1
|
Turner ME, Che J, Mirhaidari GJM, Kennedy CC, Blum KM, Rajesh S, Zbinden JC, Breuer CK, Best CA, Barker JC. The lysosomal trafficking regulator "LYST": an 80-year traffic jam. Front Immunol 2024; 15:1404846. [PMID: 38774881 PMCID: PMC11106369 DOI: 10.3389/fimmu.2024.1404846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.
Collapse
Affiliation(s)
- Mackenzie E. Turner
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jingru Che
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine C. Kennedy
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Sahana Rajesh
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jenny C. Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Plastic and Reconstructive Surgery, The Ohio State University Medical Center, Columbus, OH, United States
| |
Collapse
|
2
|
Polakowski N, Sarker MAK, Hoang K, Boateng G, Rushing AW, Kendle W, Pique C, Green PL, Panfil AR, Lemasson I. HBZ upregulates myoferlin expression to facilitate HTLV-1 infection. PLoS Pathog 2023; 19:e1011202. [PMID: 36827461 PMCID: PMC9994761 DOI: 10.1371/journal.ppat.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Md Abu Kawsar Sarker
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Georgina Boateng
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Amanda W. Rushing
- Catawba College, Department of Biology, Salisbury, North Carolina, United States of America
| | - Wesley Kendle
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick L. Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda R. Panfil
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
3
|
Kandel SR, Luo X, He JJ. Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4 + T cells. J Neurovirol 2022; 28:552-565. [PMID: 36001227 DOI: 10.1007/s13365-022-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
HIV infects astrocytes in a restricted manner but leads to abundant expression of Nef, a major viral factor for HIV replication and disease progression. However, the roles of Nef in HIV gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells remain largely unclear. In this study, we attempted to address these issues by transfecting human primary astrocytes with HIV molecular clones with intact Nef and without Nef (a nonsense Nef mutant) and comparing gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells MT4. First, we found that lack of Nef expression led to increased extracellular virus production from astrocytes and intracellular viral protein and RNA expression in astrocytes. Using a HIV LTR-driven luciferase reporter gene assay, we showed that ectopic Nef expression alone inhibited the HIV LTR promoter activity in astrocytes. Consistent with the previously established function of Nef, we showed that the infectivity of HIV derived from astrocytes with Nef expression was significantly higher than that with no Nef expression. Next, we performed the co-culture assay to determine HIV transfer from astrocytes transfected to MT4. We showed that lack of Nef expression led to significant increase in HIV transfer from astrocytes to MT4 using two HIV clones. We also used Nef-null HIV complemented with Nef in trans in the co-culture assay and demonstrated that Nef expression led to significantly decreased HIV transfer from astrocytes to MT4. Taken together, these findings support a negative role of Nef in HIV replication and pathogenesis in astrocytes.
Collapse
Affiliation(s)
- Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Xiaoyu Luo
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
4
|
Hoffman HK, Aguilar RS, Clark AR, Groves NS, Pezeshkian N, Bruns MM, van Engelenburg SB. Endocytosed HIV-1 Envelope Glycoprotein Traffics to Rab14 + Late Endosomes and Lysosomes to Regulate Surface Levels in T-Cell Lines. J Virol 2022; 96:e0076722. [PMID: 35770989 PMCID: PMC9327703 DOI: 10.1128/jvi.00767-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Production of infectious HIV-1 particles requires incorporation of the viral envelope glycoprotein (Env) at the plasma membrane (PM) of infected CD4+ T cells. Env trafficking to the PM exposes viral epitopes that can be exploited by the host immune system; however, HIV-1 can evade this response by endocytosis of excess Env from the PM. The fate of Env after internalization remains unclear, with evidence suggesting several different vesicular trafficking steps may be involved, including recycling pathways. To date, there have been very few studies documenting the trafficking pathways of native Env in infected T cells. Furthermore, it remains unclear whether there are T-cell-specific endosomal pathways regulating the fate of endocytic Env. Here, we use a pulse-labeling approach with a monovalent anti-Env Fab probe to characterize the trafficking of internalized Env within infected CD4+ T-cell lines, together with CRISPR/Cas9-mediated endogenous protein tagging, to assess the role of host cell Rab GTPases in Env trafficking. We show that endocytosed Env traffics to Rab14+ compartments that possess hallmarks of late endosomes and lysosomes. We also demonstrate that Env can recycle back to the PM, although we find that recycling does not occur at high rates when compared to the model recycling protein transferrin. These results help to resolve open questions about the fate and relevance of endocytosed Env in HIV-infected cells and suggest a novel role for Rab14 in a cell-type-specific late-endosomal/lysosomal trafficking pathway in T cells. IMPORTANCE HIV-1 envelope glycoprotein (Env) evades immune neutralization through many mechanisms. One immune evasion strategy may result from the internalization of excess surface-exposed Env to prevent antibody-dependent cellular cytotoxicity or neutralization. Characterization of the fate of endocytosed Env is critical to understand which vesicular pathways could be targeted to promote display of Env epitopes to the immune system. In this study, we characterize the endocytic fate of native Env, expressed from infected human T-cell lines. We demonstrate that Env is rapidly trafficked to a late-endosome/lysosome-like compartment and can be recycled to the cell surface for incorporation into virus assembly sites. This study implicates a novel intracellular compartment, marked by host-cell Rab14 GTPases, for the sequestration of Env. Therapeutic approaches aimed at mobilizing this intracellular pool of Env could lead to stronger immune control of HIV-1 infection via antibody-dependent cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Rebekah S. Aguilar
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Austin R. Clark
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Nicholas S. Groves
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Nairi Pezeshkian
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Merissa M. Bruns
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Schuyler B. van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| |
Collapse
|
5
|
Lopez P, Ajibola O, Pagliuzza A, Zayats R, Koh WH, Herschhorn A, Chomont N, Murooka TT. T cell migration potentiates HIV infection by enhancing viral fusion and integration. Cell Rep 2022; 38:110406. [PMID: 35196491 DOI: 10.1016/j.celrep.2022.110406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/27/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
T cells actively migrate along reticular networks within lymphoid organs in search for cognate antigen, but how these behaviors impact HIV entry and infection is unclear. Here, we show that migratory T cells in 3D collagen matrix display significantly enhanced infection and integration by cell-free R5-tropic lab adapted and transmitted/founder molecular HIV clones in the absence of exogenous cytokines or cationic polymers. Using two different collagen matrices that either support or restrict T cell migration, we observe high levels of HIV fusion in migratory T cells, whereas non-motile T cells display low viral entry and integration. Motile T cells were less sensitive to combination antiretroviral drugs and were able to freely migrate into regions with high HIV densities, resulting in high infection rates. Together, our studies indicate that the environmental context in which initial HIV-T cell encounters occur modulates HIV-1 entry and integration efficiencies.
Collapse
Affiliation(s)
- Paul Lopez
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Amelie Pagliuzza
- Department of Microbiology, Infectiology and Immunology, Centre de recherche du CHUM and Université de Montréal, Montreal, QC, Canada
| | - Romaniya Zayats
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Wan Hon Koh
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Alon Herschhorn
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Centre de recherche du CHUM and Université de Montréal, Montreal, QC, Canada
| | - Thomas T Murooka
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
6
|
Basyuk E, Rage F, Bertrand E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol 2021; 18:1221-1237. [PMID: 33111627 PMCID: PMC8354613 DOI: 10.1080/15476286.2020.1842631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transport of mRNAs is an important step of gene expression, which brings the genetic message from the DNA in the nucleus to a precise cytoplasmic location in a regulated fashion. Perturbation of this process can lead to pathologies such as developmental and neurological disorders. In this review, we discuss recent advances in the field of mRNA transport made using single molecule fluorescent imaging approaches. We present an overview of these approaches in fixed and live cells and their input in understanding the key steps of mRNA journey: transport across the nucleoplasm, export through the nuclear pores and delivery to its final cytoplasmic location. This review puts a particular emphasis on the coupling of mRNA transport with translation, such as localization-dependent translational regulation and translation-dependent mRNA localization. We also highlight the recently discovered translation factories, and how cellular and viral RNAs can hijack membrane transport systems to travel in the cytoplasm.
Collapse
Affiliation(s)
- Eugenia Basyuk
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS-UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
- Equipe Labélisée Ligue Nationale Contre Le Cancer, Montpellier, France
| |
Collapse
|
7
|
Abstract
The cellular surfaceome and its residing extracellularly exposed proteins are involved in a multitude of molecular signaling processes across the viral infection cycle. Successful viral propagation, including viral entry, immune evasion, virion release and viral spread rely on dynamic molecular interactions with the surfaceome. Decoding of these viral-host surfaceome interactions using advanced technologies enabled the discovery of fundamental new functional insights into cellular and viral biology. In this review, we highlight recently developed experimental strategies, with a focus on spatial proteotyping technologies, aiding in the rational design of theranostic strategies to combat viral infections.
