1
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
2
|
Chen S, Shang K, Chen J, Yu Z, Wei Y, He L, Ding K. Global distribution, cross-species transmission, and receptor binding of canine parvovirus-2: Risks and implications for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172307. [PMID: 38599392 DOI: 10.1016/j.scitotenv.2024.172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
For canine parvovirus -2 (CPV-2), a zoonotic virus capable of cross-species transmission in animals, the amino acid changes of capsid protein VP2 are key factors when binding to other species' transferrin receptors (TfR). CPV-2 variants can spread from felines and canines, for example, to Carnivora, Artiodactyla, and Pholidota species, and CPV-2c variants are essential to spread from Carnivora to Artiodactyla and Pholidota species in particular. In our study, a CPV-2a variant maintained a relatively stable trend, and the proportion of CPV-2c gradually rose from 1980 to 2021. The VP2 amino acid sequence analysis showed that five amino acid mutations at 426E/D, 305H/D, and 297S may be necessary for the virus to bind to different host receptors. Meanwhile, receptor-binding loop regions and amino acid sites 87 L, 93 N, 232I, and 305Y were associated with CPV-2 cross-species transmission. The homology of TfRs in different hosts infected with CPV-2 ranged from 77.2 % to 99.0 %, and from pig to feline, canine, and humans was 80.7 %, 80.4 %, and 77.2 %, respectively. The amino acid residues of TfRs involved in the viral binding in those hosts are highly conserved, which suggests that CPV-2 may be capable of pig-to-human transmission. Our analysis of the origin, evolutionary trend, cross-species transmission dynamics, and genetic characteristics of CPV-2 when binding to host receptors provides a theoretical basis for further research on CPV-2's mechanism of cross-species transmission and for establishing an early warning and monitoring mechanism for the possible threat of CPV-2 to animal-human public security.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wei
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China.
| |
Collapse
|
3
|
Hartmann SR, Charnesky AJ, Früh SP, López-Astacio RA, Weichert WS, DiNunno N, Cho SH, Bator CM, Parrish CR, Hafenstein SL. Cryo EM structures map a post vaccination polyclonal antibody response to canine parvovirus. Commun Biol 2023; 6:955. [PMID: 37726539 PMCID: PMC10509169 DOI: 10.1038/s42003-023-05319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Canine parvovirus (CPV) is an important pathogen that emerged by cross-species transmission to cause severe disease in dogs. To understand the host immune response to vaccination, sera from dogs immunized with parvovirus are obtained, the polyclonal antibodies are purified and used to solve the high resolution cryo EM structures of the polyclonal Fab-virus complexes. We use a custom software, Icosahedral Subparticle Extraction and Correlated Classification (ISECC) to perform subparticle analysis and reconstruct polyclonal Fab-virus complexes from two different dogs eight and twelve weeks post vaccination. In the resulting polyclonal Fab-virus complexes there are a total of five distinct Fabs identified. In both cases, any of the five antibodies identified would interfere with receptor binding. This polyclonal mapping approach identifies a specific, limited immune response to the live vaccine virus and allows us to investigate the binding of multiple different antibodies or ligands to virus capsids.
Collapse
Affiliation(s)
- Samantha R Hartmann
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew J Charnesky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Simon P Früh
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Nadia DiNunno
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sung Hung Cho
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carol M Bator
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
4
|
López-Astacio RA, Adu OF, Lee H, Hafenstein SL, Parrish CR. The Structures and Functions of Parvovirus Capsids and Missing Pieces: the Viral DNA and Its Packaging, Asymmetrical Features, Nonprotein Components, and Receptor or Antibody Binding and Interactions. J Virol 2023; 97:e0016123. [PMID: 37367301 PMCID: PMC10373561 DOI: 10.1128/jvi.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.
Collapse
Affiliation(s)
- Robert A. López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Oluwafemi F. Adu
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Capozza P, Buonavoglia A, Pratelli A, Martella V, Decaro N. Old and Novel Enteric Parvoviruses of Dogs. Pathogens 2023; 12:pathogens12050722. [PMID: 37242392 DOI: 10.3390/pathogens12050722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Parvovirus infections have been well known for around 100 years in domestic carnivores. However, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus species and/or variants in dogs. Although some evidence suggests that these emerging canine parvoviruses may act as primary causative agents or as synergistic pathogens in the diseases of domestic carnivores, several aspects regarding epidemiology and virus-host interaction remain to be elucidated.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| |
Collapse
|
6
|
Molecular epidemiology of canine parvovirus in Namibia: Introduction pathways and local persistence. Prev Vet Med 2022; 209:105780. [DOI: 10.1016/j.prevetmed.2022.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022]
|
7
|
Warren CJ, Yu S, Peters DK, Barbachano-Guerrero A, Yang Q, Burris BL, Worwa G, Huang IC, Wilkerson GK, Goldberg TL, Kuhn JH, Sawyer SL. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans. Cell 2022; 185:3980-3991.e18. [PMID: 36182704 PMCID: PMC9588614 DOI: 10.1016/j.cell.2022.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Douglas K Peters
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Qing Yang
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Bridget L Burris
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - I-Chueh Huang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gregory K Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
8
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Genetic characterization and evolutionary analysis of canine parvovirus in Tangshan, China. Arch Virol 2022; 167:2263-2269. [PMID: 35829824 DOI: 10.1007/s00705-022-05502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Canine parvovirus (CPV) is a major enteric virus of carnivores worldwide that poses a considerable threat to dogs. In this study, we investigated the genetic variation of CPV in Tangshan, China, and the relationships between CPV disease and the vaccination status, age, and gender of dogs. Seventy-seven fecal samples from dogs in Tangshan that tested positive for CPV were obtained for analysis. Twenty-two full-length VP2 gene sequences were successfully amplified. The 22 strains included 17 CPV-2c variants, four new CPV-2a variants, and one new CPV-2b variant. Phylogenetic analysis showed that all of the CPV-2c strains clustered together and were closely related to CPV-2c strains from Asia but distantly related to CPV-2c strains from Europe. Further amino acid sequence analysis showed that, relative to CPV-2c strains from Europe, most of the CPV-2c stains in this study had A5G, F267Y, Y324I, and Q370R mutations. These findings provide a more comprehensive understanding of the variants of CPV circulating in China.
Collapse
|
10
|
Pervasive positive selection on virus receptors driven by host-virus conflicts in mammals. J Virol 2021; 95:e0102921. [PMID: 34319153 DOI: 10.1128/jvi.01029-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses hijack cellular proteins known as viral receptors to initiate their infection. Viral receptors are subject to two conflicting directional forces, namely negative selection to maintain their cellular function and positive selection resulted from everchanging host-virus arms race. Much remains unclear how viral receptors evolved in mammals, and whether viral receptors from different mammal groups experienced different strength of natural selection. Here, we perform evolutionary analyses of 92 viral receptors in five major orders of mammals, including Carnivora, Cetartiodactyla, Chiroptera, Primates, and Rodentia. In all the five mammal orders, signals of positive selection are detected for a high proportion of viral receptors (from 41% in Carnivora to 65% in Rodentia). Many positively selected residues overlap host-virus interaction interface. Compared with control genes, we find viral receptors underwent elevated rate of adaptive evolution in all the five mammal orders, suggesting that host-virus conflicts are the main driver of the adaptive evolution of viral receptors in mammals. Interestingly, the overall strength of natural selection acting on viral receptors driven by host-virus arms race is largely homogenous and correlated among different mammal orders with bats and rodents, zoonosis reservoirs of importance, unexceptional. Taken together, our findings indicate host-virus conflicts have driven the elevated rate of adaptive evolution in viral receptors across mammals, and might have important implications in zoonosis surveillance and prediction. Importance Viral receptors are cellular proteins hijacked by viruses to help their infections. A complete picture on the evolution of viral receptors in mammals is still lacking. Here, we perform a comprehensive evolutionary analysis of the evolution of 92 viral receptors in five mammal orders, including Carnivora, Cetartiodactyla, Chiroptera, Primates, and Rodentia. We find that positive selection pervasively occurred during the evolution of viral receptors, and viral receptors exhibit at an elevated rate of adaptive evolution than control genes in all the five mammal orders, suggesting host-virus conflicts are a major driver of the adaptive evolution of viral receptors. Interestingly, the strength of positive selection acting on viral receptors is similar among the five mammal orders. Our study might have important implications in understanding the evolution of host-virus interaction.
