in promoting carcinogenesis. Nevertheless, further research is crucial to better understand the pathological implications of the broad distribution of these HPVs.
Collapse
Affiliation(s)
- Laura Sichero
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil,
| | - Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
44
|
Nunes EM, Talpe-Nunes V, Sichero L. Epidemiology and biology of cutaneous human papillomavirus. Clinics (Sao Paulo) 2018; 73:e489s. [PMID: 30133564 PMCID: PMC6097087 DOI: 10.6061/clinics/2018/e489s] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/06/2018] [Indexed: 01/16/2023] Open
Abstract
Cutaneous human papillomaviruses (HPVs) include β- and γ-HPVs, in addition to a small fraction of α-HPVs. β-HPVs were first isolated from patients with the rare genetic disorder Epidermodysplasia verruciformis, and they are associated with the development of nonmelanoma skin cancer at sun-exposed skin sites in these individuals. Organ transplant recipients also have greater susceptibility to β-HPV infection of the skin and an increased risk of developing nonmelanoma skin cancer. In both immunosuppressed and immunocompromised individuals, cutaneous HPVs are ubiquitously disseminated throughout healthy skin and may be an intrinsic part of the commensal flora. Functional analysis of E6 and E7 proteins of specific cutaneous HPVs has provided a mechanistic comprehension of how these viruses may induce carcinogenesis. Nevertheless, additional research is crucial to better understand the pathological implications of the broad distribution of these HPVs.
Collapse
Affiliation(s)
- Emily M Nunes
- Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Valéria Talpe-Nunes
- Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Laura Sichero
- Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
45
|
Purdie KJ, Proby CM, Rizvi H, Griffin H, Doorbar J, Sommerlad M, Feltkamp MC, der Meijden EV, Inman GJ, South AP, Leigh IM, Harwood CA. The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions. Front Microbiol 2018; 9:1806. [PMID: 30154763 PMCID: PMC6102365 DOI: 10.3389/fmicb.2018.01806] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Human papillomavirus (HPV) has long been proposed as a cofactor in the pathogenesis of cutaneous squamous cell carcinoma (cSCC). More recently, the striking clinico-pathological features of cSCCs that complicate treatment of metastatic melanoma with inhibitors targeting BRAF mutations (BRAFi) has prompted speculation concerning a pathogenic role for oncogenic viruses. Here, we investigate HPV and human polyomaviruses (HPyV) and correlate with clinical, histologic, and genetic features in BRAFi-associated cSCC. Materials and Methods: Patients receiving BRAFi treatment were recruited at Barts Health NHS Trust. HPV DNA was detected in microdissected frozen samples using reverse line probe technology and degenerate and nested PCR. HPV immunohistochemistry was performed in a subset of samples. Quantitative PCR was performed to determine the presence and viral load of HPyVs with affinity for the skin (HPyV6, HPyV7, HPyV9, MCPyV, and TSPyV). These data were correlated with previous genetic mutational analysis of H, K and NRAS, NOTCH1/2, TP53, CDKN2A, CARD11, CREBBP, TGFBR1/2. Chromosomal aberrations were profiled using single nucleotide polymorphism (SNP) arrays. Results: Forty-five skin lesions from seven patients treated with single agent vemurafenib in 2012–2013 were analyzed: 12 cSCC, 19 viral warts (VW), 2 actinic keratosis (AK), 5 verrucous keratosis/other squamoproliferative (VK/SP) lesions, one melanocytic lesion and 6 normal skin samples. Significant histologic features of viral infection were seen in 10/12 (83%) cSCC. HPV DNA was detected in 18/19 (95%) VW/SP, 9/12 (75%) cSCC, 4/5 (80%) SP, and 3/6 (50%) normal skin samples and in 1/12 cases assessed by immunohistochemistry. HPyV was co-detected in 22/30 (73%) of samples, usually at low viral load, with MCPyV and HPyV7 the most common. SNP arrays confirmed low levels of chromosomal abnormality and there was no significant correlation between HPV or HPyV detection and individual gene mutations or overall mutational burden. Conclusion: Despite supportive clinicopathologic evidence, the role for HPV and HPyV infection in the pathogenesis of BRAFi-induced squamoproliferative lesions remains uncertain. Synergistic oncogenic mechanisms are plausible although speculative. Nonetheless, with the prospect of a significant increase in the adjuvant use of these drugs, further research is justified and may provide insight into the pathogenesis of other BRAFi-associated malignancies.
