1
|
Bude SA, Lu Z, Zhao Z, Zhang Q. Pseudorabies Virus Glycoproteins E and B Application in Vaccine and Diagnosis Kit Development. Vaccines (Basel) 2024; 12:1078. [PMID: 39340108 PMCID: PMC11435482 DOI: 10.3390/vaccines12091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Pseudorabies virus (PRV) is a highly infectious pathogen that affects a wide range of mammals and imposes a significant economic burden on the global pig industry. The viral envelope of PRV contains several glycoproteins, including glycoprotein E (gE) and glycoprotein B (gB), which play critical roles in immune recognition, vaccine development, and diagnostic procedures. Mutations in these glycoproteins may enhance virulence, highlighting the need for updated vaccines. Method: This review examines the functions of PRV gE and gB in vaccine development and diagnostics, focusing on their roles in viral replication, immune system interaction, and pathogenicity. Additionally, we explore recent findings on the importance of gE deletion in attenuated vaccines and the potential of gB to induce immunity. Results: Glycoprotein E (gE) is crucial for the virus's axonal transport and nerve invasion, facilitating transmission to the central nervous system. Deletion of gE is a successful strategy in vaccine development, enhancing the immune response. Glycoprotein B (gB) plays a central role in viral replication and membrane fusion, aiding viral spread. Mutations in these glycoproteins may increase PRV virulence, complicating vaccine efficacy. Conclusion: With PRV glycoproteins being essential to both vaccine development and diagnostic approaches, future research should focus on enhancing these components to address emerging PRV variants. Updated vaccines and diagnostic tools are critical for combating new, more virulent strains of PRV.
Collapse
Affiliation(s)
- Sara Amanuel Bude
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| |
Collapse
|
2
|
Jiang L, Cheng J, Pan H, Yang F, Zhu X, Wu J, Pan H, Yan P, Zhou J, Gao Q, Huan C, Gao S. Analysis of the recombination and evolution of the new type mutant pseudorabies virus XJ5 in China. BMC Genomics 2024; 25:752. [PMID: 39090561 PMCID: PMC11295580 DOI: 10.1186/s12864-024-10664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.
Collapse
Affiliation(s)
- Luyao Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hao Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Xiemin Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jiayan Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Haochun Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Ping Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinzhu Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences Veterinary Institute, Nanjing, 210014, Jiangsu, China
| | - Qingqing Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Changchao Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Ambrosini AE, Borg KM, Deshmukh N, Berry MJ, Enquist LW, Hogue IB. Alpha herpesvirus exocytosis from neuron cell bodies uses constitutive secretory mechanisms, and egress and spread from axons is independent of neuronal firing activity. PLoS Pathog 2024; 20:e1012139. [PMID: 38578790 PMCID: PMC11023632 DOI: 10.1371/journal.ppat.1012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/17/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.
Collapse
Affiliation(s)
- Anthony E. Ambrosini
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Kayla M. Borg
- ASU-Banner Neurodegenerative Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Nikhil Deshmukh
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Michael J. Berry
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Ian B. Hogue
- ASU-Banner Neurodegenerative Research Center, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
4
|
Vallbracht M, Schnell M, Seyfarth A, Fuchs W, Küchler R, Mettenleiter TC, Klupp BG. A Single Amino Acid Substitution in the Transmembrane Domain of Glycoprotein H Functionally Compensates for the Absence of gL in Pseudorabies Virus. Viruses 2023; 16:26. [PMID: 38257727 PMCID: PMC10819001 DOI: 10.3390/v16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpesvirus entry requires the coordinated action of at least four viral glycoproteins. Virus-specific binding to a cellular receptor triggers a membrane fusion cascade involving the conserved gH/gL complex and gB. Although gB is the genuine herpesvirus fusogen, it requires gH/gL for fusion, but how activation occurs is still unclear. To study the underlying mechanism, we used a gL-deleted pseudorabies virus (PrV) mutant characterized by its limited capability to directly infect neighboring cells that was exploited for several independent serial passages in cell culture. Unlike previous revertants that acquired mutations in the gL-binding N-terminus of gH, we obtained a variant, PrV-ΔgLPassV99, that unexpectedly contained two amino acid substitutions in the gH transmembrane domain (TMD). One of these mutations, I662S, was sufficient to compensate for gL function in virus entry and in in vitro cell-cell fusion assays in presence of wild type gB, but barely for cell-to-cell spread. Additional expression of receptor-binding PrV gD, which is dispensable for cell-cell fusion mediated by native gB, gH and gL, resulted in hyperfusion in combination with gH V99. Overall, our results uncover a yet-underestimated role of the gH TMD in fusion regulation, further shedding light on the complexity of herpesvirus fusion involving all structural domains of the conserved entry glycoproteins.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marina Schnell
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Annemarie Seyfarth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin und Humboldt—Universität zu Berlin, 12200 Berlin, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Richard Küchler
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| |
Collapse
|
5
|
Lian Z, Liu P, Zhu Z, Sun Z, Yu X, Deng J, Li R, Li X, Tian K. Isolation and Characterization of a Novel Recombinant Classical Pseudorabies Virus in the Context of the Variant Strains Pandemic in China. Viruses 2023; 15:1966. [PMID: 37766372 PMCID: PMC10536572 DOI: 10.3390/v15091966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudorabies virus (PRV) variants were discovered in immunized pigs in Northern China and have become the dominant strains since 2011, which caused huge economic losses. In this study, a classical PRV strain was successfully isolated in a PRV gE positive swine farm. The complete genome sequence was obtained using a high-throughput sequencing method and the virus was named JS-2020. The nucleotide homology analysis and phylogenetic tree based on complete genome sequences or gC gene showed that the JS-2020 strain was relatively close to the classical Ea strain in genotype II clade. However, a large number of amino acid variations occurred in the JS-2020 strain compared with the Ea strain, including multiple immunogenic and virulence-related genes. In particular, the gE protein of JS-2020 was similar to earlier Chinese PRV strains without Aspartate insertion. However, the amino acid variations analysis based on major immunogenic and virulence-related genes showed that the JS-2020 strain was not only homologous with earlier PRV strains, but also with strains isolated in recent years. Moreover, the JS-2020 strain was identified as a recombinant between the GXGG-2016 and HLJ-2013 strains. The pathogenicity analysis proved that the PRV JS-2020 strain has typical neurogenic infections and a strong pathogenicity in mice. Together, a novel recombinant classical strain was isolated and characterized in the context of the PRV variant pandemic in China. This study provided some valuable information for the study of the evolution of PRV in China.
Collapse
Affiliation(s)
- Zhengmin Lian
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Panrao Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Xiuling Yu
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| |
Collapse
|
6
|
Jaggi U, Wang S, Mott KR, Ghiasi H. Binding of herpesvirus entry mediator (HVEM) and HSV-1 gD affect reactivation but not latency levels. PLoS Pathog 2023; 19:e1011693. [PMID: 37738264 PMCID: PMC10550154 DOI: 10.1371/journal.ppat.1011693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Engel EA, Card JP, Enquist LW. Transneuronal Circuit Analysis with Pseudorabies Viruses. Curr Protoc 2023; 3:e841. [PMID: 37486157 PMCID: PMC10664030 DOI: 10.1002/cpz1.841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our ability to understand the function of the nervous system is dependent upon defining the connections of its constituent neurons. Development of methods to define connections within neural networks has always been a growth industry in the neurosciences. Transneuronal spread of neurotropic viruses currently represents the best means of defining synaptic connections within neural networks. The method exploits the ability of viruses to invade neurons, replicate, and spread through the intimate synaptic connections that enable communication among neurons. Since the method was first introduced in the 1970s, it has benefited from an increased understanding of the virus life cycle, the function of viral genomes, and the ability to manipulate the viral genome in support of directional spread of virus and the expression of transgenes. In this article, we review these advances in viral tracing technology and the ways in which they may be applied for functional dissection of neural networks. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Retrograde infection of CNS circuits by peripheral injection of virus Basic Protocol 2: Transneuronal analysis by intracerebral injection Alternate Protocol 1: Transneuronal analysis with multiple recombinant strains Alternate Protocol 2: Conditional replication and spread of PRV Alternate Protocol 3: Conditional reporters of PRV infection and spread Alternate Protocol 4: Reporters of neural activity in polysynaptic circuits Support Protocol 1: Growing and titering a PRV viral stock Support Protocol 2: Immunohistochemical processing and detection Support Protocol 3: Dual-immunofluorescence localization.
Collapse
Affiliation(s)
- Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Current address: Spark Therapeutics, Philadelphia, PA, 19104
| | - J Patrick Card
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
8
|
Jiang C, Ma Z, Bai J, Sun Y, Cao M, Wang X, Jiang P, Liu X. Comparison of the protective efficacy between the candidate vaccine ZJ01R carrying gE/gI/TK deletion and three commercial vaccines against an emerging pseudorabies virus variant. Vet Microbiol 2023; 276:109623. [PMID: 36495739 DOI: 10.1016/j.vetmic.2022.109623] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Pseudorabies virus (PRV) is a swine alpha-herpesvirus that mainly causes reproductive disorders in sows and neurological diseases in piglets. Vaccination is the most efficient method to prevent the disease. In China, since the emergence of PRV mutant strains in late 2011, the traditional commercial vaccines have not been providing complete protection. Our previous studies have demonstrated that PRV ZJ01 is a highly virulent strain, and its derivative, ZJ01R, which carries the gE/gI/TK gene deletion, could provide protection against the variant PRV challenge. However, the difference in immune efficacy between ZJ01R and other commercial vaccines remains unclear. In this study, the immune protection efficacy between ZJ01R and three commercial PRV vaccines (Bartha-K61, HB2000, and SA215) was evaluated in piglets. The safety of ZJ01R was shown to be equivalent to that of the three commercial vaccines. The titers of the neutralizing antibodies against the PRV classical strain LA in the four vaccine groups were similar, while the anti-PRV variant neutralizing antibody titers in the ZJ01R group were significantly higher than those in the Bartha-K61, HB2000, and SA215 strain groups. After the PRV challenge, ZJ01R, HB2000, and SA215 vaccinations could provide complete protection, whereas the Bartha-K61 vaccination could only provide 60 % protection. Importantly, the rectal viral excretion and PRV DNA loads in the lung tissues in the ZJ01R group were significantly lower than those in the Bartha-K61, HB2000, and SA215 groups. Altogether, these results indicated that ZJ01R could provide higher protection efficacy against the PRV virulent ZJ01 challenge than the three commercial PRV gene-deleted live vaccines derived from the classical vaccine strains, providing the potential to develop a new PRV vaccine to control the epidemic PRV variant strains in the future.
