1
|
Abrokwah LA, Torkpo SK, Pereira GDS, Oppong A, Eleblu J, Pita J, Offei SK. Rice Yellow Mottle Virus (RYMV): A Review. Viruses 2024; 16:1707. [PMID: 39599824 PMCID: PMC11598978 DOI: 10.3390/v16111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 11/29/2024] Open
Abstract
Rice (Oryza spp.) is mostly grown directly from seed and sown on wet or dry seed beds or usually used as transplants on nursery beds. Among all the economically important viral diseases in the world, rice yellow mottle virus (RYMV) is only prevalent in rice-growing countries in Africa. RYMV has become the main rice production constraint in Africa over the last 20-25 years, causing yield losses of 10 to 100% depending on the age of the plant at the time of infection, degree of varietal susceptibility and the existing climatic conditions. Good agricultural practices and biotechnological tools in the development of improved resistant cultivars have been extensively utilized in controlling the disease. This review focuses on RYMV, its epidemiology, serological and molecular typing, disease management and the way forward for sustainable rice production.
Collapse
Affiliation(s)
- Linda Appianimaa Abrokwah
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- CSIR-Crops Research Institute, Kumasi-Ghana P.O. Box 3785, Ghana;
| | - Stephen Kwame Torkpo
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- Forest and Horticultural Crops Research Centre-Kade, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana
| | | | - Allen Oppong
- CSIR-Crops Research Institute, Kumasi-Ghana P.O. Box 3785, Ghana;
| | - John Eleblu
- West Africa Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana;
| | - Justin Pita
- Universite Felix Houphouet Boigny, Abidjan 00225, Côte d’Ivoire;
| | - Samuel Kwame Offei
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- West Africa Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana;
| |
Collapse
|
2
|
Ghafari M, Sõmera M, Sarmiento C, Niehl A, Hébrard E, Tsoleridis T, Ball J, Moury B, Lemey P, Katzourakis A, Fargette D. Revisiting the origins of the Sobemovirus genus: A case for ancient origins of plant viruses. PLoS Pathog 2024; 20:e1011911. [PMID: 38206964 PMCID: PMC10807823 DOI: 10.1371/journal.ppat.1011911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
The discrepancy between short- and long-term rate estimates, known as the time-dependent rate phenomenon (TDRP), poses a challenge to extrapolating evolutionary rates over time and reconstructing evolutionary history of viruses. The TDRP reveals a decline in evolutionary rate estimates with the measurement timescale, explained empirically by a power-law rate decay, notably observed in animal and human viruses. A mechanistic evolutionary model, the Prisoner of War (PoW) model, has been proposed to address TDRP in viruses. Although TDRP has been studied in animal viruses, its impact on plant virus evolutionary history remains largely unexplored. Here, we investigated the consequences of TDRP in plant viruses by applying the PoW model to reconstruct the evolutionary history of sobemoviruses, plant pathogens with significant importance due to their impact on agriculture and plant health. Our analysis showed that the Sobemovirus genus dates back over four million years, indicating an ancient origin. We found evidence that supports deep host jumps to Poaceae, Fabaceae, and Solanaceae occurring between tens to hundreds of thousand years ago, followed by specialization. Remarkably, the TDRP-corrected evolutionary history of sobemoviruses was extended far beyond previous estimates that had suggested their emergence nearly 9,000 years ago, a time coinciding with the Neolithic period in the Near East. By incorporating sequences collected through metagenomic analyses, the resulting phylogenetic tree showcases increased genetic diversity, reflecting a deep history of sobemovirus species. We identified major radiation events beginning between 4,600 to 2,000 years ago, which aligns with the Neolithic period in various regions, suggesting a period of rapid diversification from then to the present. Our findings make a case for the possibility of deep evolutionary origins of plant viruses.
Collapse
Affiliation(s)
- Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annette Niehl
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Eugénie Hébrard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Theocharis Tsoleridis
- The Wolfson Centre for Global Virus Research and School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Jonathan Ball
- The Wolfson Centre for Global Virus Research and School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Denis Fargette
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
Dossou L, Pinel-Galzi A, Aribi J, Poulicard N, Albar L, Fatogoma S, Ndjiondjop MN, Koné D, Hébrard E. Molecular Tools to Infer Resistance-Breaking Abilities of Rice Yellow Mottle Virus Isolates. Viruses 2023; 15:v15040959. [PMID: 37112939 PMCID: PMC10144094 DOI: 10.3390/v15040959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Rice yellow mottle virus (RYMV) is a major biotic constraint to rice cultivation in Africa. RYMV shows a high genetic diversity. Viral lineages were defined according to the coat protein (CP) phylogeny. Varietal selection is considered as the most efficient way to manage RYMV. Sources of high resistance were identified mostly in accessions of the African rice species, Oryza glaberrima. Emergence of resistance-breaking (RB) genotypes was observed in controlled conditions. The RB ability was highly contrasted, depending on the resistance sources and on the RYMV lineages. A molecular marker linked to the adaptation to susceptible and resistant O. glaberrima was identified in the viral protein genome-linked (VPg). By contrast, as no molecular method was available to identify the hypervirulent lineage able to overcome all known resistance sources, plant inoculation assays were still required. Here, we designed specific RT-PCR primers to infer the RB abilities of RYMV isolates without greenhouse experiments or sequencing steps. These primers were tested and validated on 52 isolates, representative of RYMV genetic diversity. The molecular tools described in this study will contribute to optimizing the deployment strategy of resistant lines, considering the RYMV lineages identified in fields and their potential adaptability.
