1
|
Hamade H, Tsuda M, Oshima N, Stamps DT, Wong MH, Stamps JT, Thomas LS, Salumbides BC, Jin C, Nunnelee JS, Dhall D, Targan SR, Michelsen KS. Toll-like receptor 7 protects against intestinal inflammation and restricts the development of colonic tissue-resident memory CD8 + T cells. Front Immunol 2024; 15:1465175. [PMID: 39464882 PMCID: PMC11502343 DOI: 10.3389/fimmu.2024.1465175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The maintenance of intestinal homeostasis depends on a complex interaction between the immune system, intestinal epithelial barrier, and microbiota. Alteration in one of these components could lead to the development of inflammatory bowel diseases (IBD). Variants within the autophagy gene ATG16L1 have been implicated in susceptibility and severity of Crohn's disease (CD). Individuals carrying the risk ATG16L1 T300A variant have higher caspase 3-dependent degradation of ATG16L1 resulting in impaired autophagy and increased cellular stress. ATG16L1-deficiency induces enhanced IL-1β secretion in dendritic cells in response to bacterial infection. Infection of ATG16L1-deficient mice with a persistent strain of murine norovirus renders these mice highly susceptible to dextran sulfate sodium colitis. Moreover, persistent norovirus infection leads to intestinal virus specific CD8+ T cells responses. Both Toll-like receptor 7 (TLR7), which recognizes single-stranded RNA viruses, and ATG16L1, which facilitates the delivery of viral nucleic acids to the autolysosome endosome, are required for anti-viral immune responses. Results and discussion However, the role of the enteric virome in IBD is still poorly understood. Here, we investigate the role of TLR7 and ATG16L1 in intestinal homeostasis and inflammation. At steady state, Tlr7-/- mice have a significant increase in large intestinal lamina propria (LP) granzyme B+ tissue-resident memory CD8+ T (TRM) cells compared to WT mice, reminiscent of persistent norovirus infection. Deletion of Atg16l1 in myeloid (Atg16l1ΔLyz2 ) or dendritic cells (Atg16l1ΔCd11c ) leads to a similar increase of LP TRM. Furthermore, Tlr7-/- and Atg16l1ΔCd11c mice were more susceptible to dextran sulfate sodium colitis with an increase in disease activity index, histoscore, and increased secretion of IFN-γ and TNF-α. Treatment of Atg16l1ΔCd11c mice with the TLR7 agonist Imiquimod attenuated colonic inflammation in these mice. Our data demonstrate that ATG16L1-deficiency in myeloid and dendritic cells leads to an increase in LP TRM and consequently to increased susceptibility to colitis by impairing the recognition of enteric viruses by TLR7. Conclusion In conclusion, the convergence of ATG16L1 and TLR7 signaling pathways plays an important role in the immune response to intestinal viruses. Our data suggest that activation of the TLR7 signaling pathway could be an attractive therapeutic target for CD patients with ATG16L1 risk variants.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Masato Tsuda
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Naoki Oshima
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michelle H. Wong
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline Jin
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jordan S. Nunnelee
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
2
|
Singh MK, Maiti GP, Reddy-Rallabandi H, Fazel-Najafabadi M, Looger LL, Nath SK. A Non-Coding Variant in SLC15A4 Modulates Enhancer Activity and Lysosomal Deacidification Linked to Lupus Susceptibility. FRONTIERS IN LUPUS 2023; 1:1244670. [PMID: 38317862 PMCID: PMC10843804 DOI: 10.3389/flupu.2023.1244670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic basis. Despite the identification of several single nucleotide polymorphisms (SNPs) near the SLC15A4 gene that are significantly associated with SLE across multiple populations, specific causal SNP(s) and molecular mechanisms responsible for disease susceptibility are unknown. To address this gap, we employed bioinformatics, expression quantitative trait loci (eQTLs), and 3D chromatin interaction analysis to nominate a likely functional variant, rs35907548, in an active intronic enhancer of SLC15A4. Through luciferase reporter assays followed by chromatin immunoprecipitation (ChIP)-qPCR, we observed significant allele-specific enhancer effects of rs35907548 in diverse cell lines. The rs35907548 risk allele T is associated with increased regulatory activity and target gene expression, as shown by eQTLs and chromosome conformation capture (3C)-qPCR. The latter revealed long-range chromatin interactions between the rs35907548 enhancer and the promoters of SLC15A4, GLTLD1, and an uncharacterized lncRNA. The enhancer-promoter interactions and expression effects were validated by CRISPR/Cas9 knock-out (KO) of the locus in HL60 promyeloblast cells. KO cells also displayed dramatically dysregulated endolysosomal pH regulation. Together, our data show that the rs35907548 risk allele affects multiple aspects of cellular physiology and may directly contribute to SLE.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| | - Guru Prashad Maiti
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| | | | - Mehdi Fazel-Najafabadi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| | - Loren L. Looger
- Howard Hughes Medical Institute, Department of Neurosciences, University of California San Diego, La Jolla CA, USA
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK, USA
| |
Collapse
|
3
|
Kobayashi T, Toyama-Sorimachi N. Metabolic control from the endolysosome: lysosome-resident amino acid transporters open novel therapeutic possibilities. Front Immunol 2023; 14:1243104. [PMID: 37781390 PMCID: PMC10540624 DOI: 10.3389/fimmu.2023.1243104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Amino acid transporters are generally recognized as machinery that transport amino acids from the extracellular environment into the cytoplasm. Although their primary function is the uptake of amino acids to supply the cell with nutrients and energy, endolysosome-resident amino acid (EL-aa) transporters possess several unique functions in accordance with their localization in intracellular vesicular membranes. They play pivotal roles in the maintenance of metabolic homeostasis via direct involvement in the amino acid sensing pathway, which regulates the activity of mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of cellular metabolism. Additionally, some EL-aa transporters contribute to the maintenance of dynamic homeostasis of endolysosomes, including the regulation of endolysosomal acidity, by carrying amino acids out of endolysosomes. In addition, EL-aa transporters act as a scaffold to gather signaling molecules and multiple enzymes to control cellular metabolism on the endolysosomal membrane. Among EL-aa transporters, solute carrier family 15 member 4 (SLC15A4) is preferentially expressed in immune cells, including macrophages, dendritic cells, and B cells, and plays a key role in the integration of metabolic and inflammatory signals. In this review, we summarize our recent findings on EL-aa transporter contributions to inflammatory and metabolic signaling in the endolysosomes of immune cells by focusing on the SLC15 family, including SLC15A4 and SLC15A3, and discuss their uniqueness and universality. We also discuss the potential of targeting these EL-aa transporters in immune cells for the development of novel therapeutic strategies for inflammatory diseases. Because these transporters are highly expressed in immune cells and significantly alter the functions of immune cells, targeting them would provide a great advantage in ensuring a wide safety margin.