Collapse
Affiliation(s)
- Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhicheng Ma
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzhu Cao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
9
|
Proteomic Comparison of Three Wild-Type Pseudorabies Virus Strains and the Attenuated Bartha Strain Reveals Reduced Incorporation of Several Tegument Proteins in Bartha Virions. J Virol 2022; 96:e0115822. [PMID: 36453884 PMCID: PMC9769387 DOI: 10.1128/jvi.01158-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily and the causative agent of Aujeszky's disease in pigs. Driven by the large economic losses associated with PRV infection, several vaccines and vaccine programs have been developed. To this day, the attenuated Bartha strain, generated by serial passaging, represents the golden standard for PRV vaccination. However, a proteomic comparison of the Bartha virion to wild-type (WT) PRV virions is lacking. Here, we present a comprehensive mass spectrometry-based proteome comparison of the attenuated Bartha strain and three commonly used WT PRV strains: Becker, Kaplan, and NIA3. We report the detection of 40 structural and 14 presumed nonstructural proteins through a combination of data-dependent and data-independent acquisition. Interstrain comparisons revealed that packaging of the capsid and most envelope proteins is largely comparable in-between all four strains, except for the envelope protein pUL56, which is less abundant in Bartha virions. However, distinct differences were noted for several tegument proteins. Most strikingly, we noted a severely reduced incorporation of the tegument proteins IE180, VP11/12, pUS3, VP22, pUL41, pUS1, and pUL40 in Bartha virions. Moreover, and likely as a consequence, we also observed that Bartha virions are on average smaller and more icosahedral compared to WT virions. Finally, we detected at least 28 host proteins that were previously described in PRV virions and noticed considerable strain-specific differences with regard to host proteins, arguing that the potential role of packaged host proteins in PRV replication and spread should be further explored. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha-an attenuated strain created by serial passaging-represents an exceptional success story in alphaherpesvirus vaccination. Here, we used mass spectrometry to analyze the Bartha virion composition in comparison to three established WT PRV strains. Many viral tegument proteins that are considered nonessential for viral morphogenesis were drastically less abundant in Bartha virions compared to WT virions. Interestingly, many of the proteins that are less incorporated in Bartha participate in immune evasion strategies of alphaherpesviruses. In addition, we observed a reduced size and more icosahedral morphology of the Bartha virions compared to WT PRV. Given that the Bartha vaccine strain elicits potent immune responses, our findings here suggest that differences in protein packaging may contribute to its immunogenicity. Further exploration of these observations could aid the development of efficacious vaccines against other alphaherpesvirus vaccines such as HSV-1/2 or EHV-1.
Collapse
|
10
|
Dweikat SN, Renner DW, Bowen CD, Szpara ML. Multi-phenotype analysis for enhanced classification of 11 herpes simplex virus 1 strains. J Gen Virol 2022; 103:001780. [PMID: 36264606 PMCID: PMC10019087 DOI: 10.1099/jgv.0.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) is best known for causing oral lesions and mild clinical symptoms, but it can produce a significant range of disease severities and rates of reactivation. To better understand this phenotypic variation, we characterized 11 HSV1 strains that were isolated from individuals with diverse infection outcomes. We provide new data on genomic and in vitro plaque phenotype analysis for these isolates and compare these data to previously reported quantitation of the disease phenotype of each strain in a murine animal model. We show that integration of these three types of data permitted clustering of these HSV1 strains into four groups that were not distinguishable by any single dataset alone, highlighting the benefits of combinatorial multi-parameter phenotyping. Two strains (group 1) produced a partially or largely syncytial plaque phenotype and attenuated disease phenotypes in mice. Three strains of intermediate plaque size, causing severe disease in mice, were genetically clustered to a second group (group 2). Six strains with the smallest average plaque sizes were separated into two subgroups (groups 3 and 4) based on their different genetic clustering and disease severity in mice. Comparative genomics and network graph analysis suggested a separation of HSV1 isolates with attenuated vs. virulent phenotypes. These observations imply that virulence phenotypes of these strains may be traceable to genetic variation within the HSV1 population.
Collapse
Affiliation(s)
- Sarah N Dweikat
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Daniel W Renner
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Christopher D Bowen
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Moriah L Szpara
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| |
Collapse
|
11
|
Chen QY, Wu XM, Che YL, Chen RJ, Hou B, Wang CY, Wang LB, Zhou LJ. The Immune Efficacy of Inactivated Pseudorabies Vaccine Prepared from FJ-2012ΔgE/gI Strain. Microorganisms 2022; 10:1880. [PMID: 36296157 PMCID: PMC9612264 DOI: 10.3390/microorganisms10101880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 08/27/2023] Open
Abstract
An emerging pseudorabies virus (PRV) variant has been reported on Bartha-K61-vaccinated farms since 2011, causing great economic losses to China's swine-feeding industry. In this study, two vaccines, FJ-2012ΔgE/gI-GEL02 and FJ-2012ΔgE/gI-206VG, were administered to piglets for immune efficacy investigation. Humoral immunity response, clinical signs, survival rate, tissue viral load, and pathology were assessed in piglets. The results showed that both vaccines were effective against the PRV FJ-2012 challenge, the piglets all survived while developing a high level of gB-specific antibody and neutralizing antibody, the virus load in tissue was alleviated, and no clinical PR signs or pathological lesions were displayed. In the unimmunized challenged group, typical clinical signs of pseudorabies were observed, and the piglets all died at 7 days post-challenge. Compared with commercial vaccines, the Bartha-K61 vaccine group could not provide full protection, which might be due to a lower vaccine dose; the inactivated vaccine vPRV* group piglets survived, displaying mild clinical signs. The asterisk denotes inactivation. These results indicate that FJ-2012ΔgE/gI-GEL02 and FJ-2012ΔgE/gI-206VG were effective and could be promising vaccines to control or eradicate the new PRV epidemic in China.
Collapse
Affiliation(s)
- Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Xue-Min Wu
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Ru-Jing Chen
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Chen-Yan Wang
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Long-Bai Wang
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, FuJian Academy of Agriculture Sciences, Fuzhou 350013, China
- Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| |
Collapse
|
12
|
Hua T, Chang C, Zhang X, Huang Y, Wang H, Zhang D, Tang B. Protective efficacy of intranasal inactivated pseudorabies vaccine is improved by combination adjuvant in mice. Front Microbiol 2022; 13:976220. [PMID: 36187997 PMCID: PMC9520748 DOI: 10.3389/fmicb.2022.976220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudorabies virus (PRV) not only causes great economic loss to the pig industry but also seriously threatens the biosafety of other mammals, including humans. Since 2011, PRV mutant strains have emerged widely in China, and the classical Bartha-K61 vaccine cannot confer complete protection for pigs. PRV mainly infects pigs via the respiratory tract. Intranasal immunization with PRV has received more attention because intranasal vaccination elicits systemic and mucosal immune responses. To induce systemic and mucosal immune responses against PRV, we developed a combination adjuvant as a delivery system for intranasal vaccine, which was formulated with MONTANIDE™ Gel 01 and CVCVA5. In comparison to naked antigen of inactivated PRV, single Gel 01 adjuvanted inactivated antigen and single CVCVA5 adjuvanted inactivated antigen, intranasal inactivated PRV vaccine formulated with the combination adjuvant induced greater mucosal IgA immunity and serum antibody responses (IgG, IgG1, and IgG2a). Furthermore, the production of the Th1-type cytokine IFN-γ and the Th2-type cytokine IL-4 indicated that the cellular and humoral responses to the intranasal vaccine were improved by the combination adjuvant. In addition, the intranasal vaccine formulated with the combination adjuvant induced long-term T lymphocyte memory with increased central (CD62L+CD44+) and effector (CD62L–CD44+) memory subsets of both CD4 and CD8 T cells in nasal-associated lymphoid tissue. Intranasal challenge with virulent PRV in mice showed that the protective efficacy of the intranasal PRV vaccine was improved by the combination adjuvant compared with the other single-adjuvanted vaccines. In summary, these data demonstrated that Gel 01 combined with the CVCVA5 adjuvant induced a synergistic effect to improve mucosal immunity and protective efficacy of the intranasally inactivated PRV vaccine in mice. It represents a promising vaccination approach against PRV infection.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqing Huang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- *Correspondence: Bo Tang,
| |
Collapse
|
13
|
The Effects of Oncolytic Pseudorabies Virus Vaccine Strain Inhibited the Growth of Colorectal Cancer HCT-8 Cells In Vitro and In Vivo. Animals (Basel) 2022; 12:ani12182416. [PMID: 36139276 PMCID: PMC9495051 DOI: 10.3390/ani12182416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Oncolytic viral therapy is a promising treatment approach for a variety of tumor forms. Although a number of studies have demonstrated that the pseudorabies virus (PRV) may be applied as an oncolytic carrier, the anti-colorectal cancer impact of the virus and the mechanism of its cytotoxic effect remain elusive. In this study, the replication capacity and cell activity of PRV attenuated live vaccines Bartha K61 and HB98 in HCT-8 cells in vitro were investigated. Next, the antitumor ability and safety were evaluated in a mouse model of HCT-8 tumor transplantation. Both PRV strains were able to suppress tumor growth and HB98 showed higher safety and efficiency than the Bartha K61 strain. Finally, flow cytometry and immunohistochemistry examination were performed to investigate its possible cytotoxic mechanism. The results showed that PRV inhibited tumor proliferation both in vitro and in vivo by inducing apoptosis. In summary, our study discovered for the first time that the live attenuated PRV has an oncolytic effect on HCT-8 cells with high efficacy and safety.
Collapse
|
14
|
Liu Q, Kuang Y, Li Y, Guo H, Zhou C, Guo S, Tan C, Wu B, Chen H, Wang X. The Epidemiology and Variation in Pseudorabies Virus: A Continuing Challenge to Pigs and Humans. Viruses 2022; 14:v14071463. [PMID: 35891443 PMCID: PMC9325097 DOI: 10.3390/v14071463] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Pseudorabies virus (PRV) can infect most mammals and is well known for causing substantial economic losses in the pig industry. In addition to pigs, PRV infection usually leads to severe itching, central nervous system dysfunction, and 100% mortality in its non-natural hosts. It should be noted that increasing human cases of PRV infection have been reported in China since 2017, and these patients have generally suffered from nervous system damage and even death. Here, we reviewed the current prevalence and variation in PRV worldwide as well as the PRV-caused infections in animals and humans, and briefly summarized the vaccines and diagnostic methods used for pseudorabies control. Most countries, including China, have control programs in place for pseudorabies in domestic pigs, and thus, the disease is on the decline; however, PRV is still globally epizootic and an important pathogen for pigs. In countries where pseudorabies in domestic pigs have already been eliminated, the risk of PRV transmission by infected wild animals should be estimated and prevented. As a member of the alphaherpesviruses, PRV showed protein-coding variation that was relatively higher than that of herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV), and its evolution was mainly contributed to by the frequent recombination observed between different genotypes or within the clade. Recombination events have promoted the generation of new variants, such as the variant strains resulting in the outbreak of pseudorabies in pigs in China, 2011. There have been 25 cases of PRV infections in humans reported in China since 2017, and they were considered to be infected by PRV variant strains. Although PRV infections have been sporadically reported in humans, their causal association remains to be determined. This review provided the latest epidemiological information on PRV for the better understanding, prevention, and treatment of pseudorabies.