Collapse
Affiliation(s)
- Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Hasan Rizvi
- Department of Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Heather Griffin
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Doorbar
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Mary Sommerlad
- Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| | - Mariet C Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Els Van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Gareth J Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irene M Leigh
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
46
|
Jung JW, Veitch M, Bridge JA, Overgaard NH, Cruz JL, Linedale R, Franklin ME, Saunders NA, Simpson F, Frazer IH, Steptoe RJ, Wells JW. Clinically-Relevant Rapamycin Treatment Regimens Enhance CD8 + Effector Memory T Cell Function In The Skin and Allow their Infiltration into Cutaneous Squamous Cell Carcinoma. Oncoimmunology 2018; 7:e1479627. [PMID: 30228949 DOI: 10.1080/2162402x.2018.1479627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022] Open
Abstract
Patients receiving immunosuppressive drugs to prevent organ transplant rejection exhibit a greatly increased risk of developing cutaneous squamous cell carcinoma (SCC). However, not all immunosuppressive drugs confer the same risk. Randomised, controlled trials demonstrate that switching renal transplant recipients receiving calcineurin inhibitor-based therapies to mammalian target of rapamycin (mTOR) inhibitors results in a reduced incidence of de novo SSC formation, and can even result in the regression of pre-existing premalignant lesions. However, the contribution played by residual immune function in this setting is unclear. We examined the hypotheses that mTOR inhibitors promote the enhanced differentiation and function of CD8+ memory T cells in the skin. Here, we demonstrate that the long-term oral administration of rapamycin to achieve clinically-relevant whole blood drug target thresholds, creates a "low rapamycin dose" environment in the skin. While both rapamycin and the calcineurin inhibitor tacrolimus elongated the survival of OVA-expressing skin grafts, and inhibited short-term antigen-specific CD8+ T cell responses, rapamycin but not tacrolimus permitted the statistically significant infiltration of CD8+ effector memory T cells into UV-induced SCC lesions. Furthermore, rapamycin uniquely enhanced the number and function of CD8+ effector and central memory T cells in a model of long-term contact hypersensitivity provided that rapamycin was present during the antigen sensitization phase. Thus, our findings suggest that patients switched to mTOR inhibitor regimens likely experience enhanced CD8+ memory T cell function to new antigen-challenges in their skin, which could contribute to their lower risk of de novo SSC formation and regression of pre-existing premalignant lesions.
Collapse
Affiliation(s)
- Ji-Won Jung
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Margaret Veitch
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Jennifer A Bridge
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Nana H Overgaard
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia.,Division of Immunology & Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Jazmina L Cruz
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Richard Linedale
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Michael E Franklin
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| |
Collapse
|
47
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
48
|
Bouwes Bavinck JN, Feltkamp MCW, Green AC, Fiocco M, Euvrard S, Harwood CA, Nasir S, Thomson J, Proby CM, Naldi L, Diphoorn JCD, Venturuzzo A, Tessari G, Nindl I, Sampogna F, Abeni D, Neale RE, Goeman JJ, Quint KD, Halk AB, Sneek C, Genders RE, de Koning MNC, Quint WGV, Wieland U, Weissenborn S, Waterboer T, Pawlita M, Pfister H. Human papillomavirus and posttransplantation cutaneous squamous cell carcinoma: A multicenter, prospective cohort study. Am J Transplant 2018; 18:1220-1230. [PMID: 29024374 PMCID: PMC5947129 DOI: 10.1111/ajt.14537] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 01/25/2023]
Abstract
Organ transplant recipients (OTRs) have a 100-fold increased risk of cutaneous squamous cell carcinoma (cSCC). We prospectively evaluated the association between β genus human papillomaviruses (βPV) and keratinocyte carcinoma in OTRs. Two OTR cohorts without cSCC were assembled: cohort 1 was transplanted in 2003-2006 (n = 274) and cohort 2 was transplanted in 1986-2002 (n = 352). Participants were followed until death or cessation of follow-up in 2016. βPV infection was assessed in eyebrow hair by using polymerase chain reaction-based methods. βPV IgG seroresponses were determined with multiplex serology. A competing risk model with delayed entry was used to estimate cumulative incidence of histologically proven cSCC and the effect of βPV by using a multivariable Cox regression model. Results are reported as adjusted hazard ratios (HRs). OTRs with 5 or more different βPV types in eyebrow hair had 1.7 times the risk of cSCC vs OTRs with 0 to 4 different types (HR 1.7, 95% confidence interval 1.1-2.6). A similar risk was seen with high βPV loads (HR 1.8, 95% confidence interval 1.2-2.8). No significant associations were seen between serum antibodies and cSCC or between βPV and basal cell carcinoma. The diversity and load of βPV types in eyebrow hair are associated with cSCC risk in OTRs, providing evidence that βPV is associated with cSCC carcinogenesis and may present a target for future preventive strategies.