Collapse
|
11
|
Tion MT, Shima FK, Ogbu KI, Omobowale TO, Amine AA, Nguetyo SA, Igoh FA, Oochi JO, Fotina HA, Saganuwan SA, Zon GA. Genetic diversity of canine parvovirus variants circulating in Nigeria. INFECTION GENETICS AND EVOLUTION 2021; 94:104996. [PMID: 34246800 DOI: 10.1016/j.meegid.2021.104996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023]
Abstract
Canine parvovirus (CPV) is a fast-evolving single-stranded DNA virus that causes severe and fatal gastrointestinal disease in dogs. Lately, several mutations affecting viral protein (VP) capsid resulting in highly pathogenic variants with distinctive immunological and clinicopathological characteristics abound. This study involved screening stools of 44 randomly selected clinical cases of canine gastroenteritis from 4 cities (Ibadan, Jos, Makurdi, and Zaria) in Nigeria for CPV antigen using an on-the-spot immunoassay test kit, as well as, molecular detection of viral nucleic acid by polymerase chain reaction. Subsequently, nucleic acid sequencing of 1195-bp amplicons encompassing the VP2 encoding region was done. The resultant 40 high-quality amino acid sequences obtained were analysed for the identification and grouping of the viruses into their discrete variants - CPV-2a, CPV-2b, or CPV-2c, using key amino acids substitutions - Asn, Asp, or Glu respectively at position 426 of the VP2 gene. One-third (11/40; 27.5%) of the analysed sequences were identified as CPV-2a and two-third (29/40; 72.5%) as CPV-2c. The original CPV and CPV-2b were not detected. Also, the "new CPV-2a variant" with mutation S297A identified had two additional mutations (Y324I and T440A) associated with selective pressure and vaccination failure in their sequences. Similarly, unique CPV-2c mutants carrying genetic markers (S297A, Y324I, and Q370R) that are highly related to CPVs of Asian origin were observed. These findings revealed a high level of divergence of existing CPVs in circulation; suggesting that CPV is rapidly evolving in Nigeria lately.
Collapse
Affiliation(s)
- Matthew Terzungwe Tion
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria; Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine.
| | - Felix Kundu Shima
- Department of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria
| | - Kenneth Ikejiofor Ogbu
- Department of Animal Health, School of Animal Health, Production and Technology, Federal College of Animal Health and Production Technology, Vom, Plateau State, Nigeria
| | | | - Andrew Aondowase Amine
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | | | - Favour Ann Igoh
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Josiah Oochi Oochi
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Hanna Anatoliyivna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine
| | | | - Gregory Anatoliiovych Zon
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine
| |
Collapse
|
12
|
Goetschius DJ, Hartmann SR, Organtini LJ, Callaway H, Huang K, Bator CM, Ashley RE, Makhov AM, Conway JF, Parrish CR, Hafenstein SL. High-resolution asymmetric structure of a Fab-virus complex reveals overlap with the receptor binding site. Proc Natl Acad Sci U S A 2021; 118:e2025452118. [PMID: 34074770 PMCID: PMC8201801 DOI: 10.1073/pnas.2025452118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Samantha R Hartmann
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lindsey J Organtini
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Heather Callaway
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Kai Huang
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Carol M Bator
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Robert E Ashley
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| |
Collapse
|
13
|
Chang AM, Chen CC. Molecular Characteristics of Carnivore protoparvovirus 1 with High Sequence Similarity between Wild and Domestic Carnivores in Taiwan. Pathogens 2021; 10:pathogens10060671. [PMID: 34072499 PMCID: PMC8229444 DOI: 10.3390/pathogens10060671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023] Open
Abstract
Carnivore protoparvovirus 1 (CPPV-1) is a DNA virus causing gastrointestinal disease and immunosuppression in various terrestrial carnivores. Domestic dogs and cats are considered the primary CPPV-1 reservoirs. The habitat overlap of wild carnivores and free-roaming dogs increases the threat of CPPV-1 transmission between them. This study explored the CPPV-1 distribution among wild carnivores in Taiwan through PCR screening and compared the partial capsid protein (VP2) gene sequences from wild and domestic carnivores. In total, 181 samples were collected from 32 masked palm civets (Paguma larvata), 63 Chinese ferret badgers (Melogale moschata), and 86 crab-eating mongooses (Herpestes urva), from 2015 to 2019 were screened for CPPV-1. The average prevalence of CPPV-1 was 17.7% (32/181), with the highest prevalence in masked palm civets (37.5%). In addition, a masked palm civet was coinfected with two CPPV-1 strains. Among the 33 partial VP2 gene sequences, 23 were identical to the sequences amplified from domestic dogs and cats in Asia, and the remaining 10 were identified for the first time. This study supported the circulation of CPPV-1 strains with the same genomic features as domestic carnivores that are also in wild carnivores from the same environment in Taiwan by molecular data. Therefore, further population control and health management of free-roaming domestic carnivores are recommended.
Collapse
Affiliation(s)
- Ai-Mei Chang
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chen-Chih Chen
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-87703202 (ext. 6596)
| |
Collapse
|
14
|
Ndiana LA, Odaibo GN, Olaleye DO. Molecular characterization of canine parvovirus from domestic dogs in Nigeria: Introduction and spread of a CPV-2c mutant and replacement of older CPV-2a by the "new CPV-2a" strain. Virusdisease 2021; 32:361-368. [PMID: 34350320 DOI: 10.1007/s13337-021-00689-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/10/2021] [Indexed: 11/26/2022] Open
Abstract
Canine parvovirus (CPV) is a contagious and highly pathogenic virus of dogs. After its first report in 1978, the CPV original type (CPV-2) was rapidly and totally replaced by three antigenic variants named CPV-2a, CPV-2b and CPV-2c that circulate in various countries at different frequencies and recently reported in Nigeria. This study describes the molecular characterization of 28 CPV strains in dogs presenting with gastroenteritis in veterinary clinics at Lagos and Ibadan, Nigeria. The results show the predominance (92.8%) of CPV-2a, while CPV-2c was found only in two samples. Phylogenetic analyses revealed that the CPV Nigerian strains were closely related to Asian strains and 26 CPV-2a out of 28 CPV sequences fell into 2 different subclades consistent with predicted amino acid mutations at position 267, 321, 324 and 440. Lys321Asn was evident in all the Nigerian strains whilst Phe267Tyr and Tyr324Ile were observed in 96.4% of the sequences, respectively. Thr440Ala occurred in 89.3% of sequences from this study. The new CPV-2a was predominant and appears to have replaced other CPV-2a strains in South-western Nigeria whilst the CPV-2c strain which is identical to the isolate recently reported in Northern Nigeria, may have been introduced in this country at the time of this study. Monitoring virus epidemiology is important to better understand the dynamics of CPV evolution and the eventual need to change or improve existing vaccination strategies.