Collapse
Affiliation(s)
- Laurence Dossou
- AfricaRice Center, M'bé Research Station, Bouaké 01 BP 2551, Côte d'Ivoire
- WASCAL/CEA-CCBAD, Université Félix Houphouët-Boigny, Abidjan 01 BP V 34, Côte d'Ivoire
| | - Agnès Pinel-Galzi
- PHIM, Plant Health Institute, University Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Jamel Aribi
- PHIM, Plant Health Institute, University Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Nils Poulicard
- PHIM, Plant Health Institute, University Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Laurence Albar
- PHIM, Plant Health Institute, University Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Sorho Fatogoma
- WASCAL/CEA-CCBAD, Université Félix Houphouët-Boigny, Abidjan 01 BP V 34, Côte d'Ivoire
| | | | - Daouda Koné
- WASCAL/CEA-CCBAD, Université Félix Houphouët-Boigny, Abidjan 01 BP V 34, Côte d'Ivoire
| | - Eugénie Hébrard
- PHIM, Plant Health Institute, University Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France
| |
Collapse
|
4
|
Moreno‐Pérez MG, Bera S, McLeish M, Fraile A, García‐Arenal F. Reversion of a resistance-breaking mutation shows reversion costs and high virus diversity at necrotic local lesions. MOLECULAR PLANT PATHOLOGY 2023; 24:142-153. [PMID: 36435959 PMCID: PMC9831284 DOI: 10.1111/mpp.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
An instance of host range evolution relevant to plant virus disease control is resistance breaking. Resistance breaking can be hindered by across-host fitness trade-offs generated by negative effects of resistance-breaking mutations on the virus fitness in susceptible hosts. Different mutations in pepper mild mottle virus (PMMoV) coat protein result in the breaking in pepper plants of the resistance determined by the L3 resistance allele. Of these, mutation M138N is widespread in PMMoV populations, despite associated fitness penalties in within-host multiplication and survival. The stability of mutation M138N was analysed by serial passaging in L3 resistant plants. Appearance on passaging of necrotic local lesions (NLL), indicating an effective L3 resistance, showed reversion to nonresistance-breaking phenotypes was common. Most revertant genotypes had the mutation N138K, which affects the properties of the virus particle, introducing a penalty of reversion. Hence, the costs of reversion may determine the evolution of resistance-breaking in addition to resistance-breaking costs. The genetic diversity of the virus population in NLL was much higher than in systemically infected tissues, and included mutations reported to break L3 resistance other than M138N. Infectivity assays on pepper genotypes with different L alleles showed high phenotypic diversity in respect to L alleles in NLL, including phenotypes not reported in nature. Thus, high diversity at NLL may potentiate the appearance of genotypes that enable the colonization of new host genotypes or species. Collectively, the results of this study contribute to better understanding the evolutionary dynamics of resistance breaking and host-range expansions.
Collapse
Affiliation(s)
- Manuel G. Moreno‐Pérez
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Michael McLeish
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| |
Collapse
|
5
|
Bonnamy M, Pinel-Galzi A, Gorgues L, Chalvon V, Hébrard E, Chéron S, Nguyen TH, Poulicard N, Sabot F, Pidon H, Champion A, Césari S, Kroj T, Albar L. Rapid evolution of an RNA virus to escape recognition by a rice nucleotide-binding and leucine-rich repeat domain immune receptor. THE NEW PHYTOLOGIST 2023; 237:900-913. [PMID: 36229931 DOI: 10.1111/nph.18532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Viral diseases are a major limitation for crop production, and their control is crucial for sustainable food supply. We investigated by a combination of functional genetics and experimental evolution the resistance of rice to the rice yellow mottle virus (RYMV), which is among the most devastating rice pathogens in Africa, and the mechanisms underlying the extremely fast adaptation of the virus to its host. We found that the RYMV3 gene that protects rice against the virus codes for a nucleotide-binding and leucine-rich repeat domain immune receptor (NLRs) from the Mla-like clade of NLRs. RYMV3 detects the virus by forming a recognition complex with the viral coat protein (CP). The virus escapes efficiently from detection by mutations in its CP, some of which interfere with the formation of the recognition complex. This study establishes that NLRs also confer in monocotyledonous plants immunity to viruses, and reveals an unexpected functional diversity for NLRs of the Mla clade that were previously only known as fungal disease resistance proteins. In addition, it provides precise insight into the mechanisms by which viruses adapt to plant immunity and gives important knowledge for the development of sustainable resistance against viral diseases of cereals.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Agnès Pinel-Galzi
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Lucille Gorgues
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Véronique Chalvon
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Eugénie Hébrard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Sophie Chéron
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | | | - Nils Poulicard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - François Sabot
- DIADE, Univ Montpellier, IRD, 34394, Montpellier, France
| | - Hélène Pidon
- DIADE, Univ Montpellier, IRD, 34394, Montpellier, France
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, 06484, Quedlinburg, Germany
| | | | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Laurence Albar
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| |
Collapse
|
6
|
Rai A, Sivalingam PN, Senthil-Kumar M. A spotlight on non-host resistance to plant viruses. PeerJ 2022; 10:e12996. [PMID: 35382007 PMCID: PMC8977066 DOI: 10.7717/peerj.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Plant viruses encounter a range of host defenses including non-host resistance (NHR), leading to the arrest of virus replication and movement in plants. Viruses have limited host ranges, and adaptation to a new host is an atypical phenomenon. The entire genotypes of plant species which are imperceptive to every single isolate of a genetically variable virus species are described as non-hosts. NHR is the non-specific resistance manifested by an innately immune non-host due to pre-existing and inducible defense responses, which cannot be evaded by yet-to-be adapted plant viruses. NHR-to-plant viruses are widespread, but the phenotypic variation is often not detectable within plant species. Therefore, molecular and genetic mechanisms of NHR need to be systematically studied to enable exploitation in crop protection. This article comprehensively describes the possible mechanisms of NHR against plant viruses. Also, the previous definition of NHR to plant viruses is insufficient, and the main aim of this article is to sensitize plant pathologists to the existence of NHR to plant viruses and to highlight the need for immediate and elaborate research in this area.
Collapse
Affiliation(s)
- Avanish Rai
- National Institute of Plant Genome Research, New Delhi, India
| | | | | |
Collapse
|
7
|
Odongo PJ, Onaga G, Ricardo O, Natsuaki KT, Alicai T, Geuten K. Insights Into Natural Genetic Resistance to Rice Yellow Mottle Virus and Implications on Breeding for Durable Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:671355. [PMID: 34267770 PMCID: PMC8276079 DOI: 10.3389/fpls.2021.671355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Rice is the main food crop for people in low- and lower-middle-income countries in Asia and sub-Saharan Africa (SSA). Since 1982, there has been a significant increase in the demand for rice in SSA, and its growing importance is reflected in the national strategic food security plans of several countries in the region. However, several abiotic and biotic factors undermine efforts to meet this demand. Rice yellow mottle virus (RYMV) caused by Solemoviridae is a major biotic factor affecting rice production and continues to be an important pathogen in SSA. To date, six pathogenic strains have been reported. RYMV infects rice plants through wounds and rice feeding vectors. Once inside the plant cells, viral genome-linked protein is required to bind to the rice translation initiation factor [eIF(iso)4G1] for a compatible interaction. The development of resistant cultivars that can interrupt this interaction is the most effective method to manage this disease. Three resistance genes are recognized to limit RYMV virulence in rice, some of which have nonsynonymous single mutations or short deletions in the core domain of eIF(iso)4G1 that impair viral host interaction. However, deployment of these resistance genes using conventional methods has proved slow and tedious. Molecular approaches are expected to be an alternative to facilitate gene introgression and/or pyramiding and rapid deployment of these resistance genes into elite cultivars. In this review, we summarize the knowledge on molecular genetics of RYMV-rice interaction, with emphasis on host plant resistance. In addition, we provide strategies for sustainable utilization of the novel resistant sources. This knowledge is expected to guide breeding programs in the development and deployment of RYMV resistant rice varieties.