Collapse
Affiliation(s)
| | - Mariet C. W. Feltkamp
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Adele C. Green
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Marta Fiocco
- Department of Medical Statistics and BioinformaticsLeiden University Medical CenterLeidenThe Netherlands,Institute of MathematicsLeiden UniversityLeidenThe Netherlands
| | - Sylvie Euvrard
- Department of DermatologyEdouard Herriot HospitalHospices Civils de LyonLyonFrance
| | - Catherine A. Harwood
- Centre for Cell Biology and Cutaneous ResearchBlizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | - Shaaira Nasir
- Centre for Cell Biology and Cutaneous ResearchBlizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | - Jason Thomson
- Centre for Cell Biology and Cutaneous ResearchBlizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | - Charlotte M. Proby
- Division of Cancer ResearchUniversity of DundeeNinewells Hospital and Medical SchoolDundeeUK
| | - Luigi Naldi
- Department of DermatologyAzienda Ospedaliera papa Giovanni XXIII, and GISED Study CenterBergamoItaly
| | - Janouk C. D. Diphoorn
- Department of DermatologyAzienda Ospedaliera papa Giovanni XXIII, and GISED Study CenterBergamoItaly
| | - Anna Venturuzzo
- Department of DermatologyAzienda Ospedaliera papa Giovanni XXIII, and GISED Study CenterBergamoItaly
| | - Gianpaolo Tessari
- Department of MedicineSection of DermatologyUniversity of Veronac/o Ospedale Civile MaggioreVeronaItaly
| | - Ingo Nindl
- Department of DermatologyUniversity Hospital CharitéSkin Cancer Center CharitéBerlinGermany
| | | | | | | | - Jelle J. Goeman
- Department of Medical Statistics and BioinformaticsLeiden University Medical CenterLeidenThe Netherlands
| | - Koen D. Quint
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anne B. Halk
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Carmen Sneek
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roel E. Genders
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Ulrike Wieland
- Institute of VirologyUniversity of CologneCologneGermany
| | | | - Tim Waterboer
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | | | | | | |
Collapse
|
49
|
Meyers JM, Grace M, Uberoi A, Lambert PF, Munger K. Inhibition of TGF-β and NOTCH Signaling by Cutaneous Papillomaviruses. Front Microbiol 2018; 9:389. [PMID: 29568286 PMCID: PMC5852067 DOI: 10.3389/fmicb.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-β and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-β and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-β and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Jordan M Meyers
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
50
|
Podgórska M, Ołdak M, Marthaler A, Fingerle A, Walch-Rückheim B, Lohse S, Müller CSL, Vogt T, Ustav M, Wnorowski A, Malejczyk M, Majewski S, Smola S. Chronic Inflammatory Microenvironment in Epidermodysplasia Verruciformis Skin Lesions: Role of the Synergism Between HPV8 E2 and C/EBPβ to Induce Pro-Inflammatory S100A8/A9 Proteins. Front Microbiol 2018; 9:392. [PMID: 29563902 PMCID: PMC5845987 DOI: 10.3389/fmicb.2018.00392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
Abstract
Persistent genus β-HPV (human papillomavirus) infection is a major co-factor for non-melanoma skin cancer in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). Malignant EV lesions are particularly associated with HPV type 5 or 8. There is clinical and molecular evidence that HPV8 actively suppresses epithelial immunosurveillance by interfering with the recruitment of Langerhans cells, which may favor viral persistence. Mechanisms how persistent HPV8 infection promotes the carcinogenic process are, however, less well understood. In various tumor types chronic inflammation has a central role in tumor progression. The calprotectin complex consisting of S100A8 and S100A9 proteins has recently been identified as key driver of chronic and tumor promoting inflammation in skin carcinogenesis. It induces chemotaxis of neutrophil granulocytes and modulates inflammatory as well as immune responses. In this study, we demonstrate that skin lesions of EV-patients are massively infiltrated by inflammatory cells, including CD15+ granulocytes. At the same time we observed a very strong expression of S100A8 and S100A9 proteins in lesional keratinocytes, which was mostly confined to the suprabasal layers of the epidermis. Both proteins were hardly detected in non-lesional skin. Further experiments revealed that the HPV8 oncoproteins E6 and E7 were not involved in S100A8/A9 up-regulation. They rather suppressed differentiation-induced S100A8/A9 expression. In contrast, the viral transcription factor E2 strongly enhanced PMA-mediated S100A8/A9 up-regulation in primary human keratinocytes. Similarly, a tremendous up-regulation of both S100 proteins was observed, when minute amounts of the PMA-inducible CCAAT/enhancer binding protein β (C/EBPβ), which is expressed at low levels in the suprabasal layers of the epidermis, were co-expressed together with HPV8 E2. This confirmed our previous observation that C/EBPβ interacts and functionally synergizes with the HPV8 E2 protein in differentiation-dependent gene expression. Potent synergistic up-regulation of S100A8/A9 was seen at transcriptional and protein levels. S100A8/A9 containing supernatants from keratinocytes co-expressing HPV8 E2 and C/EBPβ significantly induced chemotaxis of granulocytes in migration assays supporting the relevance of our finding. In conclusion, our data suggest that the HPV8 E2 protein actively contributes to the recruitment of myeloid cells into EV skin lesions, which may support chronic inflammation and progression to skin cancer.
Collapse
Affiliation(s)
- Marta Podgórska
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University Medical Center, Homburg, Germany.,Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Anna Marthaler
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Alina Fingerle
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | | | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Cornelia S L Müller
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Mart Ustav
- Icosagen Cell Factory OÜ, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Artur Wnorowski
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Magdalena Malejczyk
- Diagnostic Laboratory of STDs, Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|