Collapse
Affiliation(s)
- L A Ndiana
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - G N Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Olaleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021; 21:65. [PMID: 33902453 PMCID: PMC8074226 DOI: 10.1186/s12862-021-01783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one.
Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.
Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01783-z.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
16
|
Cagliani R, Mozzi A, Pontremoli C, Sironi M. Evolution and Origin of Human Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Hoang M, Wu CN, Lin CF, Nguyen HTT, Le VP, Chiou MT, Lin CN. Genetic characterization of feline panleukopenia virus from dogs in Vietnam reveals a unique Thr101 mutation in VP2. PeerJ 2020; 8:e9752. [PMID: 33083102 PMCID: PMC7560322 DOI: 10.7717/peerj.9752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Canine parvovirus type 2 (CPV-2) and feline parvovirus (FPV) are known as the main causes of several serious diseases and have a severe impact on puppies and kittens, respectively. FPV and new CPV-2 variants are all able to infect cats, causing diseases indistinguishable from feline panleukopenia. However, FPV only replicates efficiently in feline cells in vitro and replicates in dogs in the thymus and bone marrow without being shed in feces. In our previous study, the genotypes of six parvoviral isolates were unable to be identified using a SimpleProbe® real-time PCR assay. Methods In the present study, we characterized previously unidentified FPV-like viruses isolated from dogs in Vietnam. The six isolates were utilized to complete VP2 gene sequencing and to conduct phylogenetic analyses. Results Sequence analysis of the six parvoviral strains identified the species as being similar to FPV. Phylogenetic analysis demonstrated that the complete VP2 genes of the strains are similar to those of FPV. The FPV-like strains contain a Thr101 mutation in the VP2 protein, which is different from prototype FPV strains. Discussion Our data provide evidence for the existence of changes in the charge, protein contact potential and molecular surface of the core of the receptor-binding size with an Ile101 to Thr101 mutation. This is also the first study to provide reliable evidence that FPV may be a threat to the Vietnamese dog population.
Collapse
Affiliation(s)
- Minh Hoang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Anatomy and Histology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Huong Thanh Thi Nguyen
- Department of Anatomy and Histology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Van Phan Le
- Department of Microbiology and Infectious Disease, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
18
|
Lu R, Yu Y, Zhu X, Shi Q, Wang Y, Wang J, Lv S, Shi N, Liu H, Deng X, Lian S, Yan M, Zhao H, Hu B, Liu W, Yan X. Molecular characteristics of the capsid protein VP2 gene of canine parvovirus type 2 amplified from raccoon dogs in Hebei province, China. Arch Virol 2020; 165:2453-2459. [PMID: 32767108 DOI: 10.1007/s00705-020-04714-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/22/2020] [Indexed: 11/25/2022]
Abstract
Canine parvovirus type 2 (CPV-2) is currently circulating in domestic and wild animals, but our knowledge about CPV-2 infections in raccoon dogs is limited. In this study, VP2 gene sequences of CPV-2 were amplified from rectal swabs of 14 diarrhetic raccoon dogs (Nyctereutes procyonoides) in Hebei province, China, in 2016 and 2017. Phylogenetic analysis of the VP2 gene sequences revealed that most of these sequences (11 of 14) belonged to the same subclade as raccoon dog strain CPV-2/Raccoon_Dog/China/DP-1/16 isolated from Shandong province in 2016. A comparison of deduced amino acid sequences revealed presence of the substitutions S297A and S27T in 11 of those 14 sequences. I418T was observed in a minority of the sequences (4 of 14). In addition, A300D and T301I, P13S and I219V, and N419K were found in three of the sequences. This study shows that CPV-2 strains with different substitutions in their VP2 amino acid sequences were spreading among raccoon dogs in Hebei during 2016 and 2017 and suggests that further studies are needed to monitor the distribution of these strains in China.
Collapse
Affiliation(s)
- Rongguang Lu
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiangyu Zhu
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
| | - Qiumei Shi
- Key Laboratory of Preventive Veterinary Medicine in Hebei Province, Hebei Normal University of Science & Technology, 360 Hebei Street, Qinhuangdao, 066000, Hebei, China
| | - Yang Wang
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shuang Lv
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
| | - Ning Shi
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, No. 33 Guang yun Road, Foshan, 528225, Guangdong, China
| | - Xiaoyu Deng
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
| | - Minghao Yan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lan Zhou, 730046, Gansu, China
| | - Hang Zhao
- Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Xijun Yan
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Street, Changchun, 130112, Jilin, China.
| |
Collapse
|
19
|
Host-Virus Arms Races Drive Elevated Adaptive Evolution in Viral Receptors. J Virol 2020; 94:JVI.00684-20. [PMID: 32493827 DOI: 10.1128/jvi.00684-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 02/02/2023] Open
Abstract
Viral receptors are the cell surface proteins that are hijacked by viruses to initialize their infections. Viral receptors are subject to two conflicting directional forces, namely, negative selection due to functional constraints and positive selection due to host-virus arms races. It remains largely obscure whether negative pleiotropy limits the rate of adaptation in viral receptors. Here, we perform evolutionary analyses of 96 viral receptor genes in primates and find that 41 out of 96 viral receptors experienced adaptive evolution. Many positively selected residues in viral receptors are located at the virus-receptor interfaces. Compared with control proteins, viral receptors exhibit significantly elevated rate of adaptation. Further analyses of genetic polymorphisms in human populations reveal signals of positive selection and balancing selection for 53 and 5 viral receptors, respectively. Moreover, we find that 49 viral receptors experienced different selection pressures in different human populations, indicating that viruses represent an important driver of local adaptation in humans. Our findings suggest that diverse viruses, many of which have not been known to infect nonhuman primates, have maintained antagonistic associations with primates for millions of years, and the host-virus conflicts drive accelerated adaptive evolution in viral receptors.IMPORTANCE Viruses hijack cellular proteins, termed viral receptors, to assist their entry into host cells. While viral receptors experience negative selection to maintain their normal functions, they also undergo positive selection due to an everlasting evolutionary arms race between viruses and hosts. A complete picture on how viral receptors evolve under two conflicting forces is still lacking. In this study, we systematically analyzed the evolution of 96 viral receptors in primates and human populations. We found around half of viral receptors underwent adaptive evolution and exhibit significantly elevated rates of adaptation compared to control genes in primates. We also found signals of past natural selection for 58 viral receptors in human populations. Interestingly, 49 viral receptors experienced different selection pressures in different human populations, indicating that viruses represent an important driver of local adaptation in humans. Our results suggest that host-virus arms races drive accelerated adaptive evolution in viral receptors.