Collapse
Affiliation(s)
- Patrick J. Odongo
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Geoffrey Onaga
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
- M’bé Research Station, Africa Rice Center (AfricaRice), Bouaké, Côte d’Ivoire
| | - Oliver Ricardo
- Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Keiko T. Natsuaki
- Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Titus Alicai
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Moury B, Desbiez C. Host Range Evolution of Potyviruses: A Global Phylogenetic Analysis. Viruses 2020; 12:v12010111. [PMID: 31963241 PMCID: PMC7020010 DOI: 10.3390/v12010111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
Virus host range, i.e., the number and diversity of host species of viruses, is an important determinant of disease emergence and of the efficiency of disease control strategies. However, for plant viruses, little is known about the genetic or ecological factors involved in the evolution of host range. Using available genome sequences and host range data, we performed a phylogenetic analysis of host range evolution in the genus Potyvirus, a large group of plant RNA viruses that has undergone a radiative evolution circa 7000 years ago, contemporaneously with agriculture intensification in mid Holocene. Maximum likelihood inference based on a set of 59 potyviruses and 38 plant species showed frequent host range changes during potyvirus evolution, with 4.6 changes per plant species on average, including 3.1 host gains and 1.5 host loss. These changes were quite recent, 74% of them being inferred on the terminal branches of the potyvirus tree. The most striking result was the high frequency of correlated host gains occurring repeatedly in different branches of the potyvirus tree, which raises the question of the dependence of the molecular and/or ecological mechanisms involved in adaptation to different plant species.
Collapse
|
9
|
Wang Y, Xu W, Abe J, Nakahara KS, Hajimorad MR. Precise Exchange of the Helper-Component Proteinase Cistron Between Soybean mosaic virus and Clover yellow vein virus: Impact on Virus Viability and Host Range Specificity. PHYTOPATHOLOGY 2020; 110:206-214. [PMID: 31509476 DOI: 10.1094/phyto-06-19-0193-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean mosaic virus and Clover yellow vein virus are two definite species of the genus Potyvirus within the family Potyviridae. Soybean mosaic virus-N (SMV-N) is well adapted to cultivated soybean (Glycine max) genotypes and wild soybean (G. soja), whereas it remains undetectable in inoculated broad bean (Vicia faba). In contrast, clover yellow vein virus No. 30 (ClYVV-No. 30) is capable of systemic infection in broad bean and wild soybean; however, it infects cultivated soybean genotypes only locally. In this study, SMV-N was shown to also infect broad bean locally; hence, broad bean is a host for SMV-N. Based on these observations, it was hypothesized that lack of systemic infection by SMV-N in broad bean and by ClYVV-No. 30 in cultivated soybean is attributable to the incompatibility of multifunctional helper-component proteinase (HC-Pro) in these hosts. The logic of selecting the HC-Pro cistron as a target is based on its established function in systemic movement and being a relevant factor in host range specificity of potyviruses. To test this hypothesis, chimeras were constructed with precise exchanges of HC-Pro cistrons between SMV-N and ClYVV-No. 30. Upon inoculation, both chimeras were viable in infection, but host range specificity of the recombinant viruses did not differ from those of the parental viruses. These observations suggest that (i) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are functionally compatible in infection despite 55.6 and 48.9% nucleotide and amino acid sequence identity, respectively, and (ii) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are not the determinants of host specificity on cultivated soybean or broad beans, respectively.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - W Xu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - K S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
10
|
Abstract
Strategies to manage plant disease-from use of resistant varieties to crop rotation, elimination of reservoirs, landscape planning, surveillance, quarantine, risk modeling, and anticipation of disease emergences-all rely on knowledge of pathogen host range. However, awareness of the multitude of factors that influence the outcome of plant-microorganism interactions, the spatial and temporal dynamics of these factors, and the diversity of any given pathogen makes it increasingly challenging to define simple, all-purpose rules to circumscribe the host range of a pathogen. For bacteria, fungi, oomycetes, and viruses, we illustrate that host range is often an overlapping continuum-more so than the separation of discrete pathotypes-and that host jumps are common. By setting the mechanisms of plant-pathogen interactions into the scales of contemporary land use and Earth history, we propose a framework to assess the frontiers of host range for practical applications and research on pathogen evolution.