Collapse
Affiliation(s)
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
4
|
Zhang H, Bernaleau L, Delacrétaz M, Hasanovic E, Drobek A, Eibel H, Rebsamen M. SLC15A4 controls endolysosomal TLR7-9 responses by recruiting the innate immune adaptor TASL. Cell Rep 2023; 42:112916. [PMID: 37527038 DOI: 10.1016/j.celrep.2023.112916] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Endolysosomal Toll-like receptors (TLRs) play crucial roles in immune responses to pathogens, while aberrant activation of these pathways is associated with autoimmune diseases, including systemic lupus erythematosus (SLE). The endolysosomal solute carrier family 15 member 4 (SLC15A4) is required for TLR7/8/9-induced responses and disease development in SLE models. SLC15A4 has been proposed to affect TLR7-9 activation through its transport activity, as well as by assembling an IRF5-activating complex with TASL, but the relative contribution of these functions remains unclear. Here, we show that the essential role of SLC15A4 is to recruit TASL to endolysosomes, while its transport activity is dispensable when TASL is tethered to this compartment. Endolysosomal-localized TASL rescues TLR7-9-induced IRF5 activation as well as interferon β and cytokine production in SLC15A4-deficient cells. SLC15A4 acts as signaling scaffold, and this function is essential to control TLR7-9-mediated inflammatory responses. These findings support targeting the SLC15A4-TASL complex as a potential therapeutic strategy for SLE and related diseases.
Collapse
Affiliation(s)
- Haobo Zhang
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Léa Bernaleau
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Ed Hasanovic
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Ales Drobek
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
5
|
Mazzei A, Serino G, Romano A, Piccinno E, Scalavino V, Valentini AM, Armentano R, Schiavone R, Giannelli G, Verri T, Barca A. Identification of SLC15A4/PHT1 Gene Products Upregulation Marking the Intestinal Epithelial Monolayer of Ulcerative Colitis Patients. Int J Mol Sci 2022; 23:13170. [PMID: 36361959 PMCID: PMC9658943 DOI: 10.3390/ijms232113170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial layer, as in the multifactorial pathophysiology of inflammatory bowel disease (IBD), is poorly investigated. Here, the first identification of SLC15A4/PHT1 gene products in human colonic epithelium of ulcerative colitis (UC) patients is reported, showing protein primarily localized in intracellular vesicle-like compartments. Qualitative and quantitative immunohistochemical analyses of colon biopsies revealed overexpression of SLC15A4/PHT1 protein product in the epithelial layer of UC patients. Results were successfully mirrored in vitro, in spontaneously differentiated enterocyte-like monolayers of Caco-2 cells specifically exposed to DSS (dextran sodium sulphate) to mimic IBD inflammatory onsets. SLC15A4/PHT1 expression and cellular localization were characterized confirming its (dys)regulation traits in inflamed vs. healthy epithelia, strongly hinting the hypothesis of SLC15A4/PHT1 increased function associated with epithelial inflammation in IBD patients.
Collapse
Affiliation(s)
- Aurora Mazzei
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy; (A.M.); (R.S.); (T.V.)
| | - Grazia Serino
- National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (V.S.); (A.M.V.); (R.A.); (G.G.)
| | - Alessandro Romano
- Division of Neuroscience, Experimental Neurology Unit, San Raffaele Scientific Institute, 20132 Milano, Italy;
| | - Emanuele Piccinno
- National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (V.S.); (A.M.V.); (R.A.); (G.G.)
| | - Viviana Scalavino
- National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (V.S.); (A.M.V.); (R.A.); (G.G.)
| | - Anna Maria Valentini
- National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (V.S.); (A.M.V.); (R.A.); (G.G.)
| | - Raffaele Armentano
- National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (V.S.); (A.M.V.); (R.A.); (G.G.)
| | - Roberta Schiavone
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy; (A.M.); (R.S.); (T.V.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “S. de Bellis”, IRCCS Research Hospital, 70013 Castellana Grotte, Italy; (E.P.); (V.S.); (A.M.V.); (R.A.); (G.G.)