Collapse
|
20
|
Ogbu KI, Mira F, Purpari G, Nwosuh C, Loria GR, Schirò G, Chiaramonte G, Tion MT, Di Bella S, Ventriglia G, Decaro N, Anene BM, Guercio A. Nearly full-length genome characterization of canine parvovirus strains circulating in Nigeria. Transbound Emerg Dis 2019; 67:635-647. [PMID: 31580520 PMCID: PMC7168533 DOI: 10.1111/tbed.13379] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Canine parvovirus type 2 (CPV‐2) emerged suddenly in the late 1970s as pathogen of dogs, causing a severe and often fatal gastroenteric disease. The original CPV‐2 was replaced by three antigenic variants, CPV‐2a, CPV‐2b and CPV‐2c, which to date have gained a worldwide distribution with different relative proportions. All previous studies conducted in Africa were based on partial VP2 gene sequences. The aim of this study was to provide a genome analysis to characterize the CPV strains collected in Nigeria, Africa. Rectal swab samples (n = 320) were collected in 2018 and tested by means of an immunochromatographic assay. Among the 144 positive samples, 59 were selected for further analyses using different molecular assays. The results revealed a high prevalence of CPV‐2c (91.5%) compared to the CPV‐2a variant (8.5%). The VP2 gene sequences showed a divergence from the strains analysed in 2010 in Nigeria and a closer connection with CPV strains of Asian origin. The non‐structural gene analysis evidenced amino acid changes never previously reported. The molecular analysis based on genomic sequences evidenced a geographical pattern of distribution of the analysed strains, suggesting a potential common evolutionary origin with CPV of Asian origin. This study represents the first CPV molecular characterization including all the encoding gene sequences conducted in the African continent and contributes to define the current geographical spread of the CPV variants worldwide.
Collapse
Affiliation(s)
- Kenneth Ikejiofor Ogbu
- Department of Animal Health, Federal College of Animal Health and Production Technology, National Veterinary Research Institute, Vom, Nigeria.,Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | - Chika Nwosuh
- Viral Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | | | - Metthew Terzungwe Tion
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Boniface Maduka Anene
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia 'A.Mirri', Palermo, Italy
| |
Collapse
|
21
|
Inthong N, Sutacha K, Kaewmongkol S, Sinsiri R, Sribuarod K, Sirinarumitr K, Sirinarumitr T. Feline panleukopenia virus as the cause of diarrhea in a banded linsang (Prionodon linsang) in Thailand. J Vet Med Sci 2019; 81:1763-1768. [PMID: 31548471 PMCID: PMC6943334 DOI: 10.1292/jvms.19-0238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A banded linsang (Prionodon linsang) presented at our hospital with clinical signs of acute diarrhea. Fecal samples were positive for canine parvovirus (CPV) as determined by polymerase chain reaction with primers specific for both CPV and feline panleukopenia virus (FPV). The full-length VP2 was cloned, sequenced, and compared with sequences of FPV and CPV strains reported in GenBank. The amino acids that determined the host range were similar to those of FPV. Moreover, amino acid analysis of VP2 revealed over 98% homology to FPV. The FPV isolate was closely related with FPV isolates from Japan, South Korea, and China. To the best of our knowledge, this is the first study to report that banded linsang can be infected with FPV.
Collapse
Affiliation(s)
- Natnaree Inthong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.,Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Sean Campus, Nakhon Pathom 73140, Thailand.,Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Kaset Sutacha
- The Veterinary Teaching Hospital, Bang Khaen campus, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Sarawan Kaewmongkol
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Rungthiwa Sinsiri
- Molecular Diagnostic Laboratory, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kriangsak Sribuarod
- Khlong Saeng Wildlife Research Station, Wildlife Research Division, Wildlife Conservation Bureau, Department of National Park, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | - Kaitkanoke Sirinarumitr
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Department of Small Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Theerapol Sirinarumitr
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
22
|
Abstract
Canine parvovirus (CPV) is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Cross-species transmission of CPV occurs as a result of mutations on the viral capsid surface that alter the species-specific binding to the host receptor, transferrin receptor type-1 (TfR). The interaction between CPV and TfR has been extensively studied, and previous analyses have suggested that the CPV-TfR complex is asymmetric. To enhance the understanding of the underlying molecular mechanisms, we determined the CPV-TfR interaction using cryo-electron microscopy to solve the icosahedral (3.0-Å resolution) and asymmetric (5.0-Å resolution) complex structures. Structural analyses revealed conformational variations of the TfR molecules relative to the binding site, which translated into dynamic molecular interactions between CPV and TfR. The precise footprint of the receptor on the virus capsid was identified, along with the identity of the amino acid residues in the virus-receptor interface. Our "rock-and-roll" model provides an explanation for previous findings and gives insights into species jumping and the variation in host ranges associated with new pandemics in dogs.
Collapse
|
23
|
Wasik BR, de Wit E, Munster V, Lloyd-Smith JO, Martinez-Sobrido L, Parrish CR. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos Trans R Soc Lond B Biol Sci 2019; 374:20190017. [PMID: 31401954 PMCID: PMC6711314 DOI: 10.1098/rstb.2019.0017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The critical step in the emergence of a new epidemic or pandemic viral pathogen occurs after it infects the initial spillover host and then is successfully transmitted onwards, causing an outbreak chain of transmission within that new host population. Crossing these choke points sets a pathogen on the pathway to epidemic emergence. While many viruses spill over to infect new or alternative hosts, only a few accomplish this transition—and the reasons for the success of those pathogens are still unclear. Here, we consider this issue related to the emergence of animal viruses, where factors involved likely include the ability to efficiently infect the new animal host, the demographic features of the initial population that favour onward transmission, the level of shedding and degree of susceptibility of individuals of that population, along with pathogen evolution favouring increased replication and more efficient transmission among the new host individuals. A related form of emergence involves mutations that increased spread or virulence of an already-known virus within its usual host. In all of these cases, emergence may be due to altered viral properties, changes in the size or structure of the host populations, ease of transport, climate change or, in the case of arboviruses, to the expansion of the arthropod vectors. Here, we focus on three examples of viruses that have gained efficient onward transmission after spillover: influenza A viruses that are respiratory transmitted, HIV, a retrovirus, that is mostly blood or mucosal transmitted, and canine parvovirus that is faecal:oral transmitted. We describe our current understanding of the changes in the viruses that allowed them to overcome the barriers that prevented efficient replication and spread in their new hosts. We also briefly outline how we could gain a better understanding of the mechanisms and variability in order to better anticipate these events in the future. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 9095-7239, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Carnivore Parvovirus Ecology in the Serengeti Ecosystem: Vaccine Strains Circulating and New Host Species Identified. J Virol 2019. [PMID: 30996096 DOI: 10.1128/jvi.02220–18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.
Collapse
|
25
|
Carnivore Parvovirus Ecology in the Serengeti Ecosystem: Vaccine Strains Circulating and New Host Species Identified. J Virol 2019; 93:JVI.02220-18. [PMID: 30996096 DOI: 10.1128/jvi.02220-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.