Collapse
Affiliation(s)
| | - Benoît Moury
- Pathologie Végétale, INRA, 84140, Montfavet, France;
| |
Collapse
|
11
|
Bera S, Fraile A, García-Arenal F. Analysis of Fitness Trade-Offs in the Host Range Expansion of an RNA Virus, Tobacco Mild Green Mosaic Virus. J Virol 2018; 92:e01268-18. [PMID: 30257999 PMCID: PMC6258955 DOI: 10.1128/jvi.01268-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
The acquisition of new hosts provides a virus with more opportunities for transmission and survival but may be limited by across-host fitness trade-offs. Major causes of across-host trade-offs are antagonistic pleiotropy, that is, host differential phenotypic effects of mutations, a Genotype x Environment interaction, and epistasis, a Genotype x Genotype interaction. Here, we analyze if there are trade-offs, and what are the causes, associated with the acquisition by tobacco mild green mosaic virus (TMGMV) of a new host. For this, the multiplication of sympatric field isolates of TMGMV from its wild reservoir host Nicotiana glauca and from pepper crops was quantified in the original and the heterologous hosts. TMGMV isolates from N. glauca were adapted to their host, but pepper isolates were not adapted to pepper, and the acquisition of this new host was associated with a fitness penalty in the original host. Analyses of the collection of field isolates and of mutant genotypes derived from biologically active cDNA clones showed a role of mutations in the coat protein and the 3' untranslated region in determining within-host virus fitness. Fitness depended on host-specific effects of these mutations, on the genetic background in which they occurred, and on higher-order interactions of the type Genotype x Genotype x Environment. These types of effects had been reported to generate across-host fitness trade-offs under experimental evolution. Our results show they may also operate in heterogeneous natural environments and could explain why pepper isolates were not adapted to pepper and their lower fitness in N. glaucaIMPORTANCE The acquisition of new hosts conditions virus epidemiology and emergence; hence it is important to understand the mechanisms behind host range expansion. Experimental evolution studies have identified antagonistic pleiotropy and epistasis as genetic mechanisms that limit host range expansion, but studies from virus field populations are few. Here, we compare the performance of isolates of tobacco mild green mosaic virus from its reservoir host, Nicotiana glauca, and its new host, pepper, showing that acquisition of a new host was not followed by adaptation to it but was associated with a fitness loss in the original host. Analysis of mutations determining host-specific virus multiplication identified antagonistic pleiotropy, epistasis, and host-specific epistasis as mechanisms generating across-host fitness trade-offs that may prevent adaptation to pepper and cause a loss of fitness in N. glauca Thus, mechanisms determining trade-offs, identified under experimental evolution, could also operate in the heterogeneous environment in which natural plant virus populations occur.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
12
|
McLeish MJ, Fraile A, García-Arenal F. Ecological Complexity in Plant Virus Host Range Evolution. Adv Virus Res 2018; 101:293-339. [PMID: 29908592 DOI: 10.1016/bs.aivir.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns. The distributions of all of these factors are influenced further by competitive effects, natural enemies, anthropogenic disturbance, the abiotic environment, and herbivory to mention some. We suggest the need for further development of approaches that (i) explicitly consider resource use and the abiotic and biotic factors that affect the strategies by which viruses exploit resources; and (ii) are sensitive across scales. Host range and habitat specificity will largely determine which phyla are most likely to be new hosts, but predicting which host and when it is likely to be infected is enormously challenging because it is unclear how environmental heterogeneity affects the interactions of viruses and hosts.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
13
|
Hébrard E, Pinel-Galzi A, Oludare A, Poulicard N, Aribi J, Fabre S, Issaka S, Mariac C, Dereeper A, Albar L, Silué D, Fargette D. Identification of a Hypervirulent Pathotype of Rice yellow mottle virus: A Threat to Genetic Resistance Deployment in West-Central Africa. PHYTOPATHOLOGY 2018; 108:299-307. [PMID: 28990483 DOI: 10.1094/phyto-05-17-0190-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rice yellow mottle virus (RYMV) causes high losses to rice production in Africa. Several sources of varietal high resistance are available but the emergence of virulent pathotypes that are able to overcome one or two resistance alleles can sometimes occur. Both resistance spectra and viral adaptability have to be taken into account to develop sustainable rice breeding strategies against RYMV. In this study, we extended previous resistance spectrum analyses by testing the rymv1-4 and rymv1-5 alleles that are carried by the rice accessions Tog5438 and Tog5674, respectively, against isolates that are representative of RYMV genetic and pathogenic diversity. Our study revealed a hypervirulent pathotype, named thereafter pathotype T', that is able to overcome all known sources of high resistance. This pathotype, which is spatially localized in West-Central Africa, appears to be more abundant than previously suspected. To better understand the adaptive processes of pathotype T', molecular determinants of resistance breakdown were identified via Sanger sequencing and validated through directed mutagenesis of an infectious clone. These analyses confirmed the key role of convergent nonsynonymous substitutions in the central part of the viral genome-linked protein to overcome RYMV1-mediated resistance. In addition, deep-sequencing analyses revealed that resistance breakdown does not always coincide with fixed mutations. Actually, virulence mutations that are present in a small proportion of the virus population can be sufficient for resistance breakdown. Considering the spatial distribution of RYMV strains in Africa and their ability to overcome the RYMV resistance genes and alleles, we established a resistance-breaking risk map to optimize strategies for the deployment of sustainable and resistant rice lines in Africa.
Collapse
Affiliation(s)
- Eugénie Hébrard
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Agnès Pinel-Galzi
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Aderonke Oludare
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Nils Poulicard
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Jamel Aribi
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Sandrine Fabre
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Souley Issaka
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Cédric Mariac
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Alexis Dereeper
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Laurence Albar
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Drissa Silué
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Denis Fargette
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| |
Collapse
|
14
|
Longue RDS, Traore VSE, Zinga I, Asante MD, Bouda Z, Neya JB, Barro N, Traore O. Pathogenicity of rice yellow mottle virus and screening of rice accessions from the Central African Republic. Virol J 2018; 15:6. [PMID: 29310664 PMCID: PMC5759187 DOI: 10.1186/s12985-017-0912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/18/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rice yellow mottle virus (RYMV) of the genus Sobemovirus is the most important viral pathogen of rice causing more damage to rice crop in Sub Saharan Africa. The aim of this study was to conduct pathogenic characterization of RYMV isolates from the Central African Republic (CAR) and to screen commonly cultivated rice accessions in the country for resistance/tolerance to the virus. METHODS The pathogenicity of RYMV isolates was studied by mechanical inoculation with comparison to differential rice lines highly resistant to RYMV available at the Institute of Environment and Agricultural Research (INERA) in Burkina Faso. To screen commonly cultivated rice accessions in CAR, characterized RYMV isolates from the country were used as inoculum sources. Resistant breaking (RB) isolates were used to prepare RB-inoculum, whereas non-resistant breaking isolates (nRB) were used for nRB-inoculum. RESULTS Overall 102 isolates used in this study, 29.4% were able to overcome the high resistance genes in the rice cultivars Gigante and Tog7291. All isolates were distributed within three distinct pathogenic profiles. The first profile constituted of 6.9% of the isolates was able to break down the resistance in rice cultivar Gigante only. The second pathogenic profile made of 19.6% of isolates was able to infect Tog7291 only. The third profile, 2.9% of isolates overcame simultaneously resistance genes in both rice cultivars Gigante and Tog7291. Out of isolates able to break down the resistance gene in cultivar Gigante, a single isolate was found to be non-infectious to the susceptible control IR64. Data from screening showed that all accessions were susceptible to RYMV, although IRAT213 was found to be partially resistant to both nRB-inoculum and RB-inoculum. CONCLUSION The present study can be considered as the first in the Central African Republic, it gives a caution on the high risk of RYMV damage to rice production in the country. Beside, skills of pathogenic profiles of RYMV isolates will contribute to better disease management.