Collapse
|
8
|
Abstract
A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.
Collapse
Affiliation(s)
- Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
9
|
Epstein-Barr Virus Exploits the Secretory Pathway to Release Virions. Microorganisms 2020; 8:microorganisms8050729. [PMID: 32414202 PMCID: PMC7285239 DOI: 10.3390/microorganisms8050729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023] Open
Abstract
Herpesvirus egress mechanisms are strongly associated with intracellular compartment remodeling processes. Previously, we and other groups have described that intracellular compartments derived from the Golgi apparatus are the maturation sites of Epstein-Barr virus (EBV) virions. However, the mechanism by which these virions are released from the host cell to the extracellular milieu is poorly understood. Here, I adapted two independent induction systems of the EBV lytic cycle in vitro, in the context of Rab GTPase silencing, to characterize the EBV release pathway. Immunofluorescence staining revealed that p350/220, the major EBV glycoprotein, partially co-localized with three Rab GTPases: Rab8a, Rab10, and Rab11a. Furthermore, the knockdown of these Rab GTPases promoted the intracellular accumulation of viral structural proteins by inhibiting its distribution to the plasma membrane. Finally, the knockdown of the Rab8a, Rab10, and Rab11a proteins suppressed the release of EBV infectious virions. Taken together, these findings support the hypothesis that mature EBV virions are released from infected cells to the extracellular milieu via the secretory pathway, as well as providing new insights into the EBV life cycle.
Collapse
|
10
|
Dupont M, Sattentau QJ. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 2020; 12:E492. [PMID: 32354203 PMCID: PMC7290394 DOI: 10.3390/v12050492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens infect macrophages as part of their intracellular life cycle. This is particularly true for viruses, of which HIV-1 is one of the best studied. HIV-1 infection of macrophages has important consequences for viral persistence and pathogenesis, but the mechanisms of macrophage infection remain to be fully elucidated. Despite expressing viral entry receptors, macrophages are inefficiently infected by cell-free HIV-1 virions, whereas direct cell-cell spread is more efficient. Different modes of cell-cell spread have been described, including the uptake by macrophages of infected T cells and the fusion of infected T cells with macrophages, both leading to macrophage infection. Cell-cell spread can also transmit HIV-1 between macrophages and from macrophages to T cells. Here, we describe the current state of the field concerning the cell-cell spread of HIV-1 to and from macrophages, discuss mechanisms, and highlight potential in vivo relevance.
Collapse
Affiliation(s)
- Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
11
|
Torralba D, Martín-Cófreces NB, Sanchez-Madrid F. Mechanisms of polarized cell-cell communication of T lymphocytes. Immunol Lett 2019; 209:11-20. [PMID: 30954509 DOI: 10.1016/j.imlet.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 01/07/2023]
Abstract
Cell-cell communication comprises a variety of molecular mechanisms that immune cells use to respond appropriately to diverse pathogenic stimuli. T lymphocytes polarize in response to different stimuli, such as cytokines, adhesion to specific ligands and cognate antigens presented in the context of MHC. Polarization takes different shapes, from migratory front-back polarization to the formation of immune synapses (IS). The formation of IS between a T cell and an antigen-presenting cell involves early events of receptor-ligand interaction leading to the reorganization of the plasma membrane and the cytoskeleton to orchestrate vesicular and endosomal traffic and directed secretion of several types of mediators, including cytokines and nanovesicles. Cell polarization involves the repositioning of many subcellular organelles, including the endosomal compartment, which becomes an effective platform for the shuttling of molecules as vesicular cargoes that lately will be secreted to transfer information to antigen-presenting cells. Overall, the polarized interaction between a T cell and APC modifies the recipient cell in different ways that are likely lineage-dependent, e.g. dendritic cells, B cells or even other T cells. In this review, we will discuss the mechanisms that mediate the polarization of different membrane receptors, cytoskeletal components and organelles in T cells in a variety of immune contexts.
Collapse
Affiliation(s)
- D Torralba
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - N B Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - F Sanchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
12
|
Equine Herpesvirus 1 Bridles T Lymphocytes To Reach Its Target Organs. J Virol 2019; 93:JVI.02098-18. [PMID: 30651370 PMCID: PMC6430527 DOI: 10.1128/jvi.02098-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
Equine herpesvirus 1 (EHV1) is an ancestral alphaherpesvirus that is related to herpes simplex virus 1 and causes respiratory, reproductive, and neurological disorders in Equidae. EHV1 is indisputably a master at exploiting leukocytes to reach its target organs, accordingly evading the host immunity. However, the role of T lymphocytes in cell-associated viremia remains poorly understood. Here we show that activated T lymphocytes efficiently become infected and support viral replication despite the presence of protective immunity. We demonstrate a restricted expression of viral proteins on the surfaces of infected T cells, which prevents immune recognition. In addition, we indicate a hampered release of progeny, which results in the accumulation of nucleocapsids in the T cell nucleus. Upon engagement with the target endothelium, late viral proteins orchestrate viral synapse formation and viral transfer to the contact cell. Our findings have significant implications for the understanding of EHV1 pathogenesis, which is essential for developing innovative therapies to prevent the devastating clinical symptoms of infection. Equine herpesvirus 1 (EHV1) replicates in the respiratory epithelium and disseminates through the body via a cell-associated viremia in leukocytes, despite the presence of neutralizing antibodies. “Hijacked” leukocytes, previously identified as monocytic cells and T lymphocytes, transmit EHV1 to endothelial cells of the endometrium or central nervous system, causing reproductive (abortigenic variants) or neurological (neurological variants) disorders. In the present study, we questioned the potential route of EHV1 infection of T lymphocytes and how EHV1 misuses T lymphocytes as a vehicle to reach the endothelium of the target organs in the absence or presence of immune surveillance. Viral replication was evaluated in activated and quiescent primary T lymphocytes, and the results demonstrated increased infection of activated versus quiescent, CD4+ versus CD8+, and blood- versus lymph node-derived T cells. Moreover, primarily infected respiratory epithelial cells and circulating monocytic cells efficiently transferred virions to T lymphocytes in the presence of neutralizing antibodies. Albeit T-lymphocytes express all classes of viral proteins early in infection, the expression of viral glycoproteins on their cell surface was restricted. In addition, the release of viral progeny was hampered, resulting in the accumulation of viral nucleocapsids in the T cell nucleus. During contact of infected T lymphocytes with endothelial cells, a late viral protein(s) orchestrates T cell polarization and synapse formation, followed by anterograde dynein-mediated transport and transfer of viral progeny to the engaged cell. This represents a sophisticated but efficient immune evasion strategy to allow transfer of progeny virus from T lymphocytes to adjacent target cells. These results demonstrate that T lymphocytes are susceptible to EHV1 infection and that cell-cell contact transmits infectious virus to and from T lymphocytes. IMPORTANCE Equine herpesvirus 1 (EHV1) is an ancestral alphaherpesvirus that is related to herpes simplex virus 1 and causes respiratory, reproductive, and neurological disorders in Equidae. EHV1 is indisputably a master at exploiting leukocytes to reach its target organs, accordingly evading the host immunity. However, the role of T lymphocytes in cell-associated viremia remains poorly understood. Here we show that activated T lymphocytes efficiently become infected and support viral replication despite the presence of protective immunity. We demonstrate a restricted expression of viral proteins on the surfaces of infected T cells, which prevents immune recognition. In addition, we indicate a hampered release of progeny, which results in the accumulation of nucleocapsids in the T cell nucleus. Upon engagement with the target endothelium, late viral proteins orchestrate viral synapse formation and viral transfer to the contact cell. Our findings have significant implications for the understanding of EHV1 pathogenesis, which is essential for developing innovative therapies to prevent the devastating clinical symptoms of infection.