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy; (A.M.); (R.S.); (T.V.)
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, 73100 Lecce, Italy; (A.M.); (R.S.); (T.V.)
| |
Collapse
|
6
|
Dalod M, Scheu S. Dendritic cell functions in vivo: a user's guide to current and next generation mutant mouse models. Eur J Immunol 2022; 52:1712-1749. [PMID: 35099816 DOI: 10.1002/eji.202149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) do not just excel in antigen presentation. They orchestrate information transfer from innate to adaptive immunity, by sensing and integrating a variety of danger signals, and translating them to naïve T cells, to mount specifically tailored immune responses. This is accomplished by distinct DC types specialized in different functions and because each DC is functionally plastic, assuming different activation states depending on the input signals received. Mouse models hold the key to untangle this complexity and determine which DC types and activation states contribute to which functions. Here, we aim to provide comprehensive information for selecting the most appropriate mutant mouse strains to address specific research questions on DCs, considering three in vivo experimental approaches: (i) interrogating the roles of DC types through their depletion; (ii) determining the underlying mechanisms by specific genetic manipulations; (iii) deciphering the spatiotemporal dynamics of DC responses. We summarize the advantages, caveats, suggested use and perspectives for a variety of mutant mouse strains, discussing in more detail the most widely used or accurate models. Finally, we discuss innovative strategies to improve targeting specificity, for the next generation mutant mouse models, and briefly address how humanized mouse models can accelerate translation into the clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc Dalod
- CNRS, Inserm, Aix Marseille Univ, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Marseille, France
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
SLC15A4 mediates M1-prone metabolic shifts in macrophages and guards immune cells from metabolic stress. Proc Natl Acad Sci U S A 2021; 118:2100295118. [PMID: 34385317 DOI: 10.1073/pnas.2100295118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The amino acid and oligopeptide transporter Solute carrier family 15 member A4 (SLC15A4), which resides in lysosomes and is preferentially expressed in immune cells, plays critical roles in the pathogenesis of lupus and colitis in murine models. Toll-like receptor (TLR)7/9- and nucleotide-binding oligomerization domain-containing protein 1 (NOD1)-mediated inflammatory responses require SLC15A4 function for regulating the mechanistic target of rapamycin complex 1 (mTORC1) or transporting L-Ala-γ-D-Glu-meso-diaminopimelic acid, IL-12: interleukin-12 (Tri-DAP), respectively. Here, we further investigated the mechanism of how SLC15A4 directs inflammatory responses. Proximity-dependent biotin identification revealed glycolysis as highly enriched gene ontology terms. Fluxome analyses in macrophages indicated that SLC15A4 loss causes insufficient biotransformation of pyruvate to the tricarboxylic acid cycle, while increasing glutaminolysis to the cycle. Furthermore, SLC15A4 was required for M1-prone metabolic change and inflammatory IL-12 cytokine productions after TLR9 stimulation. SLC15A4 could be in close proximity to AMP-activated protein kinase (AMPK) and mTOR, and SLC15A4 deficiency impaired TLR-mediated AMPK activation. Interestingly, SLC15A4-intact but not SLC15A4-deficient macrophages became resistant to fluctuations in environmental nutrient levels by limiting the use of the glutamine source; thus, SLC15A4 was critical for macrophage's respiratory homeostasis. Our findings reveal a mechanism of metabolic regulation in which an amino acid transporter acts as a gatekeeper that protects immune cells' ability to acquire an M1-prone metabolic phenotype in inflammatory tissues by mitigating metabolic stress.
Collapse
|
8
|
Kobayashi T, Nguyen-Tien D, Ohshima D, Karyu H, Shimabukuro-Demoto S, Yoshida-Sugitani R, Toyama-Sorimachi N. Human SLC15A4 is crucial for TLR-mediated type I interferon production and mitochondrial integrity. Int Immunol 2021; 33:399-406. [PMID: 33560415 DOI: 10.1093/intimm/dxab006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Solute carrier family 15 member 4 (SLC15A4) is an endolysosome-resident amino acid transporter that regulates innate immune responses, and is genetically associated with inflammatory diseases such as systemic lupus erythematosus (SLE) and colitis. SLC15A4-deficient mice showed the amelioration of symptoms of these model diseases, and thus SLC15A4 is a promising therapeutic target of SLE and colitis. For developing a SLC15A4-based therapeutic strategy, understanding human SLC15A4's properties is essential. Here, we characterized human SLC15A4 and demonstrated that human SLC15A4 possessed pH- and temperature-dependent activity for the transportation of dipeptides or tripeptides. Human SLC15A4 localized in LAMP1+ compartments and constitutively associated with Raptor and LAMTORs. We also investigated SLC15A4's role in inflammatory responses using the human plasmacytoid dendritic cell line, CAL-1. Knock down (KD) of the SLC15A4 gene in CAL-1 (SLC15A4-KD CAL-1) impaired Toll-like receptor (TLR) 7/8 or TLR9-triggered type I interferon (IFN-I) production and mTORC1 activity, indicating that human SLC15A4 is critical for TLR7/8/9-mediated inflammatory signaling. We also examined SLC15A4's role in the autophagy response since SLC15A4 loss caused the decrease of mTORC1 activity, which greatly influences autophagy. We found that SLC15A4 was not required for autophagy induction, but was critical for autophagy sustainability. Notably, SLC15A4-KD CAL-1 severely decreased mitochondrial membrane potential in starvation conditions. Our findings revealed that SLC15A4 plays a key role in mitochondrial integrity in human cells, which might benefit immune cells in fulfilling their functions in an inflammatory milieu.