Collapse
Affiliation(s)
- Regis Dimitri Sokpe Longue
- Laboratory of Biological and Agronomic Sciences for Development (LaSBAD), Life Science Department, University of Bangui, BP 908 Bangui, Central African Republic
- Institute of Environment and Agricultural Research (INERA), Ouagadougou, 01 BP 476 Burkina Faso
| | | | - Innocent Zinga
- Laboratory of Biological and Agronomic Sciences for Development (LaSBAD), Life Science Department, University of Bangui, BP 908 Bangui, Central African Republic
| | - Maxwell Darko Asante
- Concil for Scientific and Industrial Research –Crop Research Institute, CSIR-CRI, P.O. Box 3785, Kumasi, Ghana
| | - Zakaria Bouda
- Institute of Environment and Agricultural Research (INERA), Ouagadougou, 01 BP 476 Burkina Faso
| | - James Bouma Neya
- Institute of Environment and Agricultural Research (INERA), Ouagadougou, 01 BP 476 Burkina Faso
| | - Nicolas Barro
- Department of Biochemistry and Microbiology, University of Ouagadougou I-Professor Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Oumar Traore
- Institute of Environment and Agricultural Research (INERA), Ouagadougou, 01 BP 476 Burkina Faso
| |
Collapse
|
15
|
Bera S, Moreno-Pérez MG, García-Figuera S, Pagán I, Fraile A, Pacios LF, García-Arenal F. Pleiotropic Effects of Resistance-Breaking Mutations on Particle Stability Provide Insight into Life History Evolution of a Plant RNA Virus. J Virol 2017; 91:e00435-17. [PMID: 28679755 PMCID: PMC5571237 DOI: 10.1128/jvi.00435-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
In gene-for-gene host-virus interactions, virus evolution to infect and multiply in previously resistant host genotypes, i.e., resistance breaking, is a case of host range expansion, which is predicted to be associated with fitness penalties. Negative effects of resistance-breaking mutations on within-host virus multiplication have been documented for several plant viruses. However, understanding virus evolution requires analyses of potential trade-offs between different fitness components. Here we analyzed whether coat protein (CP) mutations in Pepper mild mottle virus that break L-gene resistance in pepper affect particle stability and, thus, survival in the environment. For this purpose, CP mutations determining the overcoming of L 3 and L 4 resistance alleles were introduced in biologically active cDNA clones. The kinetics of the in vitro disassembly of parental and mutant particles were compared under different conditions. Resistance-breaking mutations variously affected particle stability. Structural analyses identified the number and type of axial and side interactions of adjacent CP subunits in virions, which explained differences in particle stability and contribute to understanding of tobamovirus disassembly. Resistance-breaking mutations also affected virus multiplication and virulence in the susceptible host, as well as infectivity. The sense and magnitude of the effects of resistance-breaking mutations on particle stability, multiplication, virulence, or infectivity depended on the specific mutation rather than on the ability to overcome the different resistance alleles, and effects on different traits were not correlated. Thus, the results do not provide evidence of links or trade-offs between particle stability, i.e., survival, and other components of virus fitness or virulence.IMPORTANCE The effect of survival on virus evolution remains underexplored, despite the fact that life history trade-offs may constrain virus evolution. We approached this topic by analyzing whether breaking of L-gene resistance in pepper by Pepper mild mottle virus, determined by coat protein (CP) mutations, is associated with reduced particle stability and survival. Resistance-breaking mutations affected particle stability by altering the interactions between CP subunits. However, the sense and magnitude of these effects were unrelated to the capacity to overcome different resistance alleles. Thus, resistance breaking was not traded with survival. Resistance-breaking mutations also affected virus fitness within the infected host, virulence, and infectivity in a mutation-specific manner. Comparison of the effects of CP mutations on these various traits indicates that there are neither trade-offs nor positive links between survival and other life history traits. These results demonstrate that trade-offs between life history traits may not be a general constraint in virus evolution.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sara García-Figuera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingenieros de Montes, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
16
|
Moury B, Fabre F, Hébrard E, Froissart R. Determinants of host species range in plant viruses. J Gen Virol 2017; 98:862-873. [PMID: 28475036 DOI: 10.1099/jgv.0.000742] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.
Collapse
Affiliation(s)
- Benoît Moury
- Pathologie Végétale, INRA, 84140 Montfavet, France
| | - Frédéric Fabre
- UMR 1065, Santé et Agroécologie du Vignoble, INRA, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, F-33883 Villenave d'Ornon, France
| | - Eugénie Hébrard
- UMR186, IRD-Cirad-UM, Laboratory 'Interactions Plantes Microorganismes Environnement', Montpellier, France
| | - Rémy Froissart
- UMR5290, CNRS-IRD-UM1-UM2, Laboratory 'Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle', Montpellier, France.,UMR385, INRA-Cirad-SupAgro, Laboratory 'Biologie des Interactions Plantes-Parasites', Campus International de Baillarguet, F-34398 Montpellier, France
| |
Collapse
|
17
|
Pidon H, Ghesquière A, Chéron S, Issaka S, Hébrard E, Sabot F, Kolade O, Silué D, Albar L. Fine mapping of RYMV3: a new resistance gene to Rice yellow mottle virus from Oryza glaberrima. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:807-818. [PMID: 28144699 DOI: 10.1007/s00122-017-2853-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/04/2017] [Indexed: 05/24/2023]
Abstract
A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.
Collapse
Affiliation(s)
- Hélène Pidon
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Alain Ghesquière
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Sophie Chéron
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Souley Issaka
- Africa Rice Center, Cotonou, Benin
- FSAE, Université de Tillabéri, Tillabéri, Niger
| | - Eugénie Hébrard
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - Université de Montpellier, Montpellier, France
| | - François Sabot
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
| | - Olufisayo Kolade
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France
- Africa Rice Center, Cotonou, Benin
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Laurence Albar
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement - Université de Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Pinel-Galzi A, Dubreuil-Tranchant C, Hébrard E, Mariac C, Ghesquière A, Albar L. Mutations in Rice yellow mottle virus Polyprotein P2a Involved in RYMV2 Gene Resistance Breakdown. FRONTIERS IN PLANT SCIENCE 2016; 7:1779. [PMID: 27965688 PMCID: PMC5125353 DOI: 10.3389/fpls.2016.01779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 05/09/2023]
Abstract
Rice yellow mottle virus (RYMV) is one of the major diseases of rice in Africa. The high resistance of the Oryza glaberrima Tog7291 accession involves a null allele of the RYMV2 gene, whose ortholog in Arabidopsis, CPR5, is a transmembrane nucleoporin involved in effector-triggered immunity. To optimize field deployment of the RYMV2 gene and improve its durability, which is often a weak point in varietal resistance, we analyzed its efficiency toward RYMV isolates representing the genetic diversity of the virus and the molecular basis of resistance breakdown. Tog7291 resistance efficiency was highly variable depending on the isolate used, with infection rates ranging from 0 to 98% of plants. Back-inoculation experiments indicated that infection cases were not due to an incomplete resistance phenotype but to the emergence of resistance-breaking (RB) variants. Interestingly, the capacity of the virus to overcome Tog7291 resistance is associated with a polymorphism at amino-acid 49 of the VPg protein which also affects capacity to overcome the previously studied RYMV1 resistance gene. This polymorphism appeared to be a main determinant of the emergence of RB variants. It acts independently of the resistance gene and rather reflects inter-species adaptation with potential consequences for the durability of resistance. RB mutations were identified by full-length or partial sequencing of the RYMV genome in infected Tog7291 plants and were validated by directed mutagenesis of an infectious viral clone. We found that Tog7291 resistance breakdown involved mutations in the putative membrane anchor domain of the polyprotein P2a. Although the precise effect of these mutations on rice/RYMV interaction is still unknown, our results offer a new perspective for the understanding of RYMV2 mediated resistance mechanisms. Interestingly, in the susceptible IR64 variety, RB variants showed low infectivity and frequent reversion to the wild-type genotype, suggesting that Tog7291 resistance breakdown is associated with a major loss of viral fitness in normally susceptible O. sativa varieties. Despite the high frequency of resistance breakdown in controlled conditions, this loss of fitness is an encouraging element with regards to RYMV2 resistance durability.