Collapse
Affiliation(s)
- Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Kuang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yafei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huihui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chuyue Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| |
Collapse
|
15
|
The Attenuated Pseudorabies Virus Vaccine Strain Bartha Hyperactivates Plasmacytoid Dendritic Cells by Generating Large Amounts of Cell-Free Virus in Infected Epithelial Cells. J Virol 2022; 96:e0219921. [PMID: 35604216 DOI: 10.1128/jvi.02199-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV) is a porcine alphaherpesvirus and the causative agent of Aujeszky's disease. Successful eradication campaigns against PRV have largely relied on the use of potent PRV vaccines. The live attenuated Bartha strain, which was produced by serial passaging in cell culture, represents one of the hallmark PRV vaccines. Despite the robust protection elicited by Bartha vaccination, very little is known about the immunogenicity of the Bartha strain. Previously, we showed that Bartha-infected epithelial cells trigger plasmacytoid dendritic cells (pDC) to produce much higher levels of type I interferons than cells infected with wild-type PRV. Here, we show that this Bartha-induced pDC hyperactivation extends to other important cytokines, including interleukin-12/23 (IL-12/23) and tumor necrosis factor alpha (TNF-α) but not IL-6. Moreover, Bartha-induced pDC hyperactivation was found to be due to the strongly increased production of extracellular infectious virus (heavy particles [H-particles]) early in infection of epithelial cells, which correlated with a reduced production of noninfectious light particles (L-particles). The Bartha genome is marked by a large deletion in the US region affecting the genes encoding US7 (gI), US8 (gE), US9, and US2. The deletion of the US2 and gE/gI genes was found to be responsible for the observed increase in extracellular virus production by infected epithelial cells and the resulting increased pDC activation. The deletion of gE/gI also suppressed L-particle production. In conclusion, the deletion of US2 and gE/gI in the genome of the PRV vaccine strain Bartha results in the enhanced production of extracellular infectious virus in infected epithelial cells and concomitantly leads to the hyperactivation of pDC. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha has been and still is critical in the eradication of PRV in numerous countries. However, little is known about how this vaccine strain interacts with host cells and the host immune system. Here, we report the surprising observation that Bartha-infected epithelial porcine cells rapidly produce increased amounts of extracellular infectious virus compared to wild-type PRV-infected cells, which in turn potently stimulate porcine plasmacytoid dendritic cells (pDC). We found that this phenotype depends on the deletion of the genes encoding US2 and gE/gI. We also found that Bartha-infected cells secrete fewer pDC-inhibiting light particles (L-particles), which appears to be caused mainly by the deletion of the genes encoding gE/gI. These data generate novel insights into the interaction of the successful Bartha vaccine with epithelial cells and pDC and may therefore contribute to the development of vaccines against other (alphaherpes)viruses.
Collapse
|
16
|
Huang J, Tang W, Wang X, Zhao J, Peng K, Sun X, Li S, Kuang S, Zhu L, Zhou Y, Xu Z. The Genetic Characterization of a Novel Natural Recombinant Pseudorabies Virus in China. Viruses 2022; 14:v14050978. [PMID: 35632721 PMCID: PMC9146711 DOI: 10.3390/v14050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
We sequenced the complete genome of the pseudorabies virus (PRV) FJ epidemic strain, and we studied the characteristics and the differences compared with the classical Chinese strain and that of other countries. Third-generation sequencing and second-generation sequencing technology were used to construct, sequence, and annotate an efficient, accurate PRV library. The complete FJ genome was 143,703 bp, the G+C content was 73.67%, and it encoded a total of 70 genes. The genetic evolution of the complete genome and some key gene sequences of the FJ strain and PRV reference strains were analyzed by the maximum likelihood (ML) method of MEGA 7.0 software. According to the ML tree based on the full-length genome sequences, PRV FJ strain was assigned to the branch of genotype II, and it showed a close evolutionary relationship with PRV epidemic variants isolated in China after 2011. The gB, gC, gD, gH, gL, gM, gN, TK, gI, and PK genes of the FJ strain were assigned to the same branch with other Chinese epidemic mutants; its gG gene was assigned to the same branch with the classic Chinese Fa and Ea strains; and its gE gene was assigned to a relatively independent branch. Potential recombination events were predicted by the RDP4 software, which showed that the predicted recombination sites were between 1694 and 1936 bp, 101,113 and 102,660 bp, and 107,964 and 111,481 bp in the non-coding region. This result broke the previously reported general rule that pseudorabies virus recombination events occur in the gene coding region. The major backbone strain of the recombination event was HLJ8 and the minor backbone strain was Ea. Our results allowed us to track and to grasp the recent molecular epidemiological changes of PRV. They also provide background materials for the development of new PRV vaccines, and they lay a foundation for further study of PRV.
Collapse
Affiliation(s)
- Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.H.); (J.Z.); (K.P.); (X.S.); (L.Z.)
| | - Wenjie Tang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610299, China; (W.T.); (S.L.); (S.K.)
| | - Xvetao Wang
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610066, China;
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.H.); (J.Z.); (K.P.); (X.S.); (L.Z.)
| | - Kenan Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.H.); (J.Z.); (K.P.); (X.S.); (L.Z.)
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.H.); (J.Z.); (K.P.); (X.S.); (L.Z.)
| | - Shuwei Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610299, China; (W.T.); (S.L.); (S.K.)
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610066, China;
| | - Shengyao Kuang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610299, China; (W.T.); (S.L.); (S.K.)
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610066, China;
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.H.); (J.Z.); (K.P.); (X.S.); (L.Z.)
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610299, China; (W.T.); (S.L.); (S.K.)
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering Co., Ltd., Chengdu 610066, China;
- Correspondence: (Y.Z.); (Z.X.); Tel.: +86-1822-7601-509 (Y.Z.); +86-1398-1604-765 (Z.X.)
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.H.); (J.Z.); (K.P.); (X.S.); (L.Z.)
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
- Correspondence: (Y.Z.); (Z.X.); Tel.: +86-1822-7601-509 (Y.Z.); +86-1398-1604-765 (Z.X.)
| |
Collapse
|
17
|
Sahu BP, Majee P, Singh RR, Sahoo N, Nayak D. Genome-wide identification and characterization of microsatellite markers within the Avipoxviruses. 3 Biotech 2022; 12:113. [PMID: 35497507 PMCID: PMC9008116 DOI: 10.1007/s13205-022-03169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/19/2022] [Indexed: 11/01/2022] Open
Abstract
Microsatellite markers or Simple Sequence Repeats (SSRs) are gaining importance for molecular characterization of the virus as well as estimation of evolution patterns due to its high-polymorphic nature. The Avipoxvirus is the causative agent of pox-like lesions in more than 300 birds and one of the major diseases for the extinction of endangered avian species. Therefore, we conducted a genome-wide analysis to decipher the type, distribution pattern of 14 complete genomes derived from the Avipoxvirus genus. The in-silico screening deciphered the existence of 917-2632 SSRs per strain. In the case of compound SSRs (cSSRs), the value was obtained 44-255 per genome. Our analysis indicates that the di-nucleotide repeats (52.74%) are the most abundant, followed by the mononucleotides (34.79), trinucleotides (11.57%), tetranucleotides (0.64%), pentanucleotides (0.12%) and hexanucleotides (0.15%) repeats. The specific parameters like Relative Abundance (RA) and Relative Density (RD) of microsatellites ranged within 5.5-8.12 and 33.08-53.58 bp/kb. The analysis of RA and RD value of compound microsatellites resulted between 0.25-0.82 and 4.64-15.12 bp/kb. The analysis of motif composition of cSSR revealed that most of the compound microsatellites were made up of two microsatellites, with some unique duplicated pattern of the motif like, (TA)-x-(TA), (TCA)-x-(TCA), etc. and self-complementary motifs, such as (TA)-x-(AT). Finally, we validated forty sets of compound microsatellite markers through an in-vitro approach utilizing clinical specimens and mapping the sequencing products with the database through comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03169-4.
Collapse
|
18
|
Dermatitis during Spaceflight Associated with HSV-1 Reactivation. Viruses 2022; 14:v14040789. [PMID: 35458519 PMCID: PMC9028032 DOI: 10.3390/v14040789] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic during spaceflight, though live/infectious virus has been recovered and the shedding rate increases with mission duration. The risk of clinical disease, therefore, may increase for astronauts assigned to extended missions (>180 days). Here, we report, for the first time, a case of HSV-1 skin rash (dermatitis) occurring during long-duration spaceflight. The astronaut reported persistent dermatitis during flight, which was treated onboard with oral antihistamines and topical/oral steroids. No HSV-1 DNA was detected in 6-month pre-mission saliva samples, but on flight day 82, a saliva and rash swab both yielded 4.8 copies/ng DNA and 5.3 × 104 copies/ng DNA, respectively. Post-mission saliva samples continued to have a high infectious HSV-1 load (1.67 × 107 copies/ng DNA). HSV-1 from both rash and saliva samples had 99.9% genotype homology. Additional physiological monitoring, including stress biomarkers (cortisol, dehydroepiandrosterone (DHEA), and salivary amylase), immune markers (adaptive regulatory and inflammatory plasma cytokines), and biochemical profile markers, including vitamin/mineral status and bone metabolism, are also presented for this case. These data highlight an atypical presentation of HSV-1 during spaceflight and underscore the importance of viral screening during clinical evaluations of in-flight dermatitis to determine viral etiology and guide treatment.
Collapse
|
19
|
Huaier Polysaccharide Interrupts PRV Infection via Reducing Virus Adsorption and Entry. Viruses 2022; 14:v14040745. [PMID: 35458475 PMCID: PMC9026689 DOI: 10.3390/v14040745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
A pseudorabies virus (PRV) novel virulent variant outbreak occurred in China in 2011. However, little is known about PRV prevention and treatment. Huaier polysaccharide has been used to treat some solid cancers, although its antiviral activity has not been reported. Our study confirmed that the polysaccharide can effectively inhibit infection of PRV XJ5 in PK15 cells. It acted in a dose-dependent manner when blocking virus adsorption and entry into PK15 cells. Moreover, it suppressed PRV replication in PK15 cells. In addition, the results suggest that Huaier polysaccharide plays a role in treating PRV XJ5 infection by directly inactivating PRV XJ5. In conclusion, Huaier polysaccharide might be a novel therapeutic agent for preventing and controlling PRV infection.