Collapse
|
26
|
Warren CJ, Meyerson NR, Dirasantha O, Feldman ER, Wilkerson GK, Sawyer SL. Selective use of primate CD4 receptors by HIV-1. PLoS Biol 2019; 17:e3000304. [PMID: 31181085 PMCID: PMC6586362 DOI: 10.1371/journal.pbio.3000304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates. The current animal model for HIV, the macaque, encodes a CD4 receptor that is non-permissive for HIV entry. This paper reveals that six primate species encode CD4 receptors compatible with HIV infection, potentially making them powerful tools for the study of HIV biology. Furthermore, weak CD4 binding is a nearly constant, and apparently selected, property of HIV circulating in the human bloodstream.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Obaiah Dirasantha
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Emily R. Feldman
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Gregory K. Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
27
|
A glycan shield on chimpanzee CD4 protects against infection by primate lentiviruses (HIV/SIV). Proc Natl Acad Sci U S A 2019; 116:11460-11469. [PMID: 31113887 DOI: 10.1073/pnas.1813909116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pandemic HIV-1 (group M) emerged following the cross-species transmission of a simian immunodeficiency virus from chimpanzees (SIVcpz) to humans. Primate lentiviruses (HIV/SIV) require the T cell receptor CD4 to enter into target cells. By surveying the sequence and function of CD4 in 50 chimpanzee individuals, we find that all chimpanzee CD4 alleles encode a fixed, chimpanzee-specific substitution (34T) that creates a glycosylation site on the virus binding surface of the CD4 receptor. Additionally, a single nucleotide polymorphism (SNP) has arisen in chimpanzee CD4 (68T) that creates a second glycosylation site on the same virus-binding interface. This substitution is not yet fixed, but instead alleles containing this SNP are still circulating within chimpanzee populations. Thus, all allelic versions of chimpanzee CD4 are singly glycosylated at the virus binding surface, and some allelic versions are doubly glycosylated. Doubly glycosylated forms of chimpanzee CD4 reduce HIV-1 and SIVcpz infection by as much as two orders of magnitude. Full restoration of virus infection in cells bearing chimpanzee CD4 requires reversion of both threonines at sites 34 and 68, destroying both of the glycosylation sites, suggesting that the effects of the glycans are additive. Differentially glycosylated CD4 receptors were biochemically purified and used in neutralization assays and microscale thermophoresis to show that the glycans on chimpanzee CD4 reduce binding affinity with the lentiviral surface glycoprotein, Env. These glycans create a shield that protects CD4 from being engaged by viruses, demonstrating a powerful form of host resistance against deadly primate lentiviruses.
Collapse
|
28
|
Abstract
Viruses of wild and domestic animals can infect humans in a process called zoonosis, and these events can give rise to explosive epidemics such as those caused by the HIV and Ebola viruses. While humans are constantly exposed to animal viruses, those that can successfully infect and transmit between humans are exceedingly rare. The key event in zoonosis is when an animal virus begins to replicate (one virion making many) in the first human subject. Only at this point will the animal virus first experience the selective environment of the human body, rendering possible viral adaptation and refinement for humans. In addition, appreciable viral titers in this first human may enable infection of a second, thus initiating selection for viral variants with increased capacity for spread. We assert that host genetics plays a critical role in defining which animal viruses in nature will achieve this key event of replication in a first human host. This is because animal viruses that pose the greatest risk to humans will have few (or no) genetic barriers to replicating themselves in human cells, thus requiring minimal mutations to make this jump. Only experimental virology provides a path to identifying animal viruses with the potential to replicate themselves in humans because this information will not be evident from viral sequencing data alone.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
29
|
Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats. J Virol 2019; 93:JVI.01738-18. [PMID: 30541833 DOI: 10.1128/jvi.01738-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis B virus (HBV) is a global health problem, affecting more than 250 million people worldwide. HBV-like viruses, named orthohepadnaviruses, also naturally infect nonhuman primates, rodents, and bats, but their pathogenicity and evolutionary history are unclear. Here, we determined the evolutionary history of the HBV receptors NTCP and GPC5 over millions of years of primate, rodent, and bat evolution. We use this as a proxy to understand the pathogenicity of orthohepadnaviruses in mammalian hosts and to determine the implications for species specificity. We found that NTCP, but not GPC5, has evolved under positive selection in primates (27 species), rodents (18 species), and bats (21 species) although at distinct residues. Notably, the positively selected codons map to the HBV-binding sites in primate NTCP, suggesting past genetic "arms races" with pathogenic orthohepadnaviruses. In rodents, the positively selected codons fall outside and within the presumed HBV-binding sites, which may contribute to the restricted circulation of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat NTCP are conserved, and none of the positively selected codons map to this region. This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP. Alternatively, the patterns may reflect adaptive changes associated with metabolism rather than pathogens. Overall, our findings further point to NTCP as a naturally occurring genetic barrier for cross-species transmissions in primates, which may contribute to the narrow host range of HBV. In contrast, this constraint seems less important in bats, which may correspond to greater orthohepadnavirus circulation and diversity.IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhuman primates, rodents, and bats. As for most viruses, HBV requires a successful interaction with a host receptor for replication. Cellular receptors are thus key determinants of host susceptibility as well as specificity. One hallmark of pathogenic virus-host relationships is the reciprocal evolution of host receptor and viral envelope proteins, as a result of their antagonistic interaction over time. The dynamics of these so-called "evolutionary arms races" can leave signatures of adaptive selection, which in turn reveal the evolutionary history of the virus-host interaction as well as viral pathogenicity and the genetic determinants of species specificity. Here, we show how HBV-like viruses have shaped the evolutionary history of their mammalian host receptor, as a result of their ancient pathogenicity, and decipher the genetic determinants of cross-species transmissions.
Collapse
|
30
|
Complex and Dynamic Interactions between Parvovirus Capsids, Transferrin Receptors, and Antibodies Control Cell Infection and Host Range. J Virol 2018; 92:JVI.00460-18. [PMID: 29695427 DOI: 10.1128/jvi.00460-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/17/2018] [Indexed: 01/18/2023] Open
Abstract
Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.
Collapse
|
31
|
Wessling-Resnick M. Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annu Rev Nutr 2018; 38:431-458. [PMID: 29852086 DOI: 10.1146/annurev-nutr-082117-051749] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because both the host and pathogen require iron, the innate immune response carefully orchestrates control over iron metabolism to limit its availability during times of infection. Nutritional iron deficiency can impair host immunity, while iron overload can cause oxidative stress to propagate harmful viral mutations. An emerging enigma is that many viruses use the primary gatekeeper of iron metabolism, the transferrin receptor, as a means to enter cells. Why and how this iron gate is a viral target for infection are the focus of this review.
Collapse
Affiliation(s)
- Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA;
| |
Collapse
|
32
|
Rowley PA, Patterson K, Sandmeyer SB, Sawyer SL. Control of yeast retrotransposons mediated through nucleoporin evolution. PLoS Genet 2018; 14:e1007325. [PMID: 29694349 PMCID: PMC5918913 DOI: 10.1371/journal.pgen.1007325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Yeasts serve as hosts to several types of genetic parasites. Few studies have addressed the evolutionary trajectory of yeast genes that control the stable co-existence of these parasites with their host cell. In Saccharomyces yeasts, the retrovirus-like Ty retrotransposons must access the nucleus. We show that several genes encoding components of the yeast nuclear pore complex have experienced natural selection for substitutions that change the encoded protein sequence. By replacing these S. cerevisiae genes with orthologs from other Saccharomyces species, we discovered that natural sequence changes have affected the mobility of Ty retrotransposons. Specifically, changing the genetic sequence of NUP84 or NUP82 to match that of other Saccharomyces species alters the mobility of S. cerevisiae Ty1 and Ty3. Importantly, all tested housekeeping functions of NUP84 and NUP82 remained equivalent across species. Signatures of natural selection, resulting in altered interactions with viruses and parasitic genetic elements, are common in host defense proteins. Yet, few instances have been documented in essential housekeeping proteins. The nuclear pore complex is the gatekeeper of the nucleus. This study shows how the evolution of this large, ubiquitous eukaryotic complex can alter the replication of a molecular parasite, but concurrently maintain essential host functionalities regarding nucleocytoplasmic trafficking.