Collapse
Affiliation(s)
- Agnès Pinel-Galzi
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Christine Dubreuil-Tranchant
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Eugénie Hébrard
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Cédric Mariac
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Alain Ghesquière
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Laurence Albar
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| |
Collapse
|
19
|
Moreno-Pérez MG, García-Luque I, Fraile A, García-Arenal F. Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection. J Virol 2016; 90:9128-37. [PMID: 27489266 PMCID: PMC5044817 DOI: 10.1128/jvi.00737-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Overcoming host resistance in gene-for-gene host-virus interactions is an important instance of host range expansion, which can be hindered by across-host fitness trade-offs. Trade-offs are generated by negative effects of host range mutations on the virus fitness in the original host, i.e., by antagonistic pleiotropy. It has been reported that different mutations in Pepper mild mottle virus (PMMoV) coat protein result in overcoming L-gene resistance in pepper. To analyze if resistance-breaking mutations in PMMoV result in antagonistic pleiotropy, all reported mutations determining the overcoming of L(3) and L(4) alleles were introduced in biologically active cDNA clones. Then, the parental and mutant virus genotypes were assayed in susceptible pepper genotypes with an L(+), L(1), or L(2) allele, in single and in mixed infections. Resistance-breaking mutations had pleiotropic effects on the virus fitness that, according to the specific mutation, the host genotype, and the type of infection, single or mixed with other virus genotypes, were antagonistic or positive. Thus, resistance-breaking mutations can generate fitness trade-offs both across hosts and across types of infection, and the frequency of host range mutants will depend on the genetic structure of the host population and on the frequency of mixed infections by different virus genotypes. Also, resistance-breaking mutations variously affected virulence, which may further influence the evolution of host range expansion. IMPORTANCE A major cause of virus emergence is host range expansion, which may be hindered by across-host fitness trade-offs caused by negative pleiotropy of host range mutations. An important instance of host range expansion is overcoming host resistance in gene-for-gene plant-virus interactions. We analyze here if mutations in the coat protein of Pepper mild mottle virus determining L-gene resistance-breaking in pepper have associated fitness penalties in susceptible host genotypes. Results show that pleiotropic effects of resistance-breaking mutations on virus fitness depend on the specific mutation, the susceptible host genotype, and the type of infection, single or mixed, with other virus genotypes. Accordingly, resistance-breaking mutations can have negative, positive, or no pleiotropic effects on virus fitness. These results underscore the complexity of host range expansion evolution and, specifically, the difficulty of predicting the overcoming of resistance factors in crops.
Collapse
Affiliation(s)
- Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
20
|
Mauck KE. Variation in virus effects on host plant phenotypes and insect vector behavior: what can it teach us about virus evolution? Curr Opin Virol 2016; 21:114-123. [PMID: 27644035 DOI: 10.1016/j.coviro.2016.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/01/2016] [Indexed: 01/17/2023]
Abstract
Virus infection can elicit changes in host plant cues that mediate vector orientation, feeding, and dispersal. Given the importance of plant cues for vector-mediated virus transmission, it is unlikely that selection is blind to these effects. Indeed, there are many examples of viruses altering plant cues in ways that should enhance transmission. However, there are also examples of viruses inducing transmission-limiting plant phenotypes. These apparently mal-adaptive effects occur when viruses experience host plant environments that also limit infectivity or within-host multiplication. The apparent link between virus effects and pathology argues for consideration of prior evolutionary relationships between viruses and host plants in order to understand how viruses might evolve to manipulate vector behavior via effects on host plant cues.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Environmental Systems Science, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
21
|
Fournet S, Eoche-Bosy D, Renault L, Hamelin FM, Montarry J. Adaptation to resistant hosts increases fitness on susceptible hosts in the plant parasitic nematode Globodera pallida. Ecol Evol 2016; 6:2559-68. [PMID: 27066239 PMCID: PMC4797161 DOI: 10.1002/ece3.2079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/30/2022] Open
Abstract
Trade-offs between virulence (defined as the ability to infect a resistant host) and life-history traits are of particular interest in plant pathogens for durable management of plant resistances. Adaptation to plant resistances (i.e., virulence acquisition) is indeed expected to be associated with a fitness cost on susceptible hosts. Here, we investigated whether life-history traits involved in the fitness of the potato cyst nematode Globodera pallida are affected in a virulent lineage compared to an avirulent one. Both lineages were obtained from the same natural population through experimental evolution on resistant and susceptible hosts, respectively. Unexpectedly, we found that virulent lineages were more fit than avirulent lineages on susceptible hosts: they produced bigger cysts, containing more larvae and hatching faster. We thus discuss possible reasons explaining why virulence did not spread into natural G. pallida populations.
Collapse
Affiliation(s)
- Sylvain Fournet
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Delphine Eoche-Bosy
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Lionel Renault
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Frédéric M Hamelin
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| | - Josselin Montarry
- INRA UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection) F-35653 Le Rheu France
| |
Collapse
|
22
|
Vassilakos N, Simon V, Tzima A, Johansen E, Moury B. Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus. Mol Biol Evol 2015; 33:541-53. [PMID: 26503941 DOI: 10.1093/molbev/msv222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses.