Collapse
|
13
|
Wang L, Izadmehr S, Kamau E, Kong XP, Chen BK. Sequential trafficking of Env and Gag to HIV-1 T cell virological synapses revealed by live imaging. Retrovirology 2019; 16:2. [PMID: 30646921 PMCID: PMC6334456 DOI: 10.1186/s12977-019-0464-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND HIV infection is enhanced by cell adhesions that form between infected and uninfected T cells called virological synapses (VS). VS are initiated by an interaction between Env and CD4 on cell surfaces and result in the recruitment of virus assembly to the site of cell-cell contact. However, the recruitment of Env to the VS and its relationship to Gag recruitment is not well defined. RESULTS To study the trafficking of HIV-1 Env through the VS, we constructed a molecular clone of HIV carrying a green fluorescent protein-Env fusion protein called, HIV Env-isfGFP-∆V1V2. The Env-isfGFP-∆V1V2 fusion protein does not produce virus particles on its own, but can be rescued by cotransfection with full-length HIV constructs and produce virus particles that package the fluorescent Env. These rescued fluorescent Env can participate in VS formation and can be used to directly image CD4-dependent Env transfer across VS from donor to target cells. The movements of fluorescently tagged Gag and Env to the VS and transfer into target cells can be also tracked through live imaging. Time lapse live imaging reveals evidence of limited Env accumulation at the site of cell-cell contact shortly after cell adhesion, followed by Gag re-distribution to contact area. Both Gag and Env can be recruited to form button-like spots characteristic of VS. CONCLUSIONS Env and Gag are recruited to the VS in a coordinated temporal sequence and subsequently transfer together across the synapse into the target cell. Env accumulations, when observed, are earlier than Gag re-distribution to the contact area during formation of VS.
Collapse
Affiliation(s)
- Lili Wang
- 0000 0001 0670 2351grid.59734.3cDepartment of Medicine, Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Sudeh Izadmehr
- 0000 0001 0670 2351grid.59734.3cDepartment of Medicine, Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Edwin Kamau
- 0000 0004 1936 8753grid.137628.9Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016 USA
| | - Xiang-Peng Kong
- 0000 0004 1936 8753grid.137628.9Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016 USA
| | - Benjamin K. Chen
- 0000 0001 0670 2351grid.59734.3cDepartment of Medicine, Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 USA
| |
Collapse
|
14
|
Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology 2018; 15:51. [PMID: 30055632 PMCID: PMC6064125 DOI: 10.1186/s12977-018-0434-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
HIV-1 spreads through contacts between infected and target cells. Polarized viral budding at the contact site forms the virological synapse. Additional cellular processes, such as nanotubes, filopodia, virus accumulation in endocytic or phagocytic compartments promote efficient viral propagation. Cell-to-cell transmission allows immune evasion and likely contributes to HIV-1 spread in vivo. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) defeat the majority of circulating viral strains by binding to the viral envelope glycoprotein (Env). Several bNAbs have entered clinical evaluation during the last years. It is thus important to understand their mechanism of action and to determine how they interact with infected cells. In experimental models, HIV-1 cell-to-cell transmission is sensitive to neutralization, but the effect of antibodies is often less marked than during cell-free infection. This may be due to differences in the conformation or accessibility of Env at the surface of virions and cells. In this review, we summarize the current knowledge on HIV-1 cell-to-cell transmission and discuss the role of bNAbs during this process.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France. .,CNRS-UMR3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| |
Collapse
|
15
|
Jackson L, Hunter J, Cele S, Ferreira IM, Young AC, Karim F, Madansein R, Dullabh KJ, Chen CY, Buckels NJ, Ganga Y, Khan K, Boulle M, Lustig G, Neher RA, Sigal A. Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death. eLife 2018; 7:30134. [PMID: 29555018 PMCID: PMC5896883 DOI: 10.7554/elife.30134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
HIV has been reported to be cytotoxic in vitro and in lymph node infection models. Using a computational approach, we found that partial inhibition of transmissions of multiple virions per cell could lead to increased numbers of live infected cells. If the number of viral DNA copies remains above one after inhibition, then eliminating the surplus viral copies reduces cell death. Using a cell line, we observed increased numbers of live infected cells when infection was partially inhibited with the antiretroviral efavirenz or neutralizing antibody. We then used efavirenz at concentrations reported in lymph nodes to inhibit lymph node infection by partially resistant HIV mutants. We observed more live infected lymph node cells, but with fewer HIV DNA copies per cell, relative to no drug. Hence, counterintuitively, limited attenuation of HIV transmission per cell may increase live infected cell numbers in environments where the force of infection is high. The HIVvirus infects cells of the immune system. Once inside, it hijacks the cellular molecular machineries to make more copies of itself, which are then transmitted to new host cells. HIV eventually kills most cells it infects, either in the steps leading to the infection of the cell, or after the cell is already producing virus. HIV can spread between cells in two ways, known as cell-free or cell-to-cell. In the first, individual viruses are released from infected cells and move randomly through the body in the hope of finding new cells to infect. In the second, infected cells interact directly with uninfected cells. The second method is often much more successful at infecting new cells since they are exposed to multiple virus particles. HIV infections can be controlled by using combinations of antiretroviral drugs, such as efavirenz, to prevent the virus from making more of itself. With a high enough dose, the drugs can in theory completely stop HIV infections, unless the virus becomes resistant to treatment. However, some patients continue to use these drugs even after the virus they are infected with develops resistance. It is not clear what effect taking ineffective, or partially effective, drugs has on how HIV progresses. Using efavirenz, Jackson, Hunter et al. partially limited the spread of HIV between human cells grown in the laboratory. The experiments mirrored the situation where a partially resistant HIV strain spreads through the body. The results show that the success of cell-free infection is reduced as drug dose increases. Yet paradoxically, in cell-to-cell infection, the presence of drug caused more cells to become infected. This can be explained by the fact that, in cell-to-cell spread, each cell is exposed to multiple copies of the virus. The drug dose reduced the number of viral copies per cell without stopping the virus from infecting completely. The reduced number of viral copies per cell made it more likely that infected cells would survive the infection long enough to produce virus particles themselves. Viruses that can kill cells, such as HIV, must balance the need to make more of themselves against the speed that they kill their host cell to maximize the number of infected cells. If transmission between cells is too effective and too many virus particles are delivered to the new cell, the virus may not manage to infect new hosts before killing the old ones. These findings highlight this delicate balance. They also indicate a potential issue in using drugs to treat partially resistant virus strains. Without care, these treatments could increase the number of infected cells in the body, potentially worsening the effects of living with HIV.
Collapse
Affiliation(s)
- Laurelle Jackson
- Africa Health Research Institute, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jessica Hunter
- Africa Health Research Institute, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
| | - Isabella Markham Ferreira
- Africa Health Research Institute, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew C Young
- Africa Health Research Institute, Durban, South Africa.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban, South Africa.,Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Kaylesh J Dullabh
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban, South Africa
| | - Chih-Yuan Chen
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban, South Africa
| | - Noel J Buckels
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
| | - Mikael Boulle
- Africa Health Research Institute, Durban, South Africa
| | - Gila Lustig
- Africa Health Research Institute, Durban, South Africa
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
16
|
Narasimhulu VGS, Bellamy-McIntyre AK, Laumaea AE, Lay CS, Harrison DN, King HAD, Drummer HE, Poumbourios P. Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell-cell viral transmission and cell-cell fusion. J Biol Chem 2018; 293:6099-6120. [PMID: 29496992 DOI: 10.1074/jbc.ra117.000537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
HIV-1 is spread by cell-free virions and by cell-cell viral transfer. We asked whether the structure and function of a broad neutralizing antibody (bNAb) epitope, the membrane-proximal ectodomain region (MPER) of the viral gp41 transmembrane glycoprotein, differ in cell-free and cell-cell-transmitted viruses and whether this difference could be related to Ab neutralization sensitivity. Whereas cell-free viruses bearing W666A and I675A substitutions in the MPER lacked infectivity, cell-associated mutant viruses were able to initiate robust spreading infection. Infectivity was restored to cell-free viruses by additional substitutions in the cytoplasmic tail (CT) of gp41 known to disrupt interactions with the viral matrix protein. We observed contrasting effects on cell-free virus infectivity when W666A was introduced to two transmitted/founder isolates, but both mutants could still mediate cell-cell spread. Domain swapping indicated that the disparate W666A phenotypes of the cell-free transmitted/founder viruses are controlled by sequences in variable regions 1, 2, and 4 of gp120. The sequential passaging of an MPER mutant (W672A) in peripheral blood mononuclear cells enabled selection of viral revertants with loss-of-glycan suppressor mutations in variable region 1, suggesting a functional interaction between variable region 1 and the MPER. An MPER-directed bNAb neutralized cell-free virus but not cell-cell viral spread. Our results suggest that the MPER of cell-cell-transmitted virions has a malleable structure that tolerates mutagenic disruption but is not accessible to bNAbs. In cell-free virions, interactions mediated by the CT impose an alternative MPER structure that is less tolerant of mutagenic alteration and is efficiently targeted by bNAbs.