Collapse
|
20
|
Yuan H, Zheng Y, Yan X, Wang H, Zhang Y, Ma J, Fu J. Direct cloning of a herpesvirus genome for rapid generation of infectious BAC clones. J Adv Res 2022; 43:97-107. [PMID: 36585118 PMCID: PMC9811322 DOI: 10.1016/j.jare.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The herpesviridae are DNA viruses with large and complicated genomes. The herpesvirus bacterial artificial chromosomes (BACs) have been useful for generating recombinant viruses to study the biology and pathogenesis. However, the conventional method using homologous recombination is not only time consuming but also prone to accumulate attenuating mutations during serial passage of the virus in cells. Elimination of the BAC vector from the recombinant viral genome requires additional step for phenotypically consistence with the original strain. OBJECTIVES To generate a streamlined approach for generating infectious BAC clones of herpesvirus. METHODS The 142-kb pseudorabies virus genome was directly cloned into a bacterial artificial chromosome (BAC) in Escherichia coli by Exonuclease Combined with RecET recombination (ExoCET). Placement of the BAC vector at the terminus of the linear virus genome enabled excision of the BAC backbone from the viral genome by restriction endonuclease for delivery into mammalian cells, with the subsequent rapid rescue of virus that was genetically identical to the original strain. RESULTS This new approach for molecular cloning of the genome from a large DNA virus and isolation of pure virus lacking the BAC vector from transfected mammalian cells bypass the tedious and time-consuming method of multiple rounds of plaque purification. The viral BAC was stable in E. coli, allowing further mutagenesis mediated by the Red system or various site-specific recombination methods. CONCLUSION An efficient method for construction of infectious clones of herpesvirus was established. It is expected to be potentially useful for other viruses with large double-stranded DNA genomes.
Collapse
Affiliation(s)
- Hengxing Yuan
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yaoyao Zheng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hailong Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China,Corresponding authors.
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Jun Fu
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China,Corresponding authors.
| |
Collapse
|
21
|
Sun L, Tang Y, Yan K, Zhang H. Construction of a quadruple gene-deleted vaccine confers complete protective immunity against emerging PRV variant challenge in piglets. Virol J 2022; 19:19. [PMID: 35078501 PMCID: PMC8787898 DOI: 10.1186/s12985-022-01748-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Pseudorabies virus (PRV) causes Aujeszky’s disease or pseudorabies (PR) in pigs worldwide, which leads to heavy economic losses to the swine industry. Pigs are the natural host, meanwhile, animals such as dogs, cats, foxes, rabbits, cattle and sheep are susceptible to infection. In 2011, the emerging PRV variant led to the outbreak of PR in Bartha-K61 vaccinated pigs. The PR outbreaks demonstrated that the Bartha-K61 vaccine did not provide full protection against the emerging PRV variant. It is widely believed that PRV live attenuated vaccine could control PRV infection.
Methods
In this study, we developed a novel PRV live attenuated vaccine by deleting its gI, gE, US9, and US2 genes through CRISPR/Cas9, which was named PRV GDFS-delgI/gE/US9/US2.
Results
Safety experiments confirmed that PRV GDFS-delgI/gE/US9/US2 was safe for 5- to 7-day-old suckling piglets. Piglets immunized with the PRV GDFS-delgI/gE/US9/US2 vaccine did not produce PRV gE-specific antibodies but could generate PRV gB-specific antibodies and high neutralizing titers against the PRV GDFS strain (variant PRV strain) or PRV Ea strain (older PRV strain). After challenge with the emerging PRV GDFS variant, none of the piglets immunized with the PRV GDFS-delgI/gE/US9/US2 vaccine showed any clinical signs, and their rectal temperatures were normal. Moreover, the autopsy and histopathological analyses revealed that the piglets in the PRV GDFS-delgI/gE/US9/US2 vaccine group did not show apparent gross or pathological lesions. Furthermore, the piglets in the PRV GDFS-delgI/gE/US9/US2 vaccine groups did not present weight loss. According to the criteria of the OIE terrestrial manual, the results of the experiment confirmed that the PRV GDFS-delgI/gE/US9/US2 vaccine could provide full protection against the emerging PRV variant strain in piglets.
Conclusions
The PRV GDFS-delgI/gE/US9/US2 strain is a potential new live attenuated vaccine against emerging PRV variant strain infections in China.
Collapse
|
22
|
Genome Plasticity of African Swine Fever Virus: Implications for Diagnostics and Live-Attenuated Vaccines. Pathogens 2022; 11:pathogens11020145. [PMID: 35215087 PMCID: PMC8875878 DOI: 10.3390/pathogens11020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
African swine fever (ASF) is a highly contagious transboundary viral hemorrhagic disease of domestic and wild pigs presenting a significant threat to the global swine industry. Following its introduction in Caucasus, Georgia, in 2007, the genome of the genotype II of African swine fever virus (ASFV) strain Georgia-07 and its derivatives accumulated significant mutations, resulting in the emergence of genetic variants within short epidemiological timescales as it spreads and infects different hosts in diverse ecosystems, causing outbreaks in Europe, South Asia, South East Asia and the Caribbean. This suggests that ASFV, with a comparatively large and complex DNA genome, is susceptible to genetic mutations including deletions and that although the virus is environmentally stable, it is genetically unstable. This has implications for the development of vaccines and diagnostic tests for disease detection and surveillance. Analysis of the ASFV genome revealed recombination hotspots, which in double-stranded DNA (dsDNA) viruses represent key drivers of genetic diversity. The ability of pox virus, a dsDNA virus with a genome complexity similar to ASFV, regaining virulence following the deletion of a virulence gene via gene amplification, coupled with the recent emergence and spread of live-attenuated ASFV vaccine strains causing disease and death in pigs in China, raise legitimate concerns around the use of live-attenuated ASFV vaccines in non-endemic regions to control the potential introduction. Further research into the risk of using live-attenuated ASFV in non-endemic regions is highly needed.
Collapse
|
23
|
Pegg CE, Zaichick SV, Bomba-Warczak E, Jovasevic V, Kim D, Kharkwal H, Wilson DW, Walsh D, Sollars PJ, Pickard GE, Savas JN, Smith GA. Herpesviruses assimilate kinesin to produce motorized viral particles. Nature 2021; 599:662-666. [PMID: 34789877 DOI: 10.1038/s41586-021-04106-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/07/2021] [Indexed: 01/05/2023]
Abstract
Neurotropic alphaherpesviruses initiate infection in exposed mucosal tissues and, unlike most viruses, spread rapidly to sensory and autonomic nerves where life-long latency is established1. Recurrent infections arise sporadically from the peripheral nervous system throughout the life of the host, and invasion of the central nervous system may occur, with severe outcomes2. These viruses directly recruit cellular motors for transport along microtubules in nerve axons, but how the motors are manipulated to deliver the virus to neuronal nuclei is not understood. Here, using herpes simplex virus type I and pseudorabies virus as model alphaherpesviruses, we show that a cellular kinesin motor is captured by virions in epithelial cells, carried between cells, and subsequently used in neurons to traffic to nuclei. Viruses assembled in the absence of kinesin are not neuroinvasive. The findings explain a critical component of the alphaherpesvirus neuroinvasive mechanism and demonstrate that these viruses assimilate a cellular protein as an essential proviral structural component. This principle of viral assimilation may prove relevant to other virus families and offers new strategies to combat infection.
Collapse
Affiliation(s)
- Caitlin E Pegg
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sofia V Zaichick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vladimir Jovasevic
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - DongHo Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Himanshu Kharkwal
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Agenus, Lexington, MA, USA
| | - Duncan W Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Wang J, Han H, Liu W, Li S, Guo D. Diagnosis and gI antibody dynamics of pseudorabies virus in an intensive pig farm in Hei Longjiang Province. J Vet Sci 2021; 22:e23. [PMID: 33774939 PMCID: PMC8007445 DOI: 10.4142/jvs.2021.22.e23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background Pseudorabies (PR), caused by the pseudorabies virus (PRV), is an endemic disease in some regions of China. Although there are many reports on epidemiological investigations into pseudorabies, information on PRV gI antibody dynamics in one pig farm is sparse. Objectives To diagnose PR and analyze the course of PR eradication in one pig farm. Methods Ten brains and 1,513 serum samples from different groups of pigs in a pig farm were collected to detect PRV gE gene and PRV gI antibody presence using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results The July 2015 results indicated that almost all brain samples were PRV gE gene positive, but PRV gI antibody results in the serum samples of the same piglets were all negative. In the boar herd, from October 2015 to July 2018 three positive individuals were culled in October 2015, and the negative status of the remaining boars was maintained in the following tests. In the sow herd, the PRV gI antibody positive rate was always more than 70% from October 2015 to October 2017; however, it decreased to 27% in January 2018 but increased to 40% and 52% in April and July 2018, respectively. The PRV gI antibody positive rate in 100-day pigs markedly decreased in October 2016 and was maintained at less than 30% in the following tests. For 150-day pigs, the PRV gI antibody positive rate decreased notably to 10% in April 2017 and maintained a negative status from July 2017. The positive trend of PRV gI antibody with an increase in pig age remarkably decreased in three tests in 2018. Conclusions The results indicate that serological testing is not sensitive in the early stage of a PRV infection and that gilt introduction is a risk factor for a PRV-negative pig farm. The data on PRV gI antibody dynamics can provide reference information for pig farms wanting to eradicate PR.
Collapse
Affiliation(s)
- Jintao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Gaoxin District, Daqing, Hei Longjiang 163319, China.,Institute of Animal Science and Veterinary Medicine, Hei Longjiang Academy of Land Reclamation Sciences, Harbin, Hei Longjiang 150038, China
| | - Huansheng Han
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Gaoxin District, Daqing, Hei Longjiang 163319, China.,Institute of Animal Science and Veterinary Medicine, Hei Longjiang Academy of Land Reclamation Sciences, Harbin, Hei Longjiang 150038, China
| | - Wanning Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Gaoxin District, Daqing, Hei Longjiang 163319, China
| | - Shinian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Gaoxin District, Daqing, Hei Longjiang 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Gaoxin District, Daqing, Hei Longjiang 163319, China.
| |
Collapse
|
25
|
Hu R, Wang L, Liu Q, Hua L, Huang X, Zhang Y, Fan J, Chen H, Song W, Liang W, Ding N, Li Z, Ding Z, Tang X, Peng Z, Wu B. Whole-Genome Sequence Analysis of Pseudorabies Virus Clinical Isolates from Pigs in China between 2012 and 2017 in China. Viruses 2021; 13:v13071322. [PMID: 34372529 PMCID: PMC8310123 DOI: 10.3390/v13071322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudorabies virus (PRV) is an economically significant swine infectious agent. A PRV outbreak took place in China in 2011 with novel virulent variants. Although the association of viral genomic variability with pathogenicity is not fully confirmed, the knowledge concerning PRV genomic diversity and evolution is still limited. Here, we sequenced 54 genomes of novel PRV variants isolated in China from 2012 to 2017. Phylogenetic analysis revealed that China strains and US/Europe strains were classified into two separate genotypes. PRV strains isolated from 2012 to 2017 in China are highly related to each other and genetically close to classic China strains such as Ea, Fa, and SC. RDP analysis revealed 23 recombination events within novel PRV variants, indicating that recombination contributes significantly to the viral evolution. The selection pressure analysis indicated that most ORFs were under evolutionary constraint, and 19 amino acid residue sites in 15 ORFs were identified under positive selection. Additionally, 37 unique mutations were identified in 19 ORFs, which distinguish the novel variants from classic strains. Overall, our study suggested that novel PRV variants might evolve from classical PRV strains through point mutation and recombination mechanisms.