Collapse
Affiliation(s)
- Toshihiko Kobayashi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Dat Nguyen-Tien
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan.,Department of Physiology, Faculty of Medicine, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, Japan
| | - Hitomi Karyu
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Reiko Yoshida-Sugitani
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan.,Neural Circuitry of Learning and Memory, Riken Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
9
|
Katewa A, Suto E, Hui J, Heredia J, Liang J, Hackney J, Anderson K, Alcantar TM, Bacarro N, Dunlap D, Eastham J, Paler-Martinez A, Rairdan XY, Modrusan Z, Lee WP, Austin CD, Lafkas D, Ghilardi N. The peptide symporter SLC15a4 is essential for the development of systemic lupus erythematosus in murine models. PLoS One 2021; 16:e0244439. [PMID: 33444326 PMCID: PMC7808665 DOI: 10.1371/journal.pone.0244439] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease representing a serious unmet medical need. The disease is associated with the loss of self-tolerance and exaggerated B cell activation, resulting in autoantibody production and the formation of immune complexes that accumulate in the kidney, causing glomerulonephritis. TLR7, an important mediator of the innate immune response, drives the expression of type-1 interferon (IFN), which leads to expression of type-1 IFN induced genes and aggravates lupus pathology. Because the lysosomal peptide symporter slc15a4 is critically required for type-1 interferon production by pDC, and for certain B cell functions in response to TLR7 and TLR9 signals, we considered it as a potential target for pharmacological intervention in SLE. We deleted the slc15a4 gene in C57BL/6, NZB, and NZW mice and found that pristane-challenged slc15a4-/- mice in the C57BL/6 background and lupus prone slc15a4-/- NZB/W F1 mice were both completely protected from lupus like disease. In the NZB/W F1 model, protection persisted even when disease development was accelerated with an adenovirus encoding IFNα, emphasizing a broad role of slc15a4 in disease initiation. Our results establish a non-redundant function of slc15a4 in regulating both innate and adaptive components of the immune response in SLE pathobiology and suggest that it may be an attractive drug target.
Collapse
Affiliation(s)
- Arna Katewa
- Dept. Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, United States of America
| | - Eric Suto
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Jessica Hui
- Evercore ISI, New York, NY, United States of America
| | - Jose Heredia
- Dept. Immunology, Genentech, South San Francisco, CA, United States of America
| | - Jie Liang
- Dept. Molecular Oncology, Genentech, South San Francisco, CA, United States of America
| | - Jason Hackney
- Dept. Bioinformatics, Genentech, South San Francisco, CA, United States of America
| | - Keith Anderson
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Tuija M. Alcantar
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Natasha Bacarro
- Dept. Molecular Biology, Genentech, South San Francisco, CA, United States of America
| | - Debra Dunlap
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Jeffrey Eastham
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Andres Paler-Martinez
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Xin Y. Rairdan
- gRED Animal Resources, South San Francisco, CA, United States of America
| | - Zora Modrusan
- Dept. Microchemistry, Proteomics, & Lipidomics, Genentech, South San Francisco, CA, United States of America
| | - Wyne P. Lee
- Dept. Translational Immunology, Genentech, South San Francisco, CA, United States of America
| | - Cary D. Austin
- Dept. Pathology, Genentech, South San Francisco, CA, United States of America
| | - Daniel Lafkas
- Dept. Immunology, Genentech, South San Francisco, CA, United States of America
| | - Nico Ghilardi
- DiCE Molecules, South San Francisco, CA, United States of America
| |
Collapse
|
10
|
DNA methylation in blood-Potential to provide new insights into cell biology. PLoS One 2020; 15:e0241367. [PMID: 33147241 PMCID: PMC7641429 DOI: 10.1371/journal.pone.0241367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Epigenetics plays a fundamental role in cellular development and differentiation; epigenetic mechanisms, such as DNA methylation, are involved in gene regulation and the exquisite nuance of expression changes seen in the journey from pluripotency to final differentiation. Thus, DNA methylation as a marker of cell identify has the potential to reveal new insights into cell biology. We mined publicly available DNA methylation data with a machine-learning approach to identify differentially methylated loci between different white blood cell types. We then interrogated the DNA methylation and mRNA expression of candidate loci in CD4+, CD8+, CD14+, CD19+ and CD56+ fractions from 12 additional, independent healthy individuals (6 male, 6 female). ‘Classic’ immune cell markers such as CD8 and CD19 showed expected methylation/expression associations fitting with established dogma that hypermethylation is associated with the repression of gene expression. We also observed large differential methylation at loci which are not established immune cell markers; some of these loci showed inverse correlations between methylation and mRNA expression (such as PARK2, DCP2). Furthermore, we validated these observations further in publicly available DNA methylation and RNA sequencing datasets. Our results highlight the value of mining publicly available data, the utility of DNA methylation as a discriminatory marker and the potential value of DNA methylation to provide additional insights into cell biology and developmental processes.