Collapse
Affiliation(s)
- Vani G S Narasimhulu
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Anna K Bellamy-McIntyre
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Departments of Microbiology and
| | - Annamarie E Laumaea
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Chan-Sien Lay
- Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David N Harrison
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004
| | - Hannah A D King
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Heidi E Drummer
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and.,the Departments of Microbiology and
| | - Pantelis Poumbourios
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004, .,the Departments of Microbiology and.,Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
19
|
Futsch N, Mahieux R, Dutartre H. HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Viruses 2017; 10:v10010001. [PMID: 29267225 PMCID: PMC5795414 DOI: 10.3390/v10010001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Going back to their discovery in the early 1980s, both the Human T-cell Leukemia virus type-1 (HTLV-1) and the Human Immunodeficiency Virus type-1 (HIV-1) greatly fascinated the virology scene, not only because they were the first human retroviruses discovered, but also because they were associated with fatal diseases in the human population. In almost four decades of scientific research, both viruses have had different fates, HTLV-1 being often upstaged by HIV-1. However, although being very close in terms of genome organization, cellular tropism, and viral replication, HIV-1 and HTLV-1 are not completely commutable in terms of treatment, especially because of the opposite fate of the cells they infect: death versus immortalization, respectively. Nowadays, the antiretroviral therapies developed to treat HIV-1 infected individuals and to limit HIV-1 spread among the human population have a poor or no effect on HTLV-1 infected individuals, and thus, do not prevent the development of HTLV-1-associated diseases, which still lack highly efficient treatments. The present review mainly focuses on the course of HTLV-1 infection, from the initial infection of the host to diseases development and associated treatments, but also investigates HIV-1/HTLV-1 co-infection events and their impact on diseases development.
Collapse
Affiliation(s)
- Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| |
Collapse
|
20
|
Ren H, Elgner F, Himmelsbach K, Akhras S, Jiang B, Medvedev R, Ploen D, Hildt E. Identification of syntaxin 4 as an essential factor for the hepatitis C virus life cycle. Eur J Cell Biol 2017. [PMID: 28624237 DOI: 10.1016/j.ejcb.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although there is evidence that multivesicular bodies (MVBs) are involved in the release of hepatitis C virus (HCV), many aspects of HCV release are still not fully understood. The amount of α-taxilin that prevents SNARE (soluble N-ethylmaleimidesensitive factor attachment protein receptor) complex formation by binding to free syntaxin 4 is reduced in HCV-positive cells. Therefore, it was analyzed whether the t-SNARE protein syntaxin 4 which mediates vesicles fusion is involved in the HCV life cycle. HCV-positive cells possess an increased amount of syntaxin 4 protein, although the amount of syntaxin 4-specific transcripts is decreased in HCV-positive Huh7.5 cells and in HCV-infected primary human hepatocytes. In HCV-positive cells a significant longer half-life of syntaxin 4 was found that overcompensates for the decreased expression and leads to the elevated level of syntaxin 4. Overexpression of syntaxin 4 reduces the intracellular amount of infectious viral particles by facilitating viral release, while silencing of syntaxin 4 expression using specific siRNAs inhibits the release of HCV particles and so leads to an increase in the intracellular amount of infectious viral particles. This indicates that HCV uses a SNARE-dependent pathway for viral release. Confocal immunofluorescence microscopy revealed a colocalization of syntaxin 4 with a MVB-specific marker, exosomes and HCV core, which suggests a fraction of syntaxin 4 is associated with exosomes loaded with HCV. Altogether, it is assumed that syntaxin 4 is a novel essential cellular factor for the release of HCV.
Collapse
Affiliation(s)
- Huimei Ren
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Sami Akhras
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Bingfu Jiang
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Regina Medvedev
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Daniela Ploen
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany; DZIF-German Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
21
|
Titanji BK, Pillay D, Jolly C. Combination antiretroviral therapy and cell-cell spread of wild-type and drug-resistant human immunodeficiency virus-1. J Gen Virol 2017; 98:821-834. [PMID: 28141491 PMCID: PMC5657029 DOI: 10.1099/jgv.0.000728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/27/2017] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) disseminates between T cells either by cell-free infection or by highly efficient direct cell-cell spread. The high local multiplicity that characterizes cell-cell infection causes variability in the effectiveness of antiretroviral drugs applied as single agents. Whereas protease inhibitors (PIs) are effective inhibitors of HIV-1 cell-cell and cell-free infection, some reverse transcriptase inhibitors (RTIs) show reduced potency; however, antiretrovirals are not administered as single agents and are used clinically as combination antiretroviral therapy (cART). Here we explored the efficacy of PI- and RTI-based cART against cell-cell spread of wild-type and drug-resistant HIV-1 strains. Using a quantitative assay to measure cell-cell spread of HIV-1 between T cells, we evaluated the efficacy of different clinically relevant drug combinations. We show that combining PIs and RTIs improves the potency of inhibition of HIV-1 and effectively blocks both cell-free and cell-cell spread. Combining drugs that alone are poor inhibitors of cell-cell spread markedly improves HIV-1 inhibition, demonstrating that clinically relevant combinations of ART can inhibit this mode of HIV-1 spread. Furthermore, comparison of wild-type and drug-resistant viruses reveals that PI- and RTI-resistant viruses have a replicative advantage over wild-type virus when spreading by cell-cell means in the presence of cART, suggesting that in the context of inadequate drug combinations or drug resistance, cell-cell spread could potentially allow for ongoing viral replication.
Collapse
Affiliation(s)
- Boghuma Kabisen Titanji
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Africa Centre for Health and Population Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy. J Virol 2017; 91:JVI.01605-16. [PMID: 27847357 PMCID: PMC5215336 DOI: 10.1128/jvi.01605-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses.
Collapse
|
23
|
Differences in Env and Gag protein expression patterns and epitope availability in feline immunodeficiency virus infected PBMC compared to infected and transfected feline model cell lines. Virus Res 2017; 227:249-260. [PMID: 27836726 DOI: 10.1016/j.virusres.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 11/21/2022]
Abstract
Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission.
Collapse
|
24
|
HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell. PLoS Pathog 2016; 12:e1005964. [PMID: 27812216 PMCID: PMC5094736 DOI: 10.1371/journal.ppat.1005964] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. How quickly infection occurs should be an important determinant of viral fitness, but mechanisms which could accelerate the onset of viral gene expression were previously undefined. In this work we use time-lapse microscopy to quantify the timing of the HIV viral cycle and show that onset of viral gene expression can be substantially accelerated. This occurs during cell-to-cell spread of HIV, a mode of directed viral infection where multiple virions are transmitted between cells. Surprisingly, we found that neither cooperativity between infecting viruses, nor trans-acting factors from already infected cells, influence the timing of infection. Rather, we show experimentally that a more rapid onset of infection is explained by a first-past-the-post mechanism, where the fastest expressing virus out of the infecting virus pool sets the time for the onset of viral gene expression of an individual cell independently of other infections of the same cell. Fast onset of viral gene expression in cell-to-cell spread may play an important role in seeding the HIV reservoir, which rapidly makes infection irreversible.
Collapse
|
25
|
Starling S, Jolly C. LFA-1 Engagement Triggers T Cell Polarization at the HIV-1 Virological Synapse. J Virol 2016; 90:9841-9854. [PMID: 27558417 PMCID: PMC5068534 DOI: 10.1128/jvi.01152-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/15/2016] [Indexed: 12/01/2022] Open
Abstract
HIV-1 efficiently disseminates by cell-cell spread at intercellular contacts called virological synapses (VS), where the virus preferentially assembles and buds. Cell-cell contact triggers active polarization of organelles and viral proteins within infected cells to the contact site to support efficient VS formation and HIV-1 spread; critically, however, which cell surface protein triggers contact-induced polarization at the VS remains unclear. Additionally, the mechanism by which the HIV-1 envelope glycoprotein (Env) is recruited to the VS remains ill defined. Here, we use a reductionist bead-coupled antibody assay as a model of the VS and show that cross-linking the integrin LFA-1 alone is sufficient to induce active T cell polarization and recruitment of the microtubule organizing center (MTOC) in HIV-1-infected cells. Mutant cell lines coupled with inhibitors demonstrated that LFA-1-induced polarization was dependent on the T cell kinase ZAP70. Notably, immunofluorescent staining of viral proteins revealed an accumulation of surface Env at sites of LFA-1 engagement, with intracellular Env localized to a Golgi compartment proximal to the polarized MTOC. Furthermore, blocking LFA-1-induced MTOC polarization through ZAP70 inhibition prevented intracellular Env polarization. Taken together, these data reveal that LFA-1 is a key determinant in inducing dynamic T cell remodeling to the VS and suggest a model in which LFA-1 engagement triggers active polarization of the MTOC and the associated Env-containing secretory apparatus to sites of cell-cell contact to support polarized viral assembly and egress for efficient cell-cell spread. IMPORTANCE HIV-1 causes AIDS by spreading within immune cells and depletion of CD4 T lymphocytes. Rapid spread between these cells occurs by highly efficient cell-cell transmission that takes place at virological synapses (VS). VS are characterized by striking T cell remodeling that is spatially associated with polarized virus assembly and budding at sites of cell contact. Here, we show that the integrin LFA-1 triggers organelle polarization and viral protein recruitment, facilitating formation of the VS, and that this requires the T cell kinase ZAP70. Taken together, these data suggest a mechanism by which HIV-1-infected T cells sense and respond to cell contact to polarize viral egress and promote cell-cell spread. Understanding how cell-cell spread is regulated may help reveal therapeutic targets to specifically block this mode of HIV-1 dissemination.