Collapse
Affiliation(s)
- Ruiming Hu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- Jiangxi Provincial Key Laboratory for Animal Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
| | - Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Wenbo Song
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Nengshui Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 360000, China
| | - Zuohua Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Zhen Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- Jiangxi Provincial Key Laboratory for Animal Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xibiao Tang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Correspondence: (Z.P.); (B.W.)
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Correspondence: (Z.P.); (B.W.)
| |
Collapse
|
26
|
Li W, Zhuang D, Li H, Zhao M, Zhu E, Xie B, Chen J, Zhao M. Recombinant pseudorabies virus with gI/gE deletion generated by overlapping polymerase chain reaction and homologous recombination technology induces protection against the PRV variant PRV-GD2013. BMC Vet Res 2021; 17:164. [PMID: 33853597 PMCID: PMC8048318 DOI: 10.1186/s12917-021-02861-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/27/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Since 2011, numerous highly virulent and antigenic variant viral strains have been reported in pigs that were vaccinated against the swine pseudorabies virus. These infections have led to substantial economic losses in the Chinese swine industry. RESULTS This study, constructed a novel recombinant vaccine strain with gI/gE deletion (PRV-GD2013-ΔgI/gE) by overlapping PCR and homologous recombination technology. The growth curves and plaque morphology of the recombinant virus were similar to those of the parental strain. However, PRV-GD2013-ΔgI/gE infection was significantly attenuated in mice compared with that of PRV-GD2013. Two-week-old piglets had normal rectal temperatures and displayed no clinical symptoms after being inoculated with 105 TCID50 PRV-GD2013-ΔgI/gE, indicating that the recombinant virus was avirulent in piglets. Piglets were immunized with different doses of PRV-GD2013-ΔgI/gE, or a single dose of Bartha-K61 or DMEM, and infected with PRV-GD2013 at 14 days post-vaccination. Piglets given high doses of PRV-GD2013-ΔgI/gE showed no obvious clinical symptoms, and their antibody levels were higher than those of other groups, indicating that the piglets were completely protected from PRV-GD2013. CONCLUSIONS The PRV-GD2013-ΔgI/gE vaccine strain could be effective for immunizing Chinese swine herds against the pseudorabies virus (PRV) strain.
Collapse
Affiliation(s)
- Wenhui Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wu Shan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Dijing Zhuang
- College of Veterinary Medicine, South China Agricultural University, 483 Wu Shan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Li
- Shandong Qianxi Agriculture & Animal Husbandry Development Co., Ltd., Zaozhuang, China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, 483 Wu Shan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, 483 Wu Shan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Baoming Xie
- College of Veterinary Medicine, South China Agricultural University, 483 Wu Shan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, 483 Wu Shan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, 483 Wu Shan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
27
|
Mangold CA, Rathbun MM, Renner DW, Kuny CV, Szpara ML. Viral infection of human neurons triggers strain-specific differences in host neuronal and viral transcriptomes. PLoS Pathog 2021; 17:e1009441. [PMID: 33750985 PMCID: PMC8016332 DOI: 10.1371/journal.ppat.1009441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Infection with herpes simplex virus 1 (HSV-1) occurs in over half the global population, causing recurrent orofacial and/or genital lesions. Individual strains of HSV-1 demonstrate differences in neurovirulence in vivo, suggesting that viral genetic differences may impact phenotype. Here differentiated SH-SY5Y human neuronal cells were infected with one of three HSV-1 strains known to differ in neurovirulence in vivo. Host and viral RNA were sequenced simultaneously, revealing strain-specific differences in both viral and host transcription in infected neurons. Neuronal morphology and immunofluorescence data highlight the pathological changes in neuronal cytoarchitecture induced by HSV-1 infection, which may reflect host transcriptional changes in pathways associated with adherens junctions, integrin signaling, and others. Comparison of viral protein levels in neurons and epithelial cells demonstrated that a number of differences were neuron-specific, suggesting that strain-to-strain variations in host and virus transcription are cell type-dependent. Together, these data demonstrate the importance of studying virus strain- and cell-type-specific factors that may contribute to neurovirulence in vivo, and highlight the specificity of HSV-1-host interactions.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Molly M. Rathbun
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel W. Renner
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chad V. Kuny
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Moriah L. Szpara
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
28
|
Gou H, Bian Z, Li Y, Cai R, Jiang Z, Song S, Zhang K, Chu P, Yang D, Li C. Metabolomics Exploration of Pseudorabies Virus Reprogramming Metabolic Profiles of PK-15 Cells to Enhance Viral Replication. Front Cell Infect Microbiol 2021; 10:599087. [PMID: 33585273 PMCID: PMC7879706 DOI: 10.3389/fcimb.2020.599087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
For viral replication to occur in host cells, low-molecular-weight metabolites are necessary for virion assembly. Recently, metabolomics has shown great promise in uncovering the highly complex mechanisms associated with virus-host interactions. In this study, the metabolic networks in PK-15 cells infected with a variant virulent or classical attenuated pseudorabies virus (PRV) strains were explored using gas chromatography-mass spectrometry (GC-MS) analysis. Although total numbers of metabolites whose levels were altered by infection with the variant virulent strain or the classical attenuated strain were different at 8 and 16 h post infection (hpi), the predicted levels of differential metabolic components were shown to be associated with specific pathways, including glycolysis as well as amino acid and nucleotide metabolism. The glucose depletion and glycolysis inhibitors 2DG and oxamate could reduce the level of PRV replication in PK-15 cells. In addition, the inhibition of the pentose phosphate pathway (PPP) resulted in an obvious decline of viral titers, but the prevention of oxidative phosphorylation in the tricarboxylic acid (TCA) cycle had a minimal effect on viral replication. Glutamine starvation resulted in the decline of viral titers, which could be restored by supplemental addition in the culture media. However, inhibition of glutaminase (GLS) activity or the supplement of 2-ketoglutarate into glutamine-deleted DMEM did not alter PRV replication in PK-15 cells. The results of the current study indicate that PRV reprograms the metabolic activities of PK-15 cells. The metabolic flux from glycolysis, PPP and glutamine metabolism to nucleotide biosynthesis was essential for PRV to enhance its replication. This study will help to identify the biochemical materials utilized by PRV replication in host cells, and this knowledge can aid in developing new antiviral strategies.
Collapse
Affiliation(s)
- Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Zhibiao Bian
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Rujian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Zhiyong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Pinpin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| |
Collapse
|
29
|
Huan C, Xu W, Guo T, Pan H, Zou H, Jiang L, Li C, Gao S. (-)-Epigallocatechin-3-Gallate Inhibits the Life Cycle of Pseudorabies Virus In Vitro and Protects Mice Against Fatal Infection. Front Cell Infect Microbiol 2021; 10:616895. [PMID: 33520741 PMCID: PMC7841300 DOI: 10.3389/fcimb.2020.616895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
A newly emerged pseudorabies virus (PRV) variant with enhanced pathogenicity has been identified in many PRV-vaccinated swine in China since 2011. The PRV variant has caused great economic cost to the swine industry, and measures for the effective prevention and treatment of this PRV variant are still lacking. (–)-Epigallocatechin-3-gallate (EGCG) exhibits antiviral activity against diverse viruses and thus in this study, we investigated the anti-PRV activity of EGCG in vitro and in vivo. EGCG significantly inhibited infectivity of PRV Ra and PRV XJ5 strains in PK15 B6 cells and Vero cells. The anti-PRV activity of EGCG was dose-dependent, and 50 μM EGCG could completely block viral infection at different multiplicities of infection. We next revealed that EGCG blocked PRV adsorption and entry to PK15 B6 cells in a dose-dependent manner, but inhibition of PRV entry by EGCG was not as efficient as its inhibition of PRV adsorption. PRV replication was suppressed in PK15 B6 cells treated with EGCG post-infection. However, EGCG did not affect PRV assembly and could promote PRV release. Furthermore, 40 mg/kg EGCG provided 100% protection in BALB/c mice challenged with PRV XJ5, when EGCG was administrated both pre- and post-challenge. These results revealed that EGCG exhibits antiviral activity against PRV mainly by inhibiting virus adsorption, entry and replication in vitro. Meanwhile, EGCG increased the survival of mice challenged with PRV. Therefore, EGCG might be a potential antiviral agent against PRV infection.
Collapse
Affiliation(s)
- Changchao Huan
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Weiyin Xu
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Hengyue Zou
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Luyao Jiang
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Song Gao
- College of Veterinary Medicine, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Vallbracht M, Klupp BG, Mettenleiter TC. Influence of N-glycosylation on Expression and Function of Pseudorabies Virus Glycoprotein gB. Pathogens 2021; 10:61. [PMID: 33445487 PMCID: PMC7827564 DOI: 10.3390/pathogens10010061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/13/2023] Open
Abstract
Envelope glycoprotein (g)B is conserved throughout the Herpesviridae and mediates fusion of the viral envelope with cellular membranes for infectious entry and spread. Like all viral envelope fusion proteins, gB is modified by asparagine (N)-linked glycosylation. Glycans can contribute to protein function, intracellular transport, trafficking, structure and immune evasion. gB of the alphaherpesvirus pseudorabies virus (PrV) contains six consensus sites for N-linked glycosylation, but their functional relevance is unknown. Here, we investigated the occupancy and functional relevance of N-glycosylation sites in PrV gB. To this end, all predicted N-glycosylation sites were inactivated either singly or in combination by the introduction of conservative mutations (N➔Q). The resulting proteins were tested for expression, fusion activity in cell-cell fusion assays and complementation of a gB-deficient PrV mutant. Our results indicate that all six sites are indeed modified. However, while glycosylation at most sites was dispensable for gB expression and fusogenicity, inactivation of N154 and N700 affected gB processing by furin cleavage and surface localization. Although all single mutants were functional in cell-cell fusion and viral entry, simultaneous inactivation of all six N-glycosylation sites severely impaired fusion activity and viral entry, suggesting a critical role of N-glycans for maintaining gB structure and function.