Collapse
|
11
|
Heinz LX, Lee J, Kapoor U, Kartnig F, Sedlyarov V, Papakostas K, César-Razquin A, Essletzbichler P, Goldmann U, Stefanovic A, Bigenzahn JW, Scorzoni S, Pizzagalli MD, Bensimon A, Müller AC, King FJ, Li J, Girardi E, Mbow ML, Whitehurst CE, Rebsamen M, Superti-Furga G. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. Nature 2020; 581:316-322. [PMID: 32433612 PMCID: PMC7610944 DOI: 10.1038/s41586-020-2282-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) have a crucial role in the recognition of pathogens and initiation of immune responses1–3. Here we show that a previously uncharacterized protein encoded by CXorf21—a gene that is associated with systemic lupus erythematosus4,5—interacts with the endolysosomal transporter SLC15A4, an essential but poorly understood component of the endolysosomal TLR machinery also linked to autoimmune disease4,6–9. Loss of this type-I-interferon-inducible protein, which we refer to as ‘TLR adaptor interacting with SLC15A4 on the lysosome’ (TASL), abrogated responses to endolysosomal TLR agonists in both primary and transformed human immune cells. Deletion of SLC15A4 or TASL specifically impaired the activation of the IRF pathway without affecting NF-κB and MAPK signalling, which indicates that ligand recognition and TLR engagement in the endolysosome occurred normally. Extensive mutagenesis of TASL demonstrated that its localization and function relies on the interaction with SLC15A4. TASL contains a conserved pLxIS motif (in which p denotes a hydrophilic residue and x denotes any residue) that mediates the recruitment and activation of IRF5. This finding shows that TASL is an innate immune adaptor for TLR7, TLR8 and TLR9 signalling, revealing a clear mechanistic analogy with the IRF3 adaptors STING, MAVS and TRIF10,11. The identification of TASL as the component that links endolysosomal TLRs to the IRF5 transcription factor via SLC15A4 provides a mechanistic explanation for the involvement of these proteins in systemic lupus erythematosus12–14.
Collapse
Affiliation(s)
- Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - JangEun Lee
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Utkarsh Kapoor
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Konstantinos Papakostas
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrian César-Razquin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrijana Stefanovic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mattia D Pizzagalli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ariel Bensimon
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - F James King
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Jun Li
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - M Lamine Mbow
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | | | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Harris VM, Koelsch KA, Kurien BT, Harley ITW, Wren JD, Harley JB, Scofield RH. Characterization of cxorf21 Provides Molecular Insight Into Female-Bias Immune Response in SLE Pathogenesis. Front Immunol 2019; 10:2160. [PMID: 31695690 PMCID: PMC6816314 DOI: 10.3389/fimmu.2019.02160] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Ninety percent of systemic lupus erythematosus (SLE) patients are women. X chromosome-dosage increases susceptibility to SLE and primary Sjögren's syndrome (pSS). Chromosome X open reading frame 21 (CXorf21) escapes X-inactivation and is an SLE risk gene of previously unknown function. We undertook the present study to delineate the function of CXorf21 in the immune system as well as investigate a potential role in the sex bias of SLE and pSS. Methods: Western blot protein analysis, qPCR, BioPlex cytokine immunoassay, pHrodo™ assays, as well as in vitro CRISPR-Cas9 knockdown experiments were employed to delineate the role of CXorf21 in relevant immunocytes. Results: Expressed in monocytes and B cells, CXorf21 basal Mrna, and protein expression levels are elevated in female primary monocytes, B cells, and EBV-transformed B cells compared to male cells. We also found CXorf21 mRNA and protein expression is higher in both male and female cells from SLE patients compared to control subjects. TLR7 ligation increased CXorf21 protein expression and CXorf21 knockdown abrogated TLR7-driven increased IFNA1 mRNA expression, and reduced secretion of both TNF-alpha and IL-6 in healthy female monocytes. Similarly, we found increased pH in the lysosomes of CXorf21-deficient female monocytes. Conclusion: CXorf21 is more highly expressed in female compared to male cells and is involved in a sexually dimorphic response to TLR7 activation. In addition, CXorf21 expression regulates lysosomal pH in a sexually dimorphic manner. Thus, sexually dimorphic expression of CXorf21 skews cellular immune responses in manner consistent with expected properties of a mediator of the X chromosome dose risk in SLE and pSS.