Collapse
Affiliation(s)
- Paul A. Rowley
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Suzanne B. Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
33
|
Meyerson NR, Warren CJ, Vieira DASA, Diaz-Griferro F, Sawyer SL. Species-specific vulnerability of RanBP2 shaped the evolution of SIV as it transmitted in African apes. PLoS Pathog 2018. [PMID: 29518153 PMCID: PMC5843284 DOI: 10.1371/journal.ppat.1006906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 arose as the result of spillover of simian immunodeficiency viruses (SIVs) from great apes in Africa, namely from chimpanzees and gorillas. Chimpanzees and gorillas were, themselves, infected with SIV after virus spillover from African monkeys. During spillover events, SIV is thought to require adaptation to the new host species. The host barriers that drive viral adaptation have predominantly been attributed to restriction factors, rather than cofactors (host proteins exploited to promote viral replication). Here, we consider the role of one cofactor, RanBP2, in providing a barrier that drove viral genome evolution during SIV spillover events. RanBP2 (also known as Nup358) is a component of the nuclear pore complex known to facilitate nuclear entry of HIV-1. Our data suggest that transmission of SIV from monkeys to chimpanzees, and then from chimpanzees to gorillas, both coincided with changes in the viral capsid that allowed interaction with RanBP2 of the new host species. However, human RanBP2 subsequently provided no barrier to the zoonotic transmission of SIV from chimpanzees or gorillas, indicating that chimpanzee- and gorilla-adapted SIVs are pre-adapted to humans in this regard. Our observations are in agreement with RanBP2 driving virus evolution during cross-species transmissions of SIV, particularly in the transmissions to and between great ape species. Multiple times, HIV-1 has entered the human population after emerging from a viral reservoir that exists in African primates. First, simian immunodeficiency virus (SIV) made the jump from monkeys into African great apes, and then from apes (namely, chimpanzees and gorillas) into humans. It is well appreciated that restriction factors, which are specialized proteins of the innate immune system, acted as host-specific barriers that drove virus adaptation during these spillover events. Here, we present data showing that a major constituent of the nuclear pore complex, RanBP2, was also a barrier to the spillover of SIVs, particularly in great ape species. Spillover of SIV into chimpanzee and gorilla populations required that the SIV capsid mutate to establish interaction with RanBP2 in the new host species. Our study highlights how essential housekeeping proteins, despite being generally more evolutionarily conserved than restriction factors, can also drive virus evolution during spillover events.
Collapse
Affiliation(s)
- Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Daniel A. S. A. Vieira
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Felipe Diaz-Griferro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
34
|
Ros C, Bayat N, Wolfisberg R, Almendral JM. Protoparvovirus Cell Entry. Viruses 2017; 9:v9110313. [PMID: 29072600 PMCID: PMC5707520 DOI: 10.3390/v9110313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
The Protoparvovirus (PtPV) genus of the Parvoviridae family of viruses includes important animal pathogens and reference molecular models for the entire family. Some virus members of the PtPV genus have arisen as promising tools to treat tumoral processes, as they exhibit marked oncotropism and oncolytic activities while being nonpathogenic for humans. The PtPVs invade and replicate within the nucleus making extensive use of the transport, transcription and replication machineries of the host cells. In order to reach the nucleus, PtPVs need to cross over several intracellular barriers and traffic through different cell compartments, which limit their infection efficiency. In this review we summarize molecular interactions, capsid structural transitions and hijacking of cellular processes, by which the PtPVs enter and deliver their single-stranded DNA genome into the host cell nucleus. Understanding mechanisms that govern the complex PtPV entry will be instrumental in developing approaches to boost their anticancer therapeutic potential and improving their safety profile.
Collapse
Affiliation(s)
- Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Nooshin Bayat
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark.
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants. J Virol 2017; 91:JVI.00534-17. [PMID: 28747502 DOI: 10.1128/jvi.00534-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility.IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range.
Collapse
|
36
|
Rowley PA. The frenemies within: viruses, retrotransposons and plasmids that naturally infect Saccharomyces yeasts. Yeast 2017; 34:279-292. [PMID: 28387035 DOI: 10.1002/yea.3234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022] Open
Abstract
Viruses are a major focus of current research efforts because of their detrimental impact on humanity and their ubiquity within the environment. Bacteriophages have long been used to study host-virus interactions within microbes, but it is often forgotten that the single-celled eukaryote Saccharomyces cerevisiae and related species are infected with double-stranded RNA viruses, single-stranded RNA viruses, LTR-retrotransposons and double-stranded DNA plasmids. These intracellular nucleic acid elements have some similarities to higher eukaryotic viruses, i.e. yeast retrotransposons have an analogous lifecycle to retroviruses, the particle structure of yeast totiviruses resembles the capsid of reoviruses and segregation of yeast plasmids is analogous to segregation strategies used by viral episomes. The powerful experimental tools available to study the genetics, cell biology and evolution of S. cerevisiae are well suited to further our understanding of how cellular processes are hijacked by eukaryotic viruses, retrotransposons and plasmids. This article has been written to briefly introduce viruses, retrotransposons and plasmids that infect Saccharomyces yeasts, emphasize some important cellular proteins and machineries with which they interact, and suggest the evolutionary consequences of these interactions. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Biological Sciences, The University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
37
|
Loots AK, Mitchell E, Dalton DL, Kotzé A, Venter EH. Advances in canine distemper virus pathogenesis research: a wildlife perspective. J Gen Virol 2017; 98:311-321. [PMID: 27902345 DOI: 10.1099/jgv.0.000666] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Canine distemper virus (CDV) has emerged as a significant disease of wildlife, which is highly contagious and readily transmitted between susceptible hosts. Initially described as an infectious disease of domestic dogs, it is now recognized as a global multi-host pathogen, infecting and causing mass mortalities in a wide range of carnivore species. The last decade has seen the effect of numerous CDV outbreaks in various wildlife populations. Prevention of CDV requires a clear understanding of the potential hosts in danger of infection as well as the dynamic pathways CDV uses to gain entry to its host cells and its ability to initiate viral shedding and disease transmission. We review recent research conducted on CDV infections in wildlife, including the latest findings on the causes of host specificity and cellular receptors involved in distemper pathogenesis.
Collapse
Affiliation(s)
- Angelika K Loots
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
| | - Emily Mitchell
- National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa
| | - Desiré L Dalton
- National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa.,Genetics Department, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Antoinette Kotzé
- National Zoological Gardens of South Africa, P.O. Box 754, Pretoria, 0001, South Africa.,Genetics Department, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
38
|
Molecular characterization of canine parvovirus in Vientiane, Laos. Arch Virol 2017; 162:1355-1361. [PMID: 28124140 DOI: 10.1007/s00705-016-3212-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Abstract
The global emergence of canine parvovirus type 2c (CPV-2c) has been well documented. In the present study, 139 rectal swab samples collected from diarrheic dogs living in Vientiane, Laos, in 2016 were tested for the presence of the canine parvovirus (CPV) VP2 gene by PCR. The results showed that 82.73% (115/139) of dogs were CPV positive by PCR. The partial VP2 gene was sequenced in 94 of the positive samples; 91 samples belonged to CPV-2c (426Glu) subtype, while 3 samples belonged to the CPV-2a (426Asn) subtype. Notably, phylogenetic analysis of amino acid sequences revealed a close relationship between Laotian isolates and novel Chinese CPV-2c isolates. In Laotian CPV isolates, aligned protein sequences indicated a high rate of residue substitutions at positions 305, 324, 345, 370, 375, and 426 in the GH loop. The mutation at residue 370 (Q370R), a single mutation, was characterized as a unique mutant residue specific to the Laotian CPV-2c variant.