Collapse
Affiliation(s)
| | | | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.V.); (B.G.K.)
| |
Collapse
|
31
|
Liu H, Shi Z, Liu C, Wang P, Wang M, Wang S, Liu Z, Wei L, Sun Z, He X, Wang J. Implication of the Identification of an Earlier Pseudorabies Virus (PRV) Strain HLJ-2013 to the Evolution of Chinese PRVs. Front Microbiol 2020; 11:612474. [PMID: 33384679 PMCID: PMC7769849 DOI: 10.3389/fmicb.2020.612474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Pseudorabies viruses (PRVs) pose a great threat to the pig industry of many countries around the world. Human infections with PRV have also been reported occasionally in China. Therefore, understanding the epidemiology and evolution of PRVs is of great importance for disease control in the pig populations and humans as well. In this study, we isolated a PRV designated HLJ-2013 from PRV-positive samples that had been collected in Heilongjiang, China, in 2013. The full genome sequence of the virus was determined to be ∼143 kbp in length using high-throughput sequencing. The genomic sequence identities between this isolate and 21 other previous PRV isolates ranged from 92.4% (with Bartha) to 97.3% (with SC). Phylogenetic analysis based on the full-length genome sequences revealed that PRV HLJ-2013 clustered together with all the Chinese strains in one group belonging to Genotype II, but this virus occurred phylogenetically earlier than all the other Chinese PRV strains. Phylogenetic trees based on both protein-coding genes and non-coding regions revealed that HLJ-2013 probably obtained its genome sequences from three origins: a yet unknown parent virus, the European viruses, and the same ancestor of all Chinese PRVs. Recombination analysis showed that HLJ-2013-like virus possibly donated the main framework of the genome of the Chinese PRVs. HLJ-2013 exhibited cytopathic and growth characteristics similar to that of the Chinese PRV strains SC and HeN1, but its pathogenicity in mice was higher than that of SC and lower than that of HeN1. The identification of HLJ-2013 takes us one step closer to understanding the origin of PRVs in China and provides new knowledge about the evolution of PRVs worldwide.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhibin Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shida Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zaisi Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lili Wei
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenzhao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
32
|
Abstract
Alphaherpesviruses, as large double-stranded DNA viruses, were long considered to be genetically stable and to exist in a homogeneous state. Recently, the proliferation of high-throughput sequencing (HTS) and bioinformatics analysis has expanded our understanding of herpesvirus genomes and the variations found therein. Recent data indicate that herpesviruses exist as diverse populations, both in culture and in vivo, in a manner reminiscent of RNA viruses. In this review, we discuss the past, present, and potential future of alphaherpesvirus genomics, including the technical challenges that face the field. We also review how recent data has enabled genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures, including those introduced by cell culture. While we focus on the human alphaherpesviruses, we draw key insights from related veterinary species and from the beta- and gamma-subfamilies of herpesviruses. Promising technologies and potential future directions for herpesvirus genomics are highlighted as well, including the potential to link viral genetic differences to phenotypic and disease outcomes.
Collapse
Affiliation(s)
- Chad V. Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Moriah L. Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
33
|
Enquist LW. Biographical Feature: The Long and Winding Road: My Career Path and How I Ended Up Where I Am Now. J Virol 2020; 94:e01625-20. [PMID: 32907976 PMCID: PMC7592209 DOI: 10.1128/jvi.01625-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
34
|
The Attenuated Pseudorabies Virus Vaccine Strain Bartha K61: A Brief Review on the Knowledge Gathered During 60 Years of Research. Pathogens 2020; 9:pathogens9110897. [PMID: 33121171 PMCID: PMC7693725 DOI: 10.3390/pathogens9110897] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily of the herpesviruses and is the causative agent of Aujeszky’s disease in pigs, causing respiratory, neurological, and reproductive symptoms. Given the heavy economic losses associated with Aujeszky’s disease epidemics, great efforts were made to develop efficacious vaccines. One of the best modified live vaccines to this day is the attenuated Bartha K61 strain. The use of this vaccine in extensive vaccination programs worldwide has assisted considerably in the eradication of PRV from the domesticated pig population in numerous countries. The Bartha K61 strain was described in 1961 by Adorján Bartha in Budapest and was obtained by serial passaging in different cell cultures. Ever since, it has been intensively studied by several research groups, for example, to explore its efficacy as a vaccine strain, to molecularly and mechanistically explain its attenuation, and to use it as a retrograde neuronal tracer and as a vector vaccine. Given that the Bartha K61 vaccine strain celebrates its 60th birthday in 2021 with no sign of retirement, this review provides a short summary of the knowledge on its origin, characteristics, and use as a molecular tool and as a vaccine.
Collapse
|
35
|
Ji C, Wei Y, Wang J, Zeng Y, Pan H, Liang G, Ma J, Gong L, Zhang W, Zhang G, Wang H. Development of a Dual Fluorescent Microsphere Immunological Assay for Detection of Pseudorabies Virus gE and gB IgG Antibodies. Viruses 2020; 12:v12090912. [PMID: 32825263 PMCID: PMC7551494 DOI: 10.3390/v12090912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudorabies, also known as Aujezsky’s disease, is an acute viral infection caused by pseudorabies virus (PRV). Swine are one of the natural hosts of pseudorabies and the disease causes huge economic losses in the pig industry. The establishment of a differential diagnosis technique that can distinguish between wild-type infection and vaccinated responses and monitor vaccine-induced immunoglobulin G(IgG) is crucial for the eventual eradication of pseudorabies. The aim of this study was to develop a rapid dual detection method for PRV gE and gB protein IgG antibodies with high specificity and sensitivity. PRV gE codons at amino acid residues (aa) 52–238 and gB codons at aa 539–741 were expressed to obtain recombinant PRV gE and gB proteins via a pMAL-c5x vector. After purification with Qiagen Ni–nitrilotriacetic acid (NTA) agarose affinity chromatography, the two proteins were analyzed via SDS-PAGE and immunoblotting assays. Two single fluorescent-microsphere immunoassays (FMIAs) were established by coupling two recombinant proteins (gE and gB) to magnetic microbeads, and an effective dual FMIA was developed by integrating the two single assays. Optimal serum dilution for each assay, correlation with other common swine virus-positive sera, and comparison with ELISA for two PRV antigens were tested for validation. Compared with ELISA, the specificity and sensitivity were 99.26% and 92.3% for gE IgG antibody detection, and 95.74% and 96.3% for the gB IgG antibody detection via dual FMIA. We provide a new method for monitoring PRV protective antibodies in vaccinated pigs and differentiating wild-type PRV infection from vaccinated responses simultaneously.
Collapse
Affiliation(s)
- Chihai Ji
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Yingfang Wei
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Yuchen Zeng
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Haoming Pan
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Guan Liang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Wei Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510642, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.Z.); (H.W.)
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
- Correspondence: (G.Z.); (H.W.)
| |
Collapse
|
36
|
Xie J, Bi Y, Xu S, Han Y, Idris A, Zhang H, Li X, Bai J, Zhang Y, Feng R. Host antiviral protein IFITM2 restricts pseudorabies virus replication. Virus Res 2020; 287:198105. [PMID: 32745511 PMCID: PMC7834200 DOI: 10.1016/j.virusres.2020.198105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Type I IFN and IFITMs showed marked upregulation following PRV infection in PK15 cells. IFITM proteins restricted PRV infection by interfering virus binding and entry. IFITM2-mediated inhibition of PRV entry requires the cholesterol pathway.
Pseudorabies virus (PRV) is one of the most destructive swine pathogens and leads to huge economic losses to the global pig industry. Type I interferons (IFNs) plays a pivotal role in the innate immune response to virus infection via induction of a series of interferon-stimulated genes (ISGs) expression. IFN-induced transmembrane (IFITM) proteins, a group of ISGs, are important host self-restriction factors, possessing a broad spectrum of antiviral effects. They are known confer resistance to a variety of RNA and DNA viruses. However, little is known about the role of IFITMs in PRV infection. In this study, we show that IFITM is crucial for controlling PRV infection and that IFITM proteins can interfere with PRV cell binding and entry. Furthermore, we showed that IFITM2-mediated inhibition of PRV entry requires the cholesterol pathway. Collectively, these results provide insight into the anti-PRV role of IFITM proteins and this inhibition possible associated with the change of cholesterol in the endosome, further underlying the importance of cholesterol in virus infection.
Collapse
Affiliation(s)
- Jingying Xie
- College of Veterinary Medicine, Gansu Agricultural University, No.1 Yingmencun, Lanzhou, 730070, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Yumei Han
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Haixia Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, No.1 Yingmencun, Lanzhou, 730070, China.
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
37
|
Sergeyev OV, Bosh'ian RE, Barinsky IF. [RETRACTED: High-throughput sequencing in diagnostics and prevention of herpes simplex virus infection (Herpesviridae, Alphaherpesvirinae, Simplexvirus, Human alphaherpesvirus 1)]. Vopr Virusol 2020; 65:126-131. [PMID: 33533214 DOI: 10.36233/0507-4088-2020-65-3-126-131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
RETRACTEDHerpes simplex viruses types 1 (HSV-1) and 2 (HSV-2) are among the most common viruses in the human population. The clinical manifestations of HSV infection vary widely, which necessitates reliable molecular methods for the timely diagnosis of herpes virus infection, as well as for detection of mutations in the genes responsible for drug resistance. PCR is often unable to detect HSV isolates with nucleotide substitutions at the primer binding site. Sanger sequencing of the whole genome reveals mutations mainly at the consensus level, which accumulate at advanced stages of viral infection. High-throughput sequencing (HTS, next generation sequencing) offers an obvious advantage both in early diagnosis of herpes virus infection and identification of HSV variants.
Collapse
Affiliation(s)
- O V Sergeyev
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - R E Bosh'ian
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I F Barinsky
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| |
Collapse
|
38
|
Wang Y, Wang S, Wu H, Liu X, Ma J, Khan MA, Riaz A, Wang L, Qiu HJ, Sun Y. Compartmentalized Neuronal Culture for Viral Transport Research. Front Microbiol 2020; 11:1470. [PMID: 32760359 PMCID: PMC7373733 DOI: 10.3389/fmicb.2020.01470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023] Open
Abstract
Neuron-invading viruses usually enter via the peripheral organs/tissues of their mammalian hosts and are transported to the neurons. Virus trafficking is critical for transport or spread within the nervous system. Primary culture of neurons is a valuable and indispensable method for neurobiological research, allowing researchers to investigate basic mechanisms of diverse neuronal functions as well as retrograde and anterograde virus transport in neuronal axons. Primary ganglion sensory neurons from mice can be cultured in a compartmentalized culture device, which allows spatial fluidic separation of cell bodies and distal axons. These neurons serve as an important model for investigating the transport of viruses between the neuronal soma and distal axons. Alphaherpesviruses are fascinating and important human and animal pathogens, they replicate and establish lifelong latent infection in the peripheral nervous system, the mechanism of the viral transport along the axon is the key to understand the virus spread in the nervous system. In this review, we briefly introduce and evaluate the most frequently used compartmentalization tools in viral transport research, with particular emphasis on alphaherpesviruses.