Collapse
Affiliation(s)
- Shimona Starling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
26
|
Shete A, Suryawanshi P, Godbole S, Pawar J, Paranjape R, Thakar M. HIV-infected CD4+ T Cells Use T-bet-dependent Pathway for Production of IL-10 Upon Antigen Recognition. Scand J Immunol 2016; 83:288-96. [PMID: 27028319 DOI: 10.1111/sji.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
Abstract
Interleukin (IL)-10 has been implicated in persistence of pathogens in a number of chronic infections. Infected CD4+ cells upon reactivation with HIV antigens were also shown to produce IL-10, which might contribute to their persistence. Hence, it is crucial to determine mechanisms regulating IL-10 production after activation with HIV antigens for devising effective blocking strategies. In this study, ERK-, T-bet- and FoxP3-dependent pathways were evaluated for their possible roles in IL-10 production by infected CD4+ cells after reactivation with HIV Env. Intracellular and secreted IL-10 levels were determined by flow cytometry and Bioplex assay after treating PBMCs with PD98059, tipifarnib and cyclosporin A for blocking of ERK-, T-bet-and FoxP3-dependent pathways, respectively. Baseline levels of T-bet, pERK were higher in P24+ CD4+ cells as compared to uninfected CD4+ cells, which increased further after activation with Env. Inhibition of T-bet resulted in 2.3-fold reduction of IL-10 expression whereas ERK and FoxP3 inhibition failed to cause suppression of IL-10 expression. Conversely, IL-10 secreted by PBMCs was inhibited maximally after ERK inhibition suggesting its role in regulation of cytokine secretory pathway. IFN-γ was found to be suppressed after treatment with inhibitors of all these pathways. Thus, the study highlighted need for IL-10 blockade along with the use of antigens for therapeutic vaccinations or latency reversal and identified the T-bet-dependent pathway as an important pathway regulating IL-10 production by infected CD4+ cells. However, simultaneous blockade of IFN-γ precludes use of inhibitor of this pathway as an IL-10 blocking strategy.
Collapse
Affiliation(s)
- A Shete
- National AIDS Research Institute, Pune, India
| | | | - S Godbole
- National AIDS Research Institute, Pune, India
| | - J Pawar
- National AIDS Research Institute, Pune, India
| | - R Paranjape
- National AIDS Research Institute, Pune, India
| | - M Thakar
- National AIDS Research Institute, Pune, India
| |
Collapse
|
27
|
Cell-Free versus Cell-to-Cell Infection by Human Immunodeficiency Virus Type 1 and Human T-Lymphotropic Virus Type 1: Exploring the Link among Viral Source, Viral Trafficking, and Viral Replication. J Virol 2016; 90:7607-17. [PMID: 27334587 DOI: 10.1128/jvi.00407-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4(+) T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targeted in vivo by both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4(+) T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading to trans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs ("cis-infection") and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.
Collapse
|
28
|
Dustin ML, Choudhuri K. Signaling and Polarized Communication Across the T Cell Immunological Synapse. Annu Rev Cell Dev Biol 2016; 32:303-325. [PMID: 27501450 DOI: 10.1146/annurev-cellbio-100814-125330] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells express a somatically recombined antigen receptor (αβTCR) that is calibrated during development to respond to changes in peptides displayed by major histocompatibility complex proteins (pMHC) on the surface of antigen-presenting cells (APC). A key characteristic of pMHC for adaptive immunity is the ability to sample internal states of cells and tissues to sensitively detect changes associated with infection, cell derangement, or tissue injury. Physical T cell-APC contact sets up an axis for polarization of TCR, adhesion molecules, kinases, cytoskeletal elements, and organelles inherent in this mode of juxtacrine signaling. The discovery of further lateral organization of the TCR and adhesion molecules into radially symmetric compartments, the immunological synapse, revealed an intersecting plane of symmetry and potential for regulated symmetry breaking to control duration of T cell-APC interactions. In addition to organizing signaling machinery, the immunological synapse directs the polarized transport and secretion of cytokines and cytolytic agents across the synaptic cleft and is a site for the generation and exocytic release of bioactive microvesicles that can functionally affect recipient APC and other cells in the environment. This machinery is coopted by retroviruses, and human immune deficiency virus-1 may even use antigen-specific synapses for infection of healthy T cells. Here, we discuss recent advances in the molecular and cell biological mechanisms of immunological synapse assembly and signaling and its role in intercellular communication across the synaptic cleft.
Collapse
Affiliation(s)
- Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom;
| | - Kaushik Choudhuri
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620;
| |
Collapse
|
29
|
Viruses exploit the tissue physiology of the host to spread in vivo. Curr Opin Cell Biol 2016; 41:81-90. [PMID: 27149407 DOI: 10.1016/j.ceb.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Viruses are pathogens that strictly depend on their host for propagation. Over years of co-evolution viruses have become experts in exploiting the host cell biology and physiology to ensure efficient replication and spread. Here, we will first summarize the concepts that have emerged from in vitro cell culture studies to understand virus spread. We will then review the results from studies in living animals that reveal how viruses exploit the natural flow of body fluids, specific tissue architecture, and patterns of cell circulation and migration to spread within the host. Understanding tissue physiology will be critical for the design of antiviral strategies that prevent virus dissemination.
Collapse
|
30
|
Gerber PP, Cabrini M, Jancic C, Paoletti L, Banchio C, von Bilderling C, Sigaut L, Pietrasanta LI, Duette G, Freed EO, Basile GDS, Moita CF, Moita LF, Amigorena S, Benaroch P, Geffner J, Ostrowski M. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol 2015; 209:435-52. [PMID: 25940347 PMCID: PMC4427790 DOI: 10.1083/jcb.201409082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/01/2015] [Indexed: 12/22/2022] Open
Abstract
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55(Gag) membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55(Gag) with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.
Collapse
Affiliation(s)
- Pehuén Pereyra Gerber
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Mercedes Cabrini
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, C1425AUM Buenos Aires, Argentina
| | - Luciana Paoletti
- Instituto de Biologia Molecular y Celular de Rosario-CONICET, S2000EZP Santa Fe, Argentina
| | - Claudia Banchio
- Instituto de Biologia Molecular y Celular de Rosario-CONICET, S2000EZP Santa Fe, Argentina
| | - Catalina von Bilderling
- Instituto de Física de Buenos Aires-CONICET, Departamento de Física; and Centro de Microscopías Avanzadas; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Lorena Sigaut
- Instituto de Física de Buenos Aires-CONICET, Departamento de Física; and Centro de Microscopías Avanzadas; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Lía I Pietrasanta
- Instituto de Física de Buenos Aires-CONICET, Departamento de Física; and Centro de Microscopías Avanzadas; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Gabriel Duette
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Genevieve de Saint Basile
- Institut National de la Santé et de la Recherche Médicale U768 and Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France Institut National de la Santé et de la Recherche Médicale U768 and Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Catarina Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Sebastian Amigorena
- Centre de Recherche, Institut National de la Santé et de la Recherche Médicale U932, Institut Curie, 75248 Paris, France
| | - Philippe Benaroch
- Centre de Recherche, Institut National de la Santé et de la Recherche Médicale U932, Institut Curie, 75248 Paris, France
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
31
|
Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology 2015; 479-480:403-17. [PMID: 25816761 DOI: 10.1016/j.virol.2015.03.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation.