Collapse
|
39
|
Shin J, MacCarthy T. Potential for evolution of complex defense strategies in a multi-scale model of virus-host coevolution. BMC Evol Biol 2016; 16:233. [PMID: 27784264 PMCID: PMC5080737 DOI: 10.1186/s12862-016-0804-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/14/2016] [Indexed: 01/17/2023] Open
Abstract
Background Host resistance and viral pathogenicity are determined by molecular interactions that are part of the evolutionary arms race between viruses and their hosts. Viruses are obligate intracellular parasites and entry to the host cell is the first step of any virus infection. Commonly, viruses enter host cells by binding cell surface receptors. We adopt a computational modeling approach to study the evolution of the first infection step, where we consider two possible levels of resistance mechanism: at the level of the binding interaction between the host receptor and a virus binding protein, and at the level of receptor protein expression where we use a standard gene regulatory network model. At the population level we adopted the Susceptible-Infected-Susceptible (SIS) model. We used our multi-scale model to understand what conditions might determine the balance between use of resistance mechanisms at the two different levels. Results We explored a range of different conditions (model parameters) that affect host evolutionary dynamics and, in particular, the balance between the use of different resistance mechanisms. These conditions include the complexity of the receptor binding protein-protein interaction, selection pressure on the host population (pathogenicity), and the number of expressed cell-surface receptors. In particular, we found that as the receptor binding complexity (understood as the number of amino acids involved in the interaction between the virus entry protein and the host receptor) increases, viruses tend to become specialists and target one specific receptor. At the same time, on the host side, the potential for resistance shifts from the changes at the level of receptor binding (protein-protein) interaction towards changes at the level of gene regulation, suggesting a mechanism for increased biological complexity. Conclusions Host resistance and viral pathogenicity depend on quite different evolutionary conditions. Viruses may evolve cell entry strategies that use small receptor binding regions, represented by low complexity binding in our model. Our modeling results suggest that if the virus adopts a strategy based on binding to low complexity sites on the host receptor, the host will select a defense strategy at the protein (receptor) level, rather than at the level of the regulatory network - a virus-host strategy that appears to have been selected most often in nature. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0804-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeewoen Shin
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA. .,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
40
|
Rowley PA, Ho B, Bushong S, Johnson A, Sawyer SL. XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts. PLoS Pathog 2016; 12:e1005890. [PMID: 27711183 PMCID: PMC5053509 DOI: 10.1371/journal.ppat.1005890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. One model is that the RNA of yeast viruses is subject to degradation simply as a side effect of the intrinsic exonuclease activity of proteins involved in RNA metabolism. Contrary to this model, we find a highly refined, species-specific relationship between Xrn1p and the "L-A" totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, the activity of Xrn1p against totiviruses is not simply an incidental consequence of the enzymatic activity of Xrn1p, but rather Xrn1p co-evolves with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. Consistent with this, we demonstrated that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs.
Collapse
Affiliation(s)
- Paul A. Rowley
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Brandon Ho
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Sarah Bushong
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Arlen Johnson
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
41
|
Pontremoli C, Forni D, Cagliani R, Filippi G, De Gioia L, Pozzoli U, Clerici M, Sironi M. Positive Selection Drives Evolution at the Host-Filovirus Interaction Surface. Mol Biol Evol 2016; 33:2836-2847. [PMID: 27512112 DOI: 10.1093/molbev/msw158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).
Collapse
Affiliation(s)
- Chiara Pontremoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
42
|
Lou DI, Kim ET, Meyerson NR, Pancholi NJ, Mohni KN, Enard D, Petrov DA, Weller SK, Weitzman MD, Sawyer SL. An Intrinsically Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host Microbe 2016; 20:178-88. [PMID: 27512903 PMCID: PMC4982468 DOI: 10.1016/j.chom.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Humans occasionally transmit herpes simplex virus 1 (HSV-1) to captive primates, who reciprocally harbor alphaherpesviruses poised for zoonotic transmission to humans. To understand the basis for the species-specific restriction of HSV-1 in primates, we simulated what might happen during the cross-species transmission of HSV-1 and found that the DNA repair protein Nbs1 from only some primate species is able to promote HSV-1 infection. The Nbs1 homologs that promote HSV-1 infection also interact with the HSV-1 ICP0 protein. ICP0 interaction mapped to a region of structural disorder in the Nbs1 protein. Chimeras reversing patterns of disorder in Nbs1 reversed titers of HSV-1 produced in the cell. By extending this analysis to 1,237 virus-interacting mammalian proteins, we show that proteins that interact with viruses are highly enriched in disorder, suggesting that viruses commonly interact with host proteins through intrinsically disordered domains.
Collapse
Affiliation(s)
- Dianne I Lou
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Eui Tae Kim
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas R Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Neha J Pancholi
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kareem N Mohni
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David Enard
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Sara L Sawyer
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
43
|
Zhao H, Cheng Y, Wang J, Lin P, Yi L, Sun Y, Ren J, Tong M, Cao Z, Li J, Deng J, Cheng S. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification. Sci Rep 2016; 6:29560. [PMID: 27406444 PMCID: PMC4942776 DOI: 10.1038/srep29560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023] Open
Abstract
Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Peng Lin
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Li Yi
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yaru Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jingqiang Ren
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Mingwei Tong
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zhigang Cao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jiawei Li
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jinliang Deng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| |
Collapse
|
44
|
Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. eLife 2016; 5. [PMID: 27187613 PMCID: PMC4869911 DOI: 10.7554/elife.12469] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes.