Collapse
Affiliation(s)
- Nikon Vassilakos
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Aliki Tzima
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Elisabeth Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | - Benoît Moury
- INRA, UR407 Pathologie Végétale, Montfavet, France
| |
Collapse
|
23
|
Plant Translation Factors and Virus Resistance. Viruses 2015; 7:3392-419. [PMID: 26114476 PMCID: PMC4517107 DOI: 10.3390/v7072778] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B) that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.
Collapse
|
24
|
Sõmera M, Sarmiento C, Truve E. Overview on Sobemoviruses and a Proposal for the Creation of the Family Sobemoviridae. Viruses 2015; 7:3076-115. [PMID: 26083319 PMCID: PMC4488728 DOI: 10.3390/v7062761] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022] Open
Abstract
The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
25
|
Pinel-Galzi A, Traoré O, Séré Y, Hébrard E, Fargette D. The biogeography of viral emergence: rice yellow mottle virus as a case study. Curr Opin Virol 2015; 10:7-13. [DOI: 10.1016/j.coviro.2014.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/23/2022]
|
26
|
Bedhomme S, Hillung J, Elena SF. Emerging viruses: why they are not jacks of all trades? Curr Opin Virol 2014; 10:1-6. [PMID: 25467278 DOI: 10.1016/j.coviro.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
In order to limit the impact of the recent pandemics ignited by viral host jumps, it is necessary to better understand the ecological and evolutionary factors influencing the early steps of emergence and the interactions between them. Antagonistic pleiotropy, that is, the negative fitness effect in the primary host of mutations allowing the infection of and the multiplication in a new host, has long been thought to be the main limitation to the evolution of generalist viruses and thus to emergence. However, the accumulation of experimental examples contradicting the hypothesis of antagonistic pleiotropy has highlighted the importance of other factors such as the epistasis between mutations increasing the adaptation to a new host. Epistasis is pervasive in viruses, affects the shape of the adaptive landscape and consequently the accessibility of evolutionary pathways. Finally, recent studies have gone steps further in the complexity of viral fitness determinism and stressed the potential importance of the epistatic pleiotropy and of the impact of host living conditions.
Collapse
Affiliation(s)
- Stéphanie Bedhomme
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain.
| | - Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 Valencia, Spain; The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
27
|
Interaction patterns between potato virus Y and eIF4E-mediated recessive resistance in the Solanaceae. J Virol 2014; 88:9799-807. [PMID: 24942572 DOI: 10.1128/jvi.00930-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The structural pattern of infectivity matrices, which contains infection data resulting from inoculations of a set of hosts by a set of parasites, is a key parameter for our understanding of biological interactions and their evolution. This pattern determines the evolution of parasite pathogenicity and host resistance, the spatiotemporal distribution of host and parasite genotypes, and the efficiency of disease control strategies. Two major patterns have been proposed for plant-virus genotype infectivity matrices. In the gene-for-gene model, infectivity matrices show a nested pattern, where the host ranges of specialist virus genotypes are subsets of the host ranges of less specialized viruses. In contrast, in the matching-allele (MA) model, each virus genotype is specialized to infect one (or a small set of) host genotype(s). The corresponding infectivity matrix shows a modular pattern where infection is frequent for plants and viruses belonging to the same module but rare for those belonging to different modules. We analyzed the structure of infectivity matrices between Potato virus Y (PVY) and plant genotypes in the family Solanaceae carrying different eukaryotic initiation factor 4E (eIF4E)-coding alleles conferring recessive resistance. Whereas this system corresponds mechanistically to an MA model, the expected modular pattern was rejected based on our experimental data. This was mostly because PVY mutations involved in adaptation to a particular plant genotype displayed frequent pleiotropic effects, conferring simultaneously an adaptation to additional plant genotypes with different eIF4E alleles. Such effects should be taken into account for the design of strategies of sustainable control of PVY through plant varietal mixtures or rotations. IMPORTANCE The interaction pattern between host and virus genotypes has important consequences on their respective evolution and on issues regarding the application of disease control strategies. We found that the structure of the interaction between Potato virus Y (PVY) variants and host plants in the family Solanaceae departs significantly from the current model of interaction considered for these organisms because of frequent pleiotropic effects of virus mutations. These mutational effects allow the virus to expand rapidly its range of host plant genotypes, make it very difficult to predict the effects of mutations in PVY infectivity factors, and raise concerns about strategies of sustainable management of plant genetic resistance to viruses.
Collapse
|
28
|
Fraile A, Hily JM, Pagán I, Pacios LF, García-Arenal F. Host resistance selects for traits unrelated to resistance-breaking that affect fitness in a plant virus. Mol Biol Evol 2014; 31:928-39. [PMID: 24441034 DOI: 10.1093/molbev/msu045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The acquisition by parasites of the capacity to infect resistant host genotypes, that is, resistance-breaking, is predicted to be hindered by across-host fitness trade-offs. All analyses of costs of resistance-breaking in plant viruses have focused on within-host multiplication without considering other fitness components, which may limit understanding of virus evolution. We have reported that host range expansion of tobamoviruses on L-gene resistant pepper genotypes was associated with severe within-host multiplication penalties. Here, we analyze whether resistance-breaking costs might affect virus survival in the environment by comparing tobamovirus pathotypes differing in infectivity on L-gene resistance alleles. We predicted particle stability from structural models, analyzed particle stability in vitro, and quantified virus accumulation in different plant organs and virus survival in the soil. Survival in the soil differed among tobamovirus pathotypes and depended on differential stability of virus particles. Structure model analyses showed that amino acid changes in the virus coat protein (CP) responsible for resistance-breaking affected the strength of the axial interactions among CP subunits in the rod-shaped particle, thus determining its stability and survival. Pathotypes ranked differently for particle stability/survival and for within-host accumulation. Resistance-breaking costs in survival add to, or subtract from, costs in multiplication according to pathotype. Hence, differential pathotype survival should be considered along with differential multiplication to understand the evolution of the virus populations. Results also show that plant resistance, in addition to selecting for resistance-breaking and for decreased multiplication, also selects for changes in survival, a trait unrelated to the host-pathogen interaction that may condition host range expansion.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Ahangaran A, Habibi MK, Mohammadi GHM, Winter S, García-Arenal F. Analysis of Soybean mosaic virus genetic diversity in Iran allows the characterization of a new mutation resulting in overcoming Rsv4-resistance. J Gen Virol 2013; 94:2557-2568. [PMID: 23939982 DOI: 10.1099/vir.0.055434-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic variation and population structure of Soybean mosaic virus (SMV) in Iran was analysed through the characterization of a set of isolates collected in the soybean-growing provinces of Iran. The partial nucleotide sequence of these isolates showed a single, undifferentiated population with low genetic diversity, highly differentiated from other SMV world populations. These traits are compatible with a population bottleneck associated with the recent introduction of SMV in Iran. Phylogenetic analyses suggest that SMV was introduced into Iran from East Asia, with at least three introduction events. The limited genetic diversification of SMV in Iran may be explained by strong negative selection in most viral genes eliminating the majority of mutations, together with recombination purging deleterious mutations. The pathogenicity of Iranian SMV isolates was typified on a set of soybean differential lines either susceptible or carrying different resistance genes or alleles to SMV. Two pathotypes were distinguished according to the ability to overcome Rsv4 resistance in line V94-5152. Amino acid sequence comparisons of virulent and avirulent isolates on V94-5152 (Rsv4), plus site-directed mutagenesis in a biologically active cDNA clone, identified mutation S1053N in the P3 protein as the determinant for virulence on V94-5152. Codon 1053 was shown to be under positive selection, and S1053N-determined Rsv4-virulence occurred in isolates with different genealogies. The V94-5152 (Rsv4)-virulence determinant in Iranian isolates maps into a different amino acid position in the P3 protein than those previously reported, indicating different evolutionary pathways towards resistance breaking that might be conditioned by sequence context.