Collapse
Affiliation(s)
- Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
32
|
Agosto LM, Uchil PD, Mothes W. HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy. Trends Microbiol 2015; 23:289-95. [PMID: 25766144 DOI: 10.1016/j.tim.2015.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
HIV spreads more efficiently in vitro when infected cells directly contact uninfected cells to form virological synapses. A hallmark of virological synapses is that viruses can be transmitted at a higher multiplicity of infection (MOI) that, in vitro, results in a higher number of proviruses. Whether HIV also spreads by cell-cell contact in vivo is a matter of debate. Here we discuss recent data that suggest that contact-mediated transmission largely manifests itself in vivo as CD4+ T cell depletion. The assault of a cell by a large number of incoming particles is likely to be efficiently sensed by the innate cellular surveillance to trigger cell death. The large number of particles transferred across virological synapses has also been implicated in reduced efficacy of antiretroviral therapies. Thus, antiretroviral therapies must remain effective against the high MOI observed during cell-to-cell transmission to inhibit both viral replication and the pathogenesis associated with HIV infection.
Collapse
Affiliation(s)
- Luis M Agosto
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA; Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
33
|
Mittelbrunn M, Vicente Manzanares M, Sánchez-Madrid F. Organizing polarized delivery of exosomes at synapses. Traffic 2015; 16:327-337. [PMID: 25614958 DOI: 10.1111/tra.12258] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non-polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent-trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Vascular Biology and Inflammation Department, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Miguel Vicente Manzanares
- Universidad Autonoma de Madrid, Department of Medicine / IIS-Princesa, Diego de Leon 62, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation Department, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Universidad Autonoma de Madrid, Department of Medicine / IIS-Princesa, Diego de Leon 62, Madrid, Spain
| |
Collapse
|
34
|
Luo X, He JJ. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes. J Neurovirol 2015; 21:66-80. [PMID: 25522787 PMCID: PMC4861053 DOI: 10.1007/s13365-014-0304-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system and play important roles in human immunodeficiency virus (HIV)/neuro-acquired immunodeficiency syndrome. Detection of HIV proviral DNA, RNA, and early gene products but not late structural gene products in astrocytes in vivo and in vitro indicates that astrocytes are susceptible to HIV infection albeit in a restricted manner. We as well as others have shown that cell-free HIV is capable of entering CD4- astrocytes through human mannose receptor-mediated endocytosis. In this study, we took advantage of several newly developed fluorescence protein-based HIV reporter viruses and further characterized HIV interaction with astrocytes. First, we found that HIV was successfully transferred to astrocytes from HIV-infected CD4+ T cells in a cell-cell contact- and gp120-dependent manner. In addition, we demonstrated that, compared to endocytosis-mediated cell-free HIV entry and subsequent degradation of endocytosed virions, the cell-cell contact between astrocytes and HIV-infected CD4+ T cells led to robust HIV infection of astrocytes but retained the restricted nature of viral gene expression. Furthermore, we showed that HIV latency was established in astrocytes. Lastly, we demonstrated that infectious progeny HIV was readily recovered from HIV latent astrocytes in a cell-cell contact-mediated manner. Taken together, our studies point to the importance of the cell-cell contact-mediated HIV interaction with astrocytes and provide direct evidence to support the notion that astrocytes are HIV latent reservoirs in the central nervous system.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Johnny J. He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
35
|
Affiliation(s)
- Raymond A. Alvarez
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Maria Ines Barría
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Benjamin K. Chen
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
UNLABELLED Rapid HIV-1 spread between CD4 T lymphocytes occurs at retrovirus-induced immune cell contacts called virological synapses (VS). VS are associated with striking T cell polarization and localized virus budding at the site of contact that facilitates cell-cell spread. In addition to this, spatial clustering of organelles, including mitochondria, to the contact zone has been previously shown. However, whether cell-cell contact specifically induces dynamic T cell remodeling during VS formation and what regulates this process remain unclear. Here, we report that contact between an HIV-1-infected T cell and an uninfected target T cell specifically triggers polarization of mitochondria concomitant with recruitment of the major HIV-1 structural protein Gag to the site of cell-cell contact. Using fixed and live-cell imaging, we show that mitochondrial and Gag polarization in HIV-1-infected T cells occurs within minutes of contact with target T cells, requires the formation of stable cell-cell contacts, and is an active, calcium-dependent process. We also find that perturbation of mitochondrial polarization impairs cell-cell spread of HIV-1 at the VS. Taken together, these data suggest that HIV-1-infected T cells are able to sense and respond to contact with susceptible target cells and undergo dynamic cytoplasmic remodeling to create a synaptic environment that supports efficient HIV-1 VS formation between CD4 T lymphocytes. IMPORTANCE HIV-1 remains one of the major global health challenges of modern times. The capacity of HIV-1 to cause disease depends on the virus's ability to spread between immune cells, most notably CD4 T lymphocytes. Cell-cell transmission is the most efficient way of HIV-1 spread and occurs at the virological synapse (VS). The VS forms at the site of contact between an infected cell and an uninfected cell and is characterized by polarized assembly and budding of virions and clustering of cellular organelles, including mitochondria. Here, we show that cell-cell contact induces rapid recruitment of mitochondria to the contact site and that this supports efficient VS formation and consequently cell-cell spread. Additionally, we observed that cell-cell contact induces a mitochondrion-dependent increase in intracellular calcium, indicative of cellular signaling. Taken together, our data suggest that VS formation is a regulated process and thus a potential target to block HIV-1 cell-cell spread.
Collapse
|
37
|
McCoy LE, Groppelli E, Blanchetot C, de Haard H, Verrips T, Rutten L, Weiss RA, Jolly C. Neutralisation of HIV-1 cell-cell spread by human and llama antibodies. Retrovirology 2014; 11:83. [PMID: 25700025 PMCID: PMC4189184 DOI: 10.1186/s12977-014-0083-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Direct cell-cell spread of HIV-1 is a very efficient mode of viral dissemination, with increasing evidence suggesting that it may pose a considerable challenge to controlling viral replication in vivo. Much current vaccine research involves the study of broadly neutralising antibodies (bNabs) that arise during natural infection with the aims of eliciting such antibodies by vaccination or incorporating them into novel therapeutics. However, whether cell-cell spread of HIV-1 can be effectively targeted by bNabs remains unclear, and there is much interest in identifying antibodies capable of efficiently neutralising virus transmitted by cell-cell contact. RESULTS In this study we have tested a panel of bNAbs for inhibition of cell-cell spread, including some not previously evaluated for inhibition of this mode of HIV-1 transmission. We found that three CD4 binding site antibodies, one from an immunised llama (J3) and two isolated from HIV-1-positive patients (VRC01 and HJ16) neutralised cell-cell spread between T cells, while antibodies specific for glycan moieties (2G12, PG9, PG16) and the MPER (2F5) displayed variable efficacy. Notably, while J3 displayed a high level of potency during cell-cell spread we found that the small size of the llama heavy chain-only variable region (VHH) J3 is not required for efficient neutralisation since recombinant J3 containing a full-length human heavy chain Fc domain was significantly more potent. J3 and J3-Fc also neutralised cell-cell spread of HIV-1 from primary macrophages to CD4+ T cells. CONCLUSIONS In conclusion, while bNabs display variable efficacy at preventing cell-cell spread of HIV-1, we find that some CD4 binding site antibodies can inhibit this mode of HIV-1 dissemination and identify the recently described llama antibody J3 as a particularly potent inhibitor. Effective neutralisation of cell-cell spread between physiologically relevant cell types by J3 and J3-Fc supports the development of VHH J3 nanobodies for therapeutic or prophylactic applications.
Collapse
|
38
|
Soares H. HIV-1 Intersection with CD4 T Cell Vesicle Exocytosis: Intercellular Communication Goes Viral. Front Immunol 2014; 5:454. [PMID: 25295039 PMCID: PMC4170133 DOI: 10.3389/fimmu.2014.00454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/06/2014] [Indexed: 02/02/2023] Open
Abstract
In cells of the immune system, the secretion of extracellular vesicles is modulated through cellular activation. In particular, T cell activation is achieved through cell-cell contacts with antigen presenting cells and the consequent formation of a specialized signaling junction called the immunological synapse. Recent works on CD4 T cells have elucidated that cognate antigen recognition by the T cell receptor (TCR) engages two distinct exocytic events. The first involves the exocytic targeting of signaling molecules at the synaptic membrane and drives the functional architecture of the immunological synapse. The second enlists the extracellular secretion of the TCR itself, once the functional architecture of the immunological synapse is accomplished. HIV-1, a human lymphotropic virus, has evolved sophisticated mechanisms to co-opt CD4 T cell physiology. Notably, it has become apparent that HIV-1 intersects the regulated secretory system of CD4 T cells in order to bud from the plasma membrane of the infected cell and to promote bystander cell death. Here, I review the relevance of CD4 vesicle exocytosis to immune regulation and to HIV-1 pathogenesis and discuss their potential therapeutic applications.