Collapse
Affiliation(s)
- Valerie M Harris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kristi A Koelsch
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Isaac T W Harley
- Division of Rheumatology, School of Medicine, University of Colorado, Aurora, CO, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,United States Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Medical and Research Services, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Kobayashi T, Tsutsui H, Shimabukuro-Demoto S, Yoshida-Sugitani R, Karyu H, Furuyama-Tanaka K, Ohshima D, Kato N, Okamura T, Toyama-Sorimachi N. Lysosome biogenesis regulated by the amino-acid transporter SLC15A4 is critical for functional integrity of mast cells. Int Immunol 2019; 29:551-566. [PMID: 29155995 PMCID: PMC5890901 DOI: 10.1093/intimm/dxx063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Mast cells possess specialized lysosomes, so-called secretory granules, which play a key role not only in allergic responses but also in various immune disorders. The molecular mechanisms that control secretory-granule formation are not fully understood. Solute carrier family member 15A4 (SLC15A4) is a lysosome-resident amino-acid/oligopeptide transporter that is preferentially expressed in hematopoietic lineage cells. Here, we demonstrated that SLC15A4 is required for mast-cell secretory-granule homeostasis, and limits mast-cell functions and inflammatory responses by controlling the mTORC1-TFEB signaling axis. In mouse Slc15a4-/- mast cells, diminished mTORC1 activity increased the expression and nuclear translocation of TFEB, a transcription factor, which caused secretory granules to degranulate more potently. This alteration of TFEB function in mast cells strongly affected the FcεRI-mediated responses and IL-33-triggered inflammatory responses both in vitro and in vivo. Our results reveal a close relationship between SLC15A4 and secretory-granule biogenesis that is critical for the functional integrity of mast cells.
Collapse
Affiliation(s)
- Toshihiko Kobayashi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Hidemitsu Tsutsui
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Reiko Yoshida-Sugitani
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Hitomi Karyu
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kaori Furuyama-Tanaka
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Okamura
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
14
|
Macal M, Jo Y, Dallari S, Chang AY, Dai J, Swaminathan S, Wehrens EJ, Fitzgerald-Bocarsly P, Zúñiga EI. Self-Renewal and Toll-like Receptor Signaling Sustain Exhausted Plasmacytoid Dendritic Cells during Chronic Viral Infection. Immunity 2019; 48:730-744.e5. [PMID: 29669251 DOI: 10.1016/j.immuni.2018.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/30/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022]
Abstract
Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.
Collapse
Affiliation(s)
- Monica Macal
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Yeara Jo
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Simone Dallari
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Aaron Y Chang
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Jihong Dai
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Shobha Swaminathan
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ellen J Wehrens
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | | | - Elina I Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
15
|
Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Front Immunol 2018; 9:2505. [PMID: 30425716 PMCID: PMC6218925 DOI: 10.3389/fimmu.2018.02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4−, cDC2 being Flt3+CD172a+CD13−CD4−, pDC being Flt3+CD172adimCD13−CD4+, and monocytes being Flt3−CD172ahighCD13−CD4−. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16−) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for “marker molecules” that—when targeted by flow cytometry—will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Baumann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Griffith AD, Zaidi AK, Pietro A, Hadiono M, Yang JS, Davis R, Popkin DL. A requirement for slc15a4 in imiquimod-induced systemic inflammation and psoriasiform inflammation in mice. Sci Rep 2018; 8:14451. [PMID: 30262916 PMCID: PMC6160456 DOI: 10.1038/s41598-018-32668-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
There is competing evidence that plasmacytoid dendritic cells (pDC), the most potent source of IFN-I, may initiate psoriasis. We targeted pDC function using the slc15a4feeble loss-of-function mouse whose pDC are unresponsive to TLR agonists. slc15a4feeble treated with the topical TLR7-agonist imiquimod (IMQ) demonstrated decreased epidermal thickening 24 hours post-treatment which was more pronounced by day 5 as compared to wildtype mice. These findings were specific to the acute IMQ model and not the protracted IL23 model that drives inflammation downstream of TLR activation. Systemically, slc15a4 was required for IMQ-induced weight loss and cutaneous accumulation of CD4+ and Siglec H+, but not CD11b+ cells. Consistent with this phenotype and the function of slc15a4, induction of IFN-I was virtually absent systemically and via cutaneous gene expression. Induction of other inflammatory cytokines (cytokine storm) was modestly blunted in slc15a4feeble except for inflammasome-associated genes consistent with slc15a4 being required for TLR7-mediated (but not inflammasome-mediated) inflammation downstream of IMQ. Surprisingly, only IFN-I gene expression was suppressed within IMQ-treated skin. Other genes including conserved psoriasiform trademark gene expression were augmented in slc15a4feeble versus littermate controls. Taken together, we have identified a role for slc15a4 but not canonical psoriasiform genes in the imiquimod model of psoriasiform dermatitis.