Collapse
Affiliation(s)
- Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongxia Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinxin Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Muhammad Akram Khan
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Science, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Aayesha Riaz
- Department of Parasitology and Microbiology, Faculty of Veterinary and Animal Science, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
39
|
Huang H, Koyuncu OO, Enquist LW. Pseudorabies Virus Infection Accelerates Degradation of the Kinesin-3 Motor KIF1A. J Virol 2020; 94:e01934-19. [PMID: 32075931 PMCID: PMC7163149 DOI: 10.1128/jvi.01934-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Alphaherpesviruses, including pseudorabies virus (PRV), are neuroinvasive pathogens that establish lifelong latency in peripheral ganglia following the initial infection at mucosal surfaces. The establishment of latent infection and subsequent reactivations, during which newly assembled virions are sorted into and transported anterogradely inside axons to the initial mucosal site of infection, rely on axonal bidirectional transport mediated by microtubule-based motors. Previous studies using cultured peripheral nervous system (PNS) neurons have demonstrated that KIF1A, a kinesin-3 motor, mediates the efficient axonal sorting and transport of newly assembled PRV virions. Here we report that KIF1A, unlike other axonal kinesins, is an intrinsically unstable protein prone to proteasomal degradation. Interestingly, PRV infection of neuronal cells leads not only to a nonspecific depletion of KIF1A mRNA but also to an accelerated proteasomal degradation of KIF1A proteins, leading to a near depletion of KIF1A protein late in infection. Using a series of PRV mutants deficient in axonal sorting and anterograde spread, we identified the PRV US9/gE/gI protein complex as a viral factor facilitating the proteasomal degradation of KIF1A proteins. Moreover, by using compartmented neuronal cultures that fluidically and physically separate axons from cell bodies, we found that the proteasomal degradation of KIF1A occurs in axons during infection. We propose that the PRV anterograde sorting complex, gE/gI/US9, recruits KIF1A to viral transport vesicles for axonal sorting and transport and eventually accelerates the proteasomal degradation of KIF1A in axons.IMPORTANCE Pseudorabies virus (PRV) is an alphaherpesvirus related to human pathogens herpes simplex viruses 1 and 2 and varicella-zoster virus. Alphaherpesviruses are neuroinvasive pathogens that establish lifelong latent infections in the host peripheral nervous system (PNS). Following reactivation from latency, infection spreads from the PNS back via axons to the peripheral mucosal tissues, a process mediated by kinesin motors. Here, we unveil and characterize the underlying mechanisms for a PRV-induced, accelerated degradation of KIF1A, a kinesin-3 motor promoting the sorting and transport of PRV virions in axons. We show that PRV infection disrupts the synthesis of KIF1A and simultaneously promotes the degradation of intrinsically unstable KIF1A proteins by proteasomes in axons. Our work implies that the timing of motor reduction after reactivation would be critical because progeny particles would have a limited time window for sorting into and transport in axons for further host-to-host spread.
Collapse
Affiliation(s)
- Hao Huang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Orkide O Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
40
|
He W, Auclert LZ, Zhai X, Wong G, Zhang C, Zhu H, Xing G, Wang S, He W, Li K, Wang L, Han GZ, Veit M, Zhou J, Su S. Interspecies Transmission, Genetic Diversity, and Evolutionary Dynamics of Pseudorabies Virus. J Infect Dis 2020; 219:1705-1715. [PMID: 30590733 DOI: 10.1093/infdis/jiy731] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) causes Aujeszky's disease in pigs and can be transmitted to other mammals, including humans. In the current study, we systematically studied the interspecies transmission and evolutionary history of PRV. METHODS We performed comprehensive analysis on the phylodynamics, selection, and structural biology to summarize the phylogenetic and adaptive evolution of PRV based on all available full-length and major glycoprotein sequences. RESULTS PRV can be divided into 2 main clades with frequent interclade and intraclade recombination. Clade 2.2 (variant PRV) is currently the most prevalent genotype worldwide, and most commonly involved in cross-species transmission events (including humans). We also found that the population size of clade 2.2 has increased since 2011, and the effective reproduction number was >1 from 2011 to 2016, indicating that PRV may be still circulating in swine herds and is still a risk in relation with cross-species transmission in China. Of note, we identified amino acid sites in some important glycoproteins gB, gC, gD, and gE that may be associated with PRV adaptation to new hosts and immune escape to vaccines. CONCLUSIONS Our study provides important genetic insight into the interspecies transmission and evolution of PRV within and between different hosts that warrant additional surveillance.
Collapse
Affiliation(s)
- Wanting He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | | | - Xiaofeng Zhai
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Gary Wong
- College of Life Sciences, Nanjing Normal University, Hangzhou.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Cheng Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Henan Zhu
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Gang Xing
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Wei He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Kemang Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Liang Wang
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Guan-Zhu Han
- Institut Pasteur of Shanghai, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Germany
| | - Jiyong Zhou
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| |
Collapse
|
41
|
Shipley MM, Renner DW, Pandey U, Ford B, Bloom DC, Grose C, Szpara ML. Personalized viral genomic investigation of herpes simplex virus 1 perinatal viremic transmission with dual fatality. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004382. [PMID: 31582464 PMCID: PMC6913147 DOI: 10.1101/mcs.a004382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Here we present a personalized viral genomics approach to investigating a rare case of perinatal herpes simplex virus 1 (HSV-1) transmission that ended in death of both mother and neonate. We sought to determine whether the virus involved in this rare case had any unusual features that may have contributed to the dire patient outcome. A pregnant woman with negative HerpeSelect antibody test underwent cesarean section at 30 wk gestation and died the same day. The premature newborn died 5 d later. Both individuals were found postmortem to have positive blood HSV-1 PCR tests. Using oligonucleotide enrichment and deep sequencing, we determined that viral transmission from mother to infant was nearly perfect at the consensus genome level. At the virus population level, 77% of minor variants (MVs) in the mother's blood also appeared on the neonate's skin, of which more than half were disseminated into the neonate's blood. We also detected nonmaternal MVs that arose de novo in the neonate's viral populations. Of note, one de novo MV in the neonate's skin virus induced a nonsynonymous mutation in the UL6 protein, which is a component of the portal that allows DNA entry into new progeny capsids. This case suggests that perinatal viremic HSV-1 transmission includes the majority of genetic diversity from the maternal virus population and that new, nonsynonymous mutations can occur after relatively few rounds of replication. This report expands our understanding of viral transmission in humans and may lead to improved diagnostic strategies for neonatal HSV-1 acquisition.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bradley Ford
- Department of Pathology, University of Iowa, Iowa City, Iowa 52242, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Charles Grose
- Division of Infectious Disease/Virology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
42
|
Laval K, Van Cleemput J, Vernejoul JB, Enquist LW. Alphaherpesvirus infection of mice primes PNS neurons to an inflammatory state regulated by TLR2 and type I IFN signaling. PLoS Pathog 2019; 15:e1008087. [PMID: 31675371 PMCID: PMC6824567 DOI: 10.1371/journal.ppat.1008087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus closely related to Varicella-Zoster virus (VZV) and Herpes simplex type 1 (HSV1) infects mucosa epithelia and the peripheral nervous system (PNS) of its host. We previously demonstrated that PRV infection induces a specific and lethal inflammatory response, contributing to severe neuropathy in mice. So far, the mechanisms that initiate this neuroinflammation remain unknown. Using a mouse footpad inoculation model, we found that PRV infection rapidly and simultaneously induces high G-CSF and IL-6 levels in several mouse tissues, including the footpad, PNS and central nervous system (CNS) tissues. Interestingly, this global increase occurred before PRV had replicated in dorsal root ganglia (DRGs) neurons and also was independent of systemic inflammation. These high G-CSF and IL-6 levels were not caused by neutrophil infiltration in PRV infected tissues, as we did not detect any neutrophils. Efficient PRV replication and spread in the footpad was sufficient to activate DRGs to produce cytokines. Finally, by using knockout mice, we demonstrated that TLR2 and IFN type I play crucial roles in modulating the early neuroinflammatory response and clinical outcome of PRV infection in mice. Overall, these results give new insights into the initiation of virus-induced neuroinflammation during herpesvirus infections. Herpesviruses are major pathogens worldwide. Pseudorabies virus (PRV) is an alphaherpesvirus related to varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1). The natural host is the pig, but PRV can infect most mammals. In these non-natural hosts, the virus causes a severe pruritus called the ‘mad itch’. Interestingly, PRV infects the peripheral nervous system (PNS) and induces a specific and lethal inflammatory response in mice, yet little is know about how this neuroinflammatory response is initiated. In this study, we demonstrated for the first time how PNS neurons tightly regulate the inflammatory response during PRV infection and contribute to severe clinical outcome in mice. Our work provides new insights into the process of alphaherpesvirus-induced neuropathies, leading to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Jolien Van Cleemput
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonah B. Vernejoul
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
43
|
Yu FL, Miao H, Xia J, Jia F, Wang H, Xu F, Guo L. Proteomics Analysis Identifies IRSp53 and Fascin as Critical for PRV Egress and Direct Cell-Cell Transmission. Proteomics 2019; 19:e1900009. [PMID: 31531927 DOI: 10.1002/pmic.201900009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Pseudorabies virus (PRV) has been widely used as a live trans-synaptic tracer for mapping neuronal circuits. Systematically identifying mature PRV virion proteomes and defining co-purified host proteins are necessary to fully understand the detailed mechanism underlying PRV transmission processes. Here, a PRV virion purification strategy based on sorting with flow cytometry is developed and the mature extracellular and intracellular PRV virion proteomes using LC coupled with MS/MS are characterized. In addition to viral proteins, a large number of host proteins are also identified, including proteins related to actin cytoskeletal dynamics and membrane protrusion. How many of these host proteins are true virion components are unknown and the majority of these may not be. Through functional analysis, it is found that IRSp53 and fascin are critical for the egress process and play a role in direct cell-cell transmission. Moreover, it is shown that CDC42 and Rac1 are also involved in the production of mature extracellular virions. The results suggest that the formation of the filopodia-like cytoskeleton and the rearrangement of the membrane, which are both associated with IRSp53 and fascin, may be important for the transmission of viruses used in neuronal tracing.
Collapse
Affiliation(s)
- Fei-Long Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Miao
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fan Jia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fuqiang Xu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Brian Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Zhang X, Shu X, Bai H, Li W, Li X, Wu C, Gao Y, Wang Y, Yang K, Song C. Effect of porcine circovirus type 2 on the severity of lung and brain damage in piglets infected with porcine pseudorabies virus. Vet Microbiol 2019; 237:108394. [PMID: 31585642 DOI: 10.1016/j.vetmic.2019.108394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 11/26/2022]
Abstract
Porcine circovirus type 2 (PCV2) is widespread throughout Chinese farms, and the infection rate of porcine pseudorabies virus (PRV) is very high. The emergence of mixed infection involving PCV2 and PRV has been difficult to prevent and control and has caused considerable economic loss. The present study investigated lung and brain damage caused by PRV in piglets with PCV2 infection. Twenty piglets were divided randomly into two experiment groups (PRV group and PRV + PCV2 group; n = 10 per group). The pigs were observed for clinical signs at specified times. At necropsy, lung and brain tissue samples were collected for histopathological examination, and tissue virus load was determined using quantitative polymerase chain reaction. Severe pathogenicity due to PRV was evident in two-month-old piglets. PCV2 and PRV co-infection led to more severe neurological and respiratory symptoms and a higher mortality rate in the piglets. In addition, the pathological damage to the lung and brain was also aggravated. The co-infection was associated with a significant increase in the content of PRV in the brain and lung tissue. In conclusion, PCV2 and PRV co-infection could cause severe and irreversible damage to piglets.