Collapse
Affiliation(s)
- Helena Soares
- Instituto Gulbenkian de Ciência , Oeiras , Portugal ; Faculdade de Ciências Médicas, CEDOC, Universidade Nova de Lisboa , Lisboa , Portugal
| |
Collapse
|
39
|
Abstract
UNLABELLED HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. IMPORTANCE Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release, and investigation of its dynamics is hampered by the fact that virus populations in tissue culture contain particles at all stages of assembly and maturation. Here, we developed an inhibitor washout strategy to synchronize activation of protease in wild-type virus. We demonstrated that nearly complete Gag processing and resolution of the immature virus architecture are accomplished under optimized conditions. Nevertheless, most of the resulting particles displayed irregular morphologies, Gag-Pol processing was not faithfully reconstituted, and infectivity was not recovered. These data show that HIV-1 maturation is sensitive to the dynamics of processing and also that a tight temporal link between virus assembly and PR activation is required for correct polyprotein processing.
Collapse
|
40
|
Do T, Murphy G, Earl LA, Del Prete GQ, Grandinetti G, Li GH, Estes JD, Rao P, Trubey CM, Thomas J, Spector J, Bliss D, Nath A, Lifson JD, Subramaniam S. Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission. J Virol 2014; 88:10327-39. [PMID: 24965444 PMCID: PMC4178837 DOI: 10.1128/jvi.00788-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/12/2014] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED HIV transmission efficiency is greatly increased when viruses are transmitted at virological synapses formed between infected and uninfected cells. We have previously shown that virological synapses formed between HIV-pulsed mature dendritic cells (DCs) and uninfected T cells contain interdigitated membrane surfaces, with T cell filopodia extending toward virions sequestered deep inside invaginations formed on the DC membrane. To explore membrane structural changes relevant to HIV transmission across other types of intercellular conjugates, we used a combination of light and focused ion beam scanning electron microscopy (FIB-SEM) to determine the three-dimensional (3D) architectures of contact regions between HIV-1-infected CD4(+) T cells and either uninfected human CD4(+) T cells or human fetal astrocytes. We present evidence that in each case, membrane extensions that originate from the uninfected cells, either as membrane sheets or filopodial bridges, are present and may be involved in HIV transmission from infected to uninfected cells. We show that individual virions are distributed along the length of astrocyte filopodia, suggesting that virus transfer to the astrocytes is mediated, at least in part, by processes originating from the astrocyte itself. Mechanisms that selectively disrupt the polarization and formation of such membrane extensions could thus represent a possible target for reducing viral spread. IMPORTANCE Our findings lead to new insights into unique aspects of HIV transmission in the brain and at T cell-T cell synapses, which are thought to be a predominant mode of rapid HIV transmission early in the infection process.
Collapse
Affiliation(s)
- Thao Do
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gavin Murphy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Giovanna Grandinetti
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guan-Han Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - James Thomas
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Jeffrey Spector
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Donald Bliss
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Costiniuk CT, Jenabian MA. Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. J Gen Virol 2014; 95:2346-2355. [PMID: 25146006 DOI: 10.1099/vir.0.069641-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major research priority for HIV eradication is the elucidation of the events involved in HIV reservoir establishment and persistence. Cell-to-cell transmission of HIV represents an important area of study as it allows for the infection of cell types which are not easily infected by HIV, leading to the establishment of long-lived viral reservoirs. This phenomenon enables HIV to escape elimination by the immune system. This process may also enable HIV to escape suppressive effects of anti-retroviral drugs. During cell-to-cell transmission of HIV, a dynamic series of events ensues at the virological synapse that promotes viral dissemination. Cell-to-cell transmission involves various types of cells of the immune system and this mode of transmission has been shown to have an important role in sexual and mother-to-child transmission of HIV and spread of HIV within the central nervous system and gut-associated lymphoid tissues. There is also evidence that cell-to-cell transmission of HIV occurs between thymocytes and renal tubular cells. Herein, following a brief review of the processes involved at the virological synapse, evidence supporting the role for cell-to-cell transmission of HIV in the maintenance of the HIV reservoir will be highlighted. Therapeutic considerations and future directions for this area of research will also be discussed.
Collapse
Affiliation(s)
- Cecilia T Costiniuk
- Department of Medicine, Divisions of Infectious Diseases/Chronic Viral Illness Service and Lachine Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques et Centre de recherche BioMed, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
42
|
Couturier J, Hutchison AT, Medina MA, Gingaras C, Urvil P, Yu X, Nguyen C, Mahale P, Lin L, Kozinetz CA, Schmitz JE, Kimata JT, Savidge TC, Lewis DE. HIV replication in conjunction with granzyme B production by CCR5+ memory CD4 T cells: Implications for bystander cell and tissue pathologies. Virology 2014; 462-463:175-88. [PMID: 24999042 DOI: 10.1016/j.virol.2014.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
Abstract
Granzyme B (GrzB) is expressed by activated T cells and mediates cellular apoptosis. GrzB also acts as an extracellular protease involved in tissue degradation. We hypothesized that GrzB production from activated memory CD4 T cells may be associated with HIV pathogenesis. We found that stimulated memory CD4 T cells (via costimulation, cytokines, and TLR ligands) concomitantly produced GrzB and HIV. Both GrzB and HIV expression were mainly restricted to CCR5-expressing memory CD4+CD45RO+ T cells, including Th1 and Th17 subsets. Activated memory CD4 T cells also mediated tissue damage, such as disruption of intestinal epithelial monolayers. In non-human primates, CD4 T cells of rhesus macaques (pathogenic SIV hosts) expressed higher GrzB compared to African green monkeys (non-pathogenic SIV hosts). These results suggest that GrzB from CCR5+ memory CD4 T cells may have a role in cellular and tissue pathologies during HIV infection.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexander T Hutchison
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Miguel A Medina
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cosmina Gingaras
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Petri Urvil
- Texas Children׳s Microbiome Center, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoying Yu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chi Nguyen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Parag Mahale
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lin Lin
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joern E Schmitz
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jason T Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Tor C Savidge
- Texas Children׳s Microbiome Center, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
43
|
Murine leukemia virus Gag localizes to the uropod of migrating primary lymphocytes. J Virol 2014; 88:10541-55. [PMID: 24965475 DOI: 10.1128/jvi.01104-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED B and CD4(+) T lymphocytes are natural targets of murine leukemia virus (MLV). Migrating lymphocytes adopt a polarized morphology with a trailing edge designated the uropod. Here, we demonstrate that MLV Gag localizes to the uropod in polarized B cells and CD4(+) T cells. The uropod localization of MLV Gag was dependent on plasma membrane (PM) association and multimerization of Gag but independent of the viral glycoprotein Env. Basic residues in MA that are required for MLV Gag recruitment to virological synapses between HEK293 and XC cells were dispensable for uropod localization in migrating B cells. Ultrastructural studies indicated that both wild-type and basic-residue mutant Gag localized to the outer surface of the PM at the uropod. Late-domain mutant virus particles were seen at the uropod in form of budding-arrested intermediates. Finally, uropods mediated contact between MLV-infected B cells and uninfected T cells to form virological synapses. Our results suggest that MLV, not unlike HIV, accumulates at the uropod of primary lymphocytes to facilitate viral spreading through the formation of uropod-mediated cell-cell contacts. IMPORTANCE Viruses have evolved mechanisms to coordinate their assembly and budding with cell polarity to facilitate their spreading. In this study, we demonstrated that the viral determinants for MLV Gag to localize to the uropod in polarized B cells are distinct from the requirements to localize to virological synapses in transformed cell lines. Basic residues in MA that are required for the Gag localization to virological synapses between HEK293 and XC cells are dispensable for Gag localization to the uropod in primary B cells. Rather, plasma membrane association and capsid-driven multimerization of Gag are sufficient to drive MLV Gag to the uropod. MLV-laden uropods also mediate contacts between MLV-infected B cells and uninfected T cells to form virological synapses. Our results indicate that MLV accumulates at the uropod of primary lymphocytes to facilitate viral spreading through the formation of uropod-mediated cell-cell contacts.
Collapse
|
44
|
Su B, Moog C. Which Antibody Functions are Important for an HIV Vaccine? Front Immunol 2014; 5:289. [PMID: 24995008 PMCID: PMC4062070 DOI: 10.3389/fimmu.2014.00289] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023] Open
Abstract
HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV transmission are critical for the development of effective prophylactic and therapeutic vaccines. In addition to CD4(+) T cells, other potential HIV-target cell types including antigen-presenting cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. Moreover, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experimentally challenged macaque model. However, the 31% protection observed in the RV144 vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protection against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions that could lead to protection is critical for further HIV vaccine design. Here, we review different inhibitory properties of HIV-specific Abs and discuss their potential role in protection against HIV sexual transmission.