Collapse
Affiliation(s)
- Alexis D Griffith
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Asifa K Zaidi
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Ashley Pietro
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Matthew Hadiono
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Jessica S Yang
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Rachel Davis
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA
| | - Daniel L Popkin
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA. .,Departments of Dermatology, Pathology, Molecular Biology and Microbiology, Case Western Reserve University Hospitals, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Song F, Yi Y, Li C, Hu Y, Wang J, Smith DE, Jiang H. Regulation and biological role of the peptide/histidine transporter SLC15A3 in Toll-like receptor-mediated inflammatory responses in macrophage. Cell Death Dis 2018; 9:770. [PMID: 29991810 PMCID: PMC6039463 DOI: 10.1038/s41419-018-0809-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
The peptide/histidine transporter SLC15A3 is responsible for transporting histidine, certain dipeptide and peptidomimetics from inside the lysosome to cytosol. Previous studies have indicated that SLC15A3 transcripts are mainly expressed in the lymphatic system, however, its regulation and biological role in innate immune responses and inflammatory diseases are as yet unknown. In this study, mouse peritoneal macrophages (PMs), mouse bone marrow-derived macrophages (BMDMs), the human acute monocytic leukemia cell line THP-1 and the human lung epithelial carcinoma cell line A549 were used to investigate the regulation and biological role of SLC15A3 in TLR-mediated inflammatory responses. Our results showed that SLC15A3 was upregulated by TLR2, TLR4, TLR7 and TLR9 ligands in macrophages at both the mRNA and protein levels via activation of NF-κB (nuclear factor-kappa-B), MAPK (mitogen-activated protein kinase) and IRF3 (interferon regulatory factor 3). Furthermore, knockdown or overexpression of SLC15A3 influenced the TLR4-triggered expression of proinflammatory cytokines. A reporter gene assay showed that the SLC15A3 promotor contained potential NF-κB binding sites, which were reasonable for regulating SLC15A3 by TLR-activation through NF-κB signaling. Additionally, SLC15A3 expression was increased and positively related to inflammation in mice with bacterial peritonitis. The collective findings suggest that SLC15A3 is regulated by various TLRs, and that it plays an important role in regulating TLR4-mediated inflammatory responses.
Collapse
Affiliation(s)
- Feifeng Song
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Cui Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Jinhai Wang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
18
|
Pollard KM, Escalante GM, Huang H, Haraldsson KM, Hultman P, Christy JM, Pawar RD, Mayeux JM, Gonzalez-Quintial R, Baccala R, Beutler B, Theofilopoulos AN, Kono DH. Induction of Systemic Autoimmunity by a Xenobiotic Requires Endosomal TLR Trafficking and Signaling from the Late Endosome and Endolysosome but Not Type I IFN. THE JOURNAL OF IMMUNOLOGY 2017; 199:3739-3747. [PMID: 29055005 DOI: 10.4049/jimmunol.1700332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Abstract
Type I IFN and nucleic acid-sensing TLRs are both strongly implicated in the pathogenesis of lupus, with most patients expressing IFN-induced genes in peripheral blood cells and with TLRs promoting type I IFNs and autoreactive B cells. About a third of systemic lupus erythematosus patients, however, lack the IFN signature, suggesting the possibility of type I IFN-independent mechanisms. In this study, we examined the role of type I IFN and TLR trafficking and signaling in xenobiotic systemic mercury-induced autoimmunity (HgIA). Strikingly, autoantibody production in HgIA was not dependent on the type I IFN receptor even in NZB mice that require type I IFN signaling for spontaneous disease, but was dependent on the endosomal TLR transporter UNC93B1 and the endosomal proton transporter, solute carrier family 15, member 4. HgIA also required the adaptor protein-3 complex, which transports TLRs from the early endosome to the late endolysosomal compartments. Examination of TLR signaling pathways implicated the canonical NF-κB pathway and the proinflammatory cytokine IL-6 in autoantibody production, but not IFN regulatory factor 7. These findings identify HgIA as a novel type I IFN-independent model of systemic autoimmunity and implicate TLR-mediated NF-κB proinflammatory signaling from the late endocytic pathway compartments in autoantibody generation.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| | - Gabriela M Escalante
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Hua Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Katarina M Haraldsson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Per Hultman
- Department of Experimental and Clinical Medicine, Linköping University, Linköping 58183, Sweden; and
| | - Joseph M Christy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Rahul D Pawar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Jessica M Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Roberto Baccala
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Dwight H Kono
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
19
|
Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, Zhou C, Fang Y, Liu J, Yang J, Chen X, Li T, Zang A, Yin S, Li B, Plumas J, Chaperot L, Zhang X, Xu G, Jiang L, Shen N, Xiong S, Gao X, Zhang Y, Xiao H. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med 2017; 214:1471-1491. [PMID: 28416650 PMCID: PMC5413332 DOI: 10.1084/jem.20161149] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Ma and colleagues identify CXXC5 as an epigenetic regulator required for maintaining the hypomethylation of a subset of CGIs, thereby promoting the expression of transcriptional factors such as IRF7 in pDCs to enable robust IFN response to viral infection. TLR7/9 signals are capable of mounting massive interferon (IFN) response in plasmacytoid dendritic cells (pDCs) immediately after viral infection, yet the involvement of epigenetic regulation in this process has not been documented. Here, we report that zinc finger CXXC family epigenetic regulator CXXC5 is highly expressed in pDCs, where it plays a crucial role in TLR7/9- and virus-induced IFN response. Notably, genetic ablation of CXXC5 resulted in aberrant methylation of the CpG-containing island (CGI) within the Irf7 gene and impaired IRF7 expression in steady-state pDCs. Mechanistically, CXXC5 is responsible for the recruitment of DNA demethylase Tet2 to maintain the hypomethylation of a subset of CGIs, a process coincident with active histone modifications and constitutive transcription of these CGI-containing genes. Consequently, CXXC5-deficient mice had compromised early IFN response and became highly vulnerable to infection by herpes simplex virus and vesicular stomatitis virus. Together, our results identify CXXC5 as a novel epigenetic regulator for pDC-mediated antiviral response.