Collapse
Affiliation(s)
- Xue Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Xianghua Shu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Huayi Bai
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Wengui Li
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Xin Li
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Changyue Wu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Yunmei Gao
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Yulei Wang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Kun Yang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Chunlian Song
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China.
| |
Collapse
|
45
|
Kamel M, El-Sayed A. Utilization of herpesviridae as recombinant viral vectors in vaccine development against animal pathogens. Virus Res 2019; 270:197648. [PMID: 31279828 DOI: 10.1016/j.virusres.2019.197648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Throughout the past few decades, numerous viral species have been generated as vaccine vectors. Every viral vector has its own distinct characteristics. For example, the family herpesviridae encompasses several viruses that have medical and veterinary importance. Attenuated herpesviruses are developed as vectors to convey heterologous immunogens targeting several serious and crucial pathogens. Some of these vectors have already been licensed for use in the veterinary field. One of their prominent features is their capability to accommodate large amount of foreign DNA, and to stimulate both cell-mediated and humoral immune responses. A better understanding of vector-host interaction builds up a robust foundation for the future development of herpesviruses-based vectors. At the time, many molecular tools are applied to enable the generation of herpesvirus-based recombinant vaccine vectors such as BAC technology, homologous and two-step en passant mutagenesis, codon optimization, and the CRISPR/Cas9 system. This review article highlights the most important techniques applied in constructing recombinant herpesviruses vectors, advantages and disadvantages of each recombinant herpesvirus vector, and the most recent research regarding their use to control major animal diseases.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
46
|
Comparison of Herpes Simplex Virus 1 Strains Circulating in Finland Demonstrates the Uncoupling of Whole-Genome Relatedness and Phenotypic Outcomes of Viral Infection. J Virol 2019; 93:JVI.01824-18. [PMID: 30760568 PMCID: PMC6450105 DOI: 10.1128/jvi.01824-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences. A majority of adults in Finland are seropositive carriers of herpes simplex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which virions enter innervating nerve endings, eventually establishing lifelong infection in neurons of the sensory or autonomic nervous system. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent geographic patterns in strain similarity. Though multiple HSV-1 genomes have been sequenced from Europe to date, there is a lack of sequenced genomes from the Nordic countries. Finland’s history includes at least two major waves of human migration, suggesting the potential for diverse viruses to persist in the population. Here, we used HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny, genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 isolates separated into two distinct phylogenetic groups, potentially reflecting historical waves of human (and viral) migration into Finland. Each HSV-1 isolate harbored a distinct set of phenotypes in cell culture, including differences in the amount of virus production, extracellular virus release, and cell-type-specific fitness. Importantly, the phylogenetic clusters were not predictive of any detectable pattern in phenotypic differences, demonstrating that whole-genome relatedness is not a proxy for overall viral phenotype. Instead, we highlight specific gene-level differences that may contribute to observed phenotypic differences, and we note that strains from different phylogenetic groups can contain the same genetic variations. IMPORTANCE Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences.
Collapse
|
47
|
The Carboxyl Terminus of Tegument Protein pUL21 Contributes to Pseudorabies Virus Neuroinvasion. J Virol 2019; 93:JVI.02052-18. [PMID: 30651360 DOI: 10.1128/jvi.02052-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Following its entry into cells, pseudorabies virus (PRV) utilizes microtubules to deliver its nucleocapsid to the nucleus. Previous studies have shown that PRV VP1/2 is an effector of dynein-mediated capsid transport. However, the mechanism of PRV for recruiting microtubule motor proteins for successful neuroinvasion and neurovirulence is not well understood. Here, we provide evidence that PRV pUL21 is an inner tegument protein. We tested its interaction with the cytoplasmic light chains using a bimolecular fluorescence complementation (BiFC) assay and observed that PRV pUL21 interacts with Roadblock-1. This interaction was confirmed by coimmunoprecipitation (co-IP) assays. We also determined the efficiency of retrograde and anterograde axonal transport of PRV strains in explanted neurons using a microfluidic chamber system and investigated pUL21's contribution to PRV neuroinvasion in vivo Further data showed that the carboxyl terminus of pUL21 is essential for its interaction with Roadblock-1, and this domain contributes to PRV retrograde axonal transport in vitro and in vivo Our findings suggest that the carboxyl terminus of pUL21 contributes to PRV neuroinvasion.IMPORTANCE Herpesviruses are a group of DNA viruses that infect both humans and animals. Alphaherpesviruses are distinguished by their ability to establish latent infection in peripheral neurons. After entering neurons, the herpesvirus capsid interacts with cellular motor proteins and undergoes retrograde transport on axon microtubules. This elaborate process is vital to the herpesvirus lifecycle, but the underlying mechanism remains poorly understood. Here, we determined that pUL21 is an inner tegument protein of pseudorabies virus (PRV) and that it interacts with the cytoplasmic dynein light chain Roadblock-1. We also observed that pUL21 promotes retrograde transport of PRV in neuronal cells. Furthermore, our findings confirm that pUL21 contributes to PRV neuroinvasion in vivo Importantly, the carboxyl terminus of pUL21 is responsible for interaction with Roadblock-1, and this domain contributes to PRV neuroinvasion. This study offers fresh insights into alphaherpesvirus neuroinvasion and the interaction between virus and host during PRV infection.
Collapse
|
48
|
Akhtar LN, Bowen CD, Renner DW, Pandey U, Della Fera AN, Kimberlin DW, Prichard MN, Whitley RJ, Weitzman MD, Szpara ML. Genotypic and Phenotypic Diversity of Herpes Simplex Virus 2 within the Infected Neonatal Population. mSphere 2019; 4:e00590-18. [PMID: 30814317 PMCID: PMC6393728 DOI: 10.1128/msphere.00590-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
More than 14,000 neonates are infected with herpes simplex virus (HSV) annually. Approximately half display manifestations limited to the skin, eyes, or mouth (SEM disease). The rest develop invasive infections that spread to the central nervous system (CNS disease or encephalitis) or throughout the infected neonate (disseminated disease). Invasive HSV disease is associated with significant morbidity and mortality, but the viral and host factors that predispose neonates to these forms are unknown. To define viral diversity within the infected neonatal population, we evaluated 10 HSV-2 isolates from newborns with a range of clinical presentations. To assess viral fitness independently of host immune factors, we measured viral growth characteristics in cultured cells and found diverse in vitro phenotypes. Isolates from neonates with CNS disease were associated with larger plaque size and enhanced spread, with the isolates from cerebrospinal fluid (CSF) exhibiting the most robust growth. We sequenced complete viral genomes of all 10 neonatal viruses, providing new insights into HSV-2 genomic diversity in this clinical setting. We found extensive interhost and intrahost genomic diversity throughout the viral genome, including amino acid differences in more than 90% of the viral proteome. The genes encoding glycoprotein G (gG; US4), glycoprotein I (gI; US7), and glycoprotein K (gK; UL53) and viral proteins UL8, UL20, UL24, and US2 contained variants that were found in association with CNS isolates. Many of these viral proteins are known to contribute to cell spread and neurovirulence in mouse models of CNS disease. This report represents the first application of comparative pathogen genomics to neonatal HSV disease.IMPORTANCE Herpes simplex virus (HSV) causes invasive disease in half of infected neonates, resulting in significant mortality and permanent cognitive morbidity. The factors that contribute to invasive disease are not understood. This study revealed diversity among HSV isolates from infected neonates and detected the first associations between viral genetic variations and clinical disease manifestations. We found that viruses isolated from newborns with encephalitis showed enhanced spread in culture. These viruses contained protein-coding variations not found in viruses causing noninvasive disease. Many of these variations were found in proteins known to impact neurovirulence and viral spread between cells. This work advances our understanding of HSV diversity in the neonatal population and how it may impact disease outcome.
Collapse
Affiliation(s)
- Lisa N Akhtar
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher D Bowen
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Ashley N Della Fera
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David W Kimberlin
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard J Whitley
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
49
|
Pandey U, Szpara ML. Herpes Simplex Virus Disease Management and Diagnostics in the Era of High-Throughput Sequencing. ACTA ACUST UNITED AC 2019; 41:41-48. [PMID: 34305220 DOI: 10.1016/j.clinmicnews.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herpes simplex virus (HSV) serotypes 1 and 2 are among the most widespread human viruses. HSV disease has a complex phenotype, with symptoms that can range from mild lesions to encephalitis. In the clinical setting, this diversity of outcomes poses a major challenge, making timely disease diagnosis and treatment challenging. High-throughput sequencing (HTS) has been one of the breakthrough technologies in the modern era of molecular biology, and it is revolutionizing the study of pathogen biology and clinical diagnostics. Here, we review recent studies that have used HTS to answer questions related to the evolution of drug resistance, transmission and spread, virulence marker identification, and the design of better antiviral therapeutics for HSV. We also highlight practical considerations for handling computational analysis of HSV genomes and adoption of HTS as a routine diagnostic procedure in the clinical laboratories.
Collapse
Affiliation(s)
- Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
50
|
Ye C, Wu J, Tong W, Shan T, Cheng X, Xu J, Liang C, Zheng H, Li G, Tong G. Comparative genomic analyses of a virulent pseudorabies virus and a series of its in vitro passaged strains. Virol J 2018; 15:195. [PMID: 30594230 PMCID: PMC6310976 DOI: 10.1186/s12985-018-1102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) of the family Herpesviridae is the causative agent of Aujeszky's disease. Attenuation of PRV by serial passaging in vitro is a well-established method; however, the dynamic variations occurring on viral genome during this process have not been characterized. METHODS Genome sequencing and comparative genomic analyses of a virulent pseudorabies virus and a series of its plaque-purified strains via serial passaging in vitro were performed, and the properties in vitro and in vivo of which were further characterized. RESULTS Compared to the parental virus, replication in vitro was enhanced in the highly passaged F50, F91, and F120. In contrast, lethality in mice decreased gradually with passage number. Genome sequencing of F50, F91, and F120 showed deletion of a large fragment containing gE, which is likely related to their attenuation. In addition, single nucleotide variations were identified in many genes of F50, F91, and F120. In-frame and frameshift indels were also detected in specific genes of passaged strains. Particularly frameshift mutations were observed in highly passaged strains, resulting in a truncated but overexpressed pUL46. CONCLUSION During attenuation of PRV by serial passaging in Vero cells, dynamic variation patterns including a large deletion, single nucleotide variations, small in-frame indels, and also frameshifts mutations successively emerged, contributing to evolution of the viral population and enabling the gradual attenuation of the virus. These data provide clues to better understand PRV attenuation during passaging.
Collapse
Affiliation(s)
- Chao Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Jiqiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Xuefei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Jingjing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Chao Liang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|