Collapse
Affiliation(s)
- Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
45
|
Ezrin is a component of the HIV-1 virological presynapse and contributes to the inhibition of cell-cell fusion. J Virol 2014; 88:7645-58. [PMID: 24760896 DOI: 10.1128/jvi.00550-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During cell-to-cell transmission of HIV-1, viral and cellular proteins transiently accumulate at the contact zone between infected (producer) and uninfected (target) cells, forming the virological synapse. Rearrangements of the cytoskeleton in producer and target cells are required for proper targeting of viral and cellular components during synapse formation, yet little is known about how these processes are regulated, particularly within the producer cell. Since ezrin-radixin-moesin (ERM) proteins connect F-actin with integral and peripheral membrane proteins, are incorporated into virions, and interact with cellular components of the virological presynapse, we hypothesized that they play roles during the late stage of HIV-1 replication. Here we document that phosphorylated (i.e., active) ezrin specifically accumulates at the HIV-1 presynapse in T cell lines and primary CD4(+) lymphocytes. To investigate whether ezrin supports virus transmission, we sought to ablate ezrin expression in producer cells. While cells did not tolerate a complete knockdown of ezrin, even a modest reduction of ezrin expression (~50%) in HIV-1-producing cells led to the release of particles with impaired infectivity. Further, when cocultured with uninfected target cells, ezrin-knockdown producer cells displayed reduced accumulation of the tetraspanin CD81 at the synapse and fused more readily with target cells, thus forming syncytia. Such an outcome likely is not optimal for virus dissemination, as evidenced by the fact that, in vivo, only relatively few infected cells form syncytia. Thus, ezrin likely helps secure efficient virus spread not only by enhancing virion infectivity but also by preventing excessive membrane fusion at the virological synapse. IMPORTANCE While viruses, in principal, can propagate through successions of syncytia, HIV-1-infected cells in the majority of cases do not fuse with potential target cells during viral transmission. This mode of spread is coresponsible for key features of HIV-1 pathogenesis, including killing of bystander cells and establishment of latently infected T lymphocytes. Here we identify the ERM protein family member ezrin as a cellular factor that contributes to the inhibition of cell-cell fusion and thus to suppressing excessive syncytium formation. Our analyses further suggest that ezrin, which connects integral membrane proteins with actin, functions in concert with CD81, a member of the tetraspanin family of proteins. Additional evidence, documented here and elsewhere, suggests that ezrin and CD81 cooperate to prevent cytoskeleton rearrangements that need to take place during the fusion of cellular membranes.
Collapse
|
46
|
Titanji BK, Aasa-Chapman M, Pillay D, Jolly C. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells. Retrovirology 2013; 10:161. [PMID: 24364896 PMCID: PMC3877983 DOI: 10.1186/1742-4690-10-161] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Human Immunodeficiency Virus type-1 (HIV-1) spreads by cell-free diffusion and by direct cell-to-cell transfer, the latter being a significantly more efficient mode of transmission. Recently it has been suggested that cell-to-cell spread may permit ongoing virus replication in the presence of antiretroviral therapy (ART) based on studies performed using Reverse Transcriptase Inhibitors (RTIs). Protease Inhibitors (PIs) constitute an important component of ART; however whether this class of inhibitors can suppress cell-to-cell transfer of HIV-1 is unexplored. Here we have evaluated the inhibitory effect of PIs during cell-to-cell spread of HIV-1 between T lymphocytes. RESULTS Using quantitative assays in cell line and primary cell systems that directly measure the early steps of HIV-1 infection we find that the PIs Lopinavir and Darunavir are equally potent against both cell-free and cell-to-cell spread of HIV-1. We further show that a protease resistant mutant maintains its resistant phenotype during cell-to-cell spread and is transmitted more efficiently than wild-type virus in the presence of drug. By contrast we find that T cell-T cell spread of HIV-1 is 4-20 fold more resistant to inhibition by the RTIs Nevirapine, Zidovudine and Tenofovir. Notably, varying the ratio of infected and uninfected cells in co-culture impacted on the degree of inhibition, indicating that the relative efficacy of ART is dependent on the multiplicity of infection. CONCLUSIONS We conclude that if the variable effects of antiviral drugs on cell-to-cell virus dissemination of HIV-1 do indeed impact on viral replication and maintenance of viral reservoirs this is likely to be influenced by the antiviral drug class, since PIs appear particularly effective against both modes of HIV-1 spread.
Collapse
Affiliation(s)
| | | | | | - Clare Jolly
- Division of Infection and Immunity, University College London, Cruciform Building, Gower St, London WC1E 6BT, United Kingdom.
| |
Collapse
|
47
|
High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage-T cell virological synapse. J Virol 2013; 88:2025-34. [PMID: 24307588 DOI: 10.1128/jvi.03245-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4(+) T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy. IMPORTANCE The ability of HIV-1 to move directly between contacting immune cells allows efficient viral dissemination with the potential to evade antibody attack. Here, we show that HIV-1 spreads from infected macrophages to T cells via a structure called a virological synapse that maintains extended contact between the two cell types, allowing transfer of multiple infectious events to the T cell. This process allows the virus to avoid neutralization by a class of antibody targeting the gp41 subunit of the envelope glycoproteins. These results have implications for viral spread in vivo and the specificities of neutralizing antibody elicited by antibody-based vaccines.
Collapse
|
48
|
Sattentau QJ. Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Vaccines (Basel) 2013; 1:497-512. [PMID: 26344344 PMCID: PMC4494206 DOI: 10.3390/vaccines1040497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 envelope glycoprotein spike is the target of neutralizing antibody attack, and hence represents the only relevant viral antigen for antibody-based vaccine design. Various approaches have been attempted to recapitulate Env in membrane-anchored and soluble forms, and these will be discussed here in the context of recent successes and challenges still to be overcome.
Collapse
Affiliation(s)
- Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE, UK.
| |
Collapse
|
49
|
Schiffner T, Sattentau QJ, Duncan CJA. Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies. Vaccine 2013; 31:5789-97. [PMID: 24140477 DOI: 10.1016/j.vaccine.2013.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/29/2013] [Accepted: 10/04/2013] [Indexed: 01/13/2023]
Abstract
Cell-to-cell spread of human immunodeficiency virus (HIV-1) between immune cells was first observed over 20 years ago. During this time, the question of whether this infection route favours viral evasion of neutralizing antibodies (NAbs) targeting the virus envelope glycoprotein (Env) has been repeatedly investigated, but with conflicting results. A clearer picture has formed in the last few years as more broadly neutralizing antibodies have been isolated and we gain further insight into the mechanisms of HIV-1 transmission at virological and infectious synapses. Nevertheless consensus is still lacking, a situation which may be at least partly explained by variability in the experimental approaches used to study the activity of NAbs in the cell-to-cell context. In this review we focus on the most critical question concerning the activity of NAbs against cell-to-cell transmission: is NAb inhibition of cell-to-cell HIV-1 quantitatively or qualitatively different from cell-free infection? Overall, data consistently show that NAbs are capable of blocking HIV-1 infection at synapses, supporting the concept that cell-to-cell infection occurs through directed transfer of virions accessible to the external environment. However, more recent findings suggest that higher concentrations of certain NAbs might be needed to inhibit synaptic infection, with important potential implications for prophylactic vaccine development. We discuss several mechanistic explanations for this relative and selective loss of activity, and highlight gaps in knowledge that are still to be explored.
Collapse
Affiliation(s)
- Torben Schiffner
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
50
|
Gaudin R, de Alencar BC, Arhel N, Benaroch P. HIV trafficking in host cells: motors wanted! Trends Cell Biol 2013; 23:652-62. [PMID: 24119663 DOI: 10.1016/j.tcb.2013.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
Abstract
Throughout the viral replication cycle, viral proteins, complexes, and particles need to be transported within host cells. These transport events are dependent on the host cell cytoskeleton and molecular motors. However, the mechanisms by which virus is trafficked along cytoskeleton filaments and how molecular motors are recruited and regulated to guarantee successful integration of the viral genome and production of new viruses has only recently begun to be understood. Recent studies on HIV have identified specific molecular motors involved in the trafficking of these viral particles. Here we review recent literature on the transport of HIV components in the cell, provide evidence for the identity and role of molecular motors in this process, and highlight how these trafficking events may be related to those occurring with other viruses.
Collapse
Affiliation(s)
- Raphaël Gaudin
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France; INSERM, U932, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|