Collapse
Affiliation(s)
- David Enard
- Department of Biology, Stanford University, Stanford, United States
| | - Le Cai
- Department of Biology, Stanford University, Stanford, United States
| | - Carina Gwennap
- Department of Biology, Stanford University, Stanford, United States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
45
|
Wang J, Lin P, Zhao H, Cheng Y, Jiang Z, Zhu H, Wu H, Cheng S. Continuing evolution of canine parvovirus in China: Isolation of novel variants with an Ala5Gly mutation in the VP2 protein. INFECTION GENETICS AND EVOLUTION 2016; 38:73-78. [DOI: 10.1016/j.meegid.2015.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022]
|
46
|
Ng M, Ndungo E, Kaczmarek ME, Herbert AS, Binger T, Kuehne AI, Jangra RK, Hawkins JA, Gifford RJ, Biswas R, Demogines A, James RM, Yu M, Brummelkamp TR, Drosten C, Wang LF, Kuhn JH, Müller MA, Dye JM, Sawyer SL, Chandran K. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. eLife 2015; 4. [PMID: 26698106 PMCID: PMC4709267 DOI: 10.7554/elife.11785] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature. DOI:http://dx.doi.org/10.7554/eLife.11785.001 Ebola virus and other filoviruses can cause devastating diseases in humans and other apes. Numerous small outbreaks of Ebola virus disease have occurred in Africa over the past 40 years. However, in 2013–2015, the largest outbreak on record took place in three Western African nations with no previous history of the disease. Human outbreaks of Ebola virus disease likely begin when a person encounters an infected wild animal. Though it remains unclear precisely which animals harbor Ebola virus between outbreaks, and how they transmit the virus to humans or other primates, recent work showed that some filoviruses do infect specific types of bats in nature. Ng, Ndungo, Kaczmarek et al. sought to identify the genes that influence whether or not a type of bat is susceptible to infection by Ebola virus and other filoviruses. Several filoviruses, including Ebola virus, were tested to see if they could infect cells that had been collected from four types of African fruit bats. These bats are all found in areas where outbreaks have occurred in the past. The tests revealed that a small change in the sequence of the NPC1 gene in some bat cells greatly reduced their susceptibility to Ebola virus. NPC1 encodes a protein that mammals need in order to move cholesterol within their cells. In humans, the loss of the protein encoded by NPC1 causes a rare but very severe disease called Niemann-Pick type C disease. This protein also turns out to be a receptor that the filoviruses must bind to before they can infect the cells. Further analysis then revealed that NPC1 has evolved rapidly in bats, with changes concentrated in the parts of the receptor that interact with Ebola virus. Ng, Ndungo, Kaczmarek et al. went on to discover some changes in the genome sequence of Ebola virus that could compensate for the changes in the bat’s NPC1 gene. These findings hint at one way that a filovirus could evolve to better infect a host with receptors that were less than optimal. Following on from this work, the next challenges will be to expand the investigation to include additional types of bats, other types of mammals, and other host genes that could influence filovirus infection and disease. Further studies could also examine the other side of the arms race – that is, the evolution of viral genes in bats. However, such studies would be complicated by the lack of viral sequences that have been collected from bats, because to date most have been isolated from humans and other primates instead. DOI:http://dx.doi.org/10.7554/eLife.11785.002
Collapse
Affiliation(s)
- Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Esther Ndungo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Maria E Kaczmarek
- Department of Integrative Biology, University of Texas at Austin, Austin, United States
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Tabea Binger
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - Ana I Kuehne
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - John A Hawkins
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, United States
| | - Robert J Gifford
- University of Glasgow MRC Virology Unit, Glasgow, United Kingdom
| | - Rohan Biswas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Ann Demogines
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Rebekah M James
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Meng Yu
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, , Singapore
| | | | - Christian Drosten
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.,German Centre for Infectious Diseases Research, Bonn, Germany
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, , Singapore
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, United States
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Sara L Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States.,BioFrontiers Institute, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
47
|
Wang H, Jin H, Li Q, Zhao G, Cheng N, Feng N, Zheng X, Wang J, Zhao Y, Li L, Cao Z, Yan F, Wang L, Wang T, Gao Y, Yang S, Xia X. Isolation and sequence analysis of the complete NS1 and VP2 genes of canine parvovirus from domestic dogs in 2013 and 2014 in China. Arch Virol 2015; 161:385-93. [PMID: 26573526 DOI: 10.1007/s00705-015-2620-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023]
Abstract
Canine parvovirus (CPV) can cause severe disease in animals and continuously generates new variant and recombinant strains in dogs that have a strong impact on sanitation. It is therefore necessary to investigate epidemic CPV strains to improve our understanding of CPV transmission and epidemic behavior. However, most studies have focused on the analysis of VP2, and therefore, information about recombination and relationships between strains is still lacking. Here, 14 strains of CPV were isolated from domestic dogs suspected of hosting CPV between 2013 and 2014 in China. The complete NS1 and VP2 genes were sequenced and analyzed. The results suggest that the new CPV-2a and new CPV-2b types are the prevalent strains in China. In addition to a few mutations (residues 19, 544, 545, 572 and 583 of NS1 and residues 267, 370, 377 and 440 of VP2) that were preserved during transmission, new mutations (residues 60, 630 of NS1, and residues 21, 310 of VP2) were found in the isolated strains. A phylogenetic tree based on VP2 sequences illustrated that the new CPV-2a and new CPV-2b strains from China form single clusters that are distinct from lineages from other countries. Moreover, recombination between the new CPV-2a and new CPV-2b types was also identified in the isolated strains. Due to differences in selection pressures or recombination, there were a small number of inconsistencies between the phylogenetic trees for VP2 and NS1, which indicated that phylogenetic relationships based on VP2 might not be representative of those based on NS1. The data indicated that mutations and recombination are constantly occurring along with the spread of CPV in China.
Collapse
Affiliation(s)
- Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Changchun SR Biological Technology Co., LTD, Changchun, 130012, China
| | - Qian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Guoxing Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Cheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Xuexing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Jianzhong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Ling Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Lina Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
48
|
Affiliation(s)
- Shweta Kailasan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Colin R. Parrish
- Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
49
|
Single Mutations in the VP2 300 Loop Region of the Three-Fold Spike of the Carnivore Parvovirus Capsid Can Determine Host Range. J Virol 2015; 90:753-67. [PMID: 26512077 DOI: 10.1128/jvi.02636-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300, varies after transfer to alternative carnivore hosts and may allow infection of previously nonsusceptible hosts in vitro. Here we show that VP2 position 300 is the most variable residue in the parvovirus capsid in nature, suggesting that it is a critical determinant in the cross-species transfer of viruses between different carnivores due to its interactions with the transferrin receptor to mediate infection. To this end, we demonstrated that there are substantial differences in receptor binding and infectivity of various VP2 position 300 mutants for different carnivore species and that single mutations in this region can influence whether a host is susceptible or refractory to virus infection.
Collapse
|
50
|
Computational and Functional Analysis of the Virus-Receptor Interface Reveals Host Range Trade-Offs in New World Arenaviruses. J Virol 2015; 89:11643-53. [PMID: 26355089 DOI: 10.1128/jvi.01408-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Animal viruses frequently cause zoonotic disease in humans. As these viruses are highly diverse, evaluating the threat that they pose remains a major challenge, and efficient approaches are needed to rapidly predict virus-host compatibility. Here, we develop a combined computational and experimental approach to assess the compatibility of New World arenaviruses, endemic in rodents, with the host TfR1 entry receptors of different potential new host species. Using signatures of positive selection, we identify a small motif on rodent TfR1 that conveys species specificity to the entry of viruses into cells. However, we show that mutations in this region affect the entry of each arenavirus differently. For example, a human single nucleotide polymorphism (SNP) in this region, L212V, makes human TfR1 a weaker receptor for one arenavirus, Machupo virus, but a stronger receptor for two other arenaviruses, Junin and Sabia viruses. Collectively, these findings set the stage for potential evolutionary trade-offs, where natural selection for resistance to one virus may make humans or rodents susceptible to other arenavirus species. Given the complexity of this host-virus interplay, we propose a computational method to predict these interactions, based on homology modeling and computational docking of the virus-receptor protein-protein interaction. We demonstrate the utility of this model for Machupo virus, for which a suitable cocrystal structural template exists. Our model effectively predicts whether the TfR1 receptors of different species will be functional receptors for Machupo virus entry. Approaches such at this could provide a first step toward computationally predicting the "host jumping" potential of a virus into a new host species. IMPORTANCE We demonstrate how evolutionary trade-offs may exist in the dynamic evolutionary interplay between viruses and their hosts, where natural selection for resistance to one virus could make humans or rodents susceptible to other virus species. We present an algorithm that predicts which species have cell surface receptors that make them susceptible to Machupo virus, based on computational docking of protein structures. Few molecular models exist for predicting the risk of spillover of a particular animal virus into humans or new animal populations. Our results suggest that a combination of evolutionary analysis, structural modeling, and experimental verification may provide an efficient approach for screening and assessing the potential spillover risks of viruses circulating in animal populations.
Collapse
|