Collapse
Affiliation(s)
- Akbar Ahangaran
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mina Koohi Habibi
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Stephan Winter
- German Collection of Microorganisms and Cell Cultures, DSMZ, Braunschweig, Germany
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
30
|
Poulicard N, Pinel-Galzi A, Fargette D, Hébrard E. Alternative mutational pathways, outside the VPg, of rice yellow mottle virus to overcome eIF(iso)4G-mediated rice resistance under strong genetic constraints. J Gen Virol 2013; 95:219-224. [PMID: 24141250 DOI: 10.1099/vir.0.057810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adaptation of rice yellow mottle virus (RYMV) to rymv1-mediated resistance has been reported to involve mutations in the viral genome-linked protein (VPg). In this study, we analysed several cases of rymv1-2 resistance breakdown by an isolate with low adaptability. Surprisingly, in these rarely occurring resistance-breaking (RB) genotypes, mutations were detected outside the VPg, in the ORF2a/ORF2b overlapping region. The causal role of three mutations associated with rymv1-2 resistance breakdown was validated via directed mutagenesis of an infectious clone. In resistant plants, these mutations increased viral accumulation as efficiently as suboptimal RB mutations in the VPg. Interestingly, these mutations are located in a highly conserved, but unfolded, domain. Altogether, our results indicate that under strong genetic constraints, a priori unfit genotypes can follow alternative mutational pathways, i.e. outside the VPg, to overcome rymv1-2 resistance.
Collapse
Affiliation(s)
- Nils Poulicard
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Agnès Pinel-Galzi
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Denis Fargette
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Eugénie Hébrard
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| |
Collapse
|
31
|
Bedhomme S, Lafforgue G, Elena SF. Genotypic but not phenotypic historical contingency revealed by viral experimental evolution. BMC Evol Biol 2013; 13:46. [PMID: 23421472 PMCID: PMC3598485 DOI: 10.1186/1471-2148-13-46] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The importance of historical contingency in determining the potential of viral populations to evolve has been largely unappreciated. Identifying the constraints imposed by past adaptations is, however, of importance for understanding many questions in evolutionary biology, such as the evolution of host usage dynamics by multi-host viruses or the emergence of escape mutants that persist in the absence of antiviral treatments. To address this issue, we undertook an experimental approach in which sixty lineages of Tobacco etch potyvirus that differ in their past evolutionary history and degree of adaptation to Nicotiana tabacum were allowed to adapt to this host for 15 rounds of within host multiplication and transfer. We thereafter evaluated the degree of adaptation to the new host as well as to the original ones and characterized the consensus sequence of each lineage. RESULTS We found that past evolutionary history did not determine the phenotypic outcome of this common host evolution phase, and that the signal of local adaptation to past hosts had largely disappeared. By contrast, evolutionary history left footprints at the genotypic level, since the majority of host-specific mutations present at the beginning of this experiment were retained in the end-point populations and may have affected which new mutations were consequently fixed. This resulted in further divergence between the sequences despite a shared selective environment. CONCLUSIONS The present experiment reinforces the idea that the answer to the question "How important is historical contingency in evolution?" strongly depends on the level of integration of the traits studied. A strong historical contingency was found for TEV genotype, whereas a weak effect of on phenotypic evolution was revealed. In an applied context, our results imply that viruses are not easily trapped into suboptimal phenotypes and that (re)emergence is not evolutionarily constrained.
Collapse
Affiliation(s)
- Stéphanie Bedhomme
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
- Present address: Infections and Cancer, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022, València, Spain
- The Santa Fe Institute, Santa Fe, 87501, New Mexico
| |
Collapse
|
32
|
Rice yellow mottle virus in Madagascar and in the Zanzibar Archipelago; island systems and evolutionary time scale to study virus emergence. Virus Res 2012; 171:71-9. [PMID: 23123216 DOI: 10.1016/j.virusres.2012.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022]
Abstract
Rice yellow mottle virus (RYMV), of the genus Sobemovirus, is a major threat to rice cultivation in Africa. Long range transmission of RYMV, difficult to study experimentally, is inferred from a detailed analysis of the molecular diversity of the virus in Madagascar and in the Zanzibar Archipelago (Zanzibar and Pemba Islands; Tanzania) compared with that found elsewhere in Africa. A unique successful introduction of RYMV to Madagascar, which is ca. 400 km from mainland Africa, contrasted with recurrent introductions of the virus to the Zanzibar Archipelago, ca. 40 km from the East African coast. Accordingly, RYMV dispersal over distances of hundreds of kilometers is rare whereas spread of the virus over distances of tens of kilometers is relatively frequent. The dates of introduction of RYMV to Madagascar and to Pemba Island were estimated from three sets of ORF4 sequences of virus isolates collected between 1966 and 2011. They were compared with the dates of the first field detection in Madagascar (1989) and in Pemba Island (1990). The estimates did not depend substantially on the data set used or on the evolutionary model applied and their credible intervals were narrow. The estimated dates are recent - 1978 (1969-1986) and 1985 (1977-1993) in Madagascar and in Pemba Island, respectively - compared to the early diversification of RYMV in East Africa ca. 200 years ago. They predated by 5-10 years the first field detections in these islands. The interplay between virus sources, rice cultivation and long range dispersal which led to RYMV emergence and spread is enlightened.
Collapse
|