Collapse
Affiliation(s)
- Shixin Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoling Wan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zihou Deng
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congfang Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenyuan Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Chun Zhou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiyuan Fang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Yang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aiping Zang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shigang Yin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Joel Plumas
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, CAS Excellence Center in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lubin Jiang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Sidong Xiong
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoming Gao
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Yan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
20
|
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proc Natl Acad Sci U S A 2016; 113:14775-14780. [PMID: 27930303 DOI: 10.1073/pnas.1611408114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) and monocytes develop from a series of bone-marrow-resident progenitors in which lineage potential is regulated by distinct transcription factors. Zeb2 is an E-box-binding protein associated with epithelial-mesenchymal transition and is widely expressed among hematopoietic lineages. Previously, we observed that Zeb2 expression is differentially regulated in progenitors committed to classical DC (cDC) subsets in vivo. Using systems for inducible gene deletion, we uncover a requirement for Zeb2 in the development of Ly-6Chi monocytes but not neutrophils, and we show a corresponding requirement for Zeb2 in expression of the M-CSF receptor in the bone marrow. In addition, we confirm a requirement for Zeb2 in development of plasmacytoid DCs but find that Zeb2 is not required for cDC2 development. Instead, Zeb2 may act to repress cDC1 progenitor specification in the context of inflammatory signals.
Collapse
|
21
|
Zhang M, Chen F, Zhang D, Zhai Z, Hao F. Association Study Between SLC15A4 Polymorphisms and Haplotypes and Systemic Lupus Erythematosus in a Han Chinese Population. Genet Test Mol Biomarkers 2016; 20:451-8. [PMID: 27362648 PMCID: PMC4991581 DOI: 10.1089/gtmb.2015.0289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective: The gene SLC15A4 (solute carrier family 15 [oligopeptide transporter], member 4) has been reported as contributing to the pathogenesis of systemic lupus erythematosus (SLE). We performed a case–control replication study to investigate further the association between single-nucleotide polymorphisms (SNPs) in the SLC15A4 gene and systemic SLE in a Han Chinese population. Methods: In Han Chinese SLE patients and healthy individuals (n = 355, 375, respectively), 18 SNPs in the SLC15A4 gene were genotyped using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and TaqMan SNP genotyping assays. Analyses of allele frequencies and genotypes using codominant, dominant, and recessive models were conducted, as well as a linkage disequilibrium analysis. P values < 0.05 were considered significant. Results: Allele frequencies of five of the analyzed SNPs were significantly associated with SLE. Under a codominant model the genotype frequencies of rs3765108 AG and rs7308691 AT were significantly higher in the SLE group than the control group (p = 0.019, 0.049, respectively). Under a dominant model the rs1385374 (TT+CT) SNP carried a higher risk of SLE than (CC) (p = 0.042). One SLC15A4 haplotype (TA), which consists of 2 SNPs (rs959989 and rs983492), was associated with SLE (p = 0.024). Conclusion: Our study determined that five SNPs (rs959989, rs1385374, rs983492, rs12298615, and rs10847697) are associated with SLE. Thus, SLC15A4 may be important in the pathogenesis of SLE in Han Chinese patients.
Collapse
Affiliation(s)
- Mingwang Zhang
- 1 Department of Dermatology, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Fangru Chen
- 2 Department of Dermatology, Affiliated Hospital of Guilin Medical College , Guilin, China
| | - Dongmei Zhang
- 1 Department of Dermatology, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Zhifang Zhai
- 1 Department of Dermatology, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Fei Hao
- 1 Department of Dermatology, Southwest Hospital, Third Military Medical University , Chongqing, China
| |
Collapse
|
22
|
Chen YG, Yuan K, Zhang ZZ, Yuan FH, Weng SP, Yue HT, He JG, Chen YH. Identification and functional characterization of a solute carrier family 15, member 4 gene in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:57-66. [PMID: 26691577 DOI: 10.1016/j.dci.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Innate immunity in shrimp is important in resisting bacterial infection. The NF-κB pathway is pivotal in such an immune response. This study cloned and functionally characterized the solute carrier family (SLC) 15 member A 4 (LvSLC15A4) gene in Litopenaeus vannamei. The open reading frame of LvSLC15A4 is 1, 902 bp long and encodes a putative 633-amino acid protein, which is localized in the plasma membrane and intracellular vesicular compartments. Results of the reporter gene assay showed that LvSLC15A4 upregulated NF-κB target genes, including the immediate-early gene 1 of white spot syndrome virus, as well as several antimicrobial peptide genes, such as pen4, CecA, AttA, and Mtk in S2 cells. Moreover, knocked-down expression of LvSLC15A4 reduced pen4 expression in L. vannamei. LvSLC15A4 down-regulation also increased the cumulative mortality of Vibrio parahemolyticus-infected L. vannamei. Furthermore, LvSLC15A4 expression was induced by unfolded protein response (UPR) in L. vannamei hematocytes. These results suggest that LvSLC15A4 participates in L. vannamei innate immunity via the NF-κB pathway and thus may be related to UPR.
Collapse
Affiliation(s)
- Yong-Gui Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Ze-Zhi Zhang
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Yue
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Hong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
23
|
Huang X, Li J, Dorta-Estremera S, Di Domizio J, Anthony SM, Watowich SS, Popkin D, Liu Z, Brohawn P, Yao Y, Schluns KS, Lanier LL, Cao W. Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-γ Production via the Generation of Reactive Oxygen Species. Cell Rep 2015; 12:1120-32. [PMID: 26257170 DOI: 10.1016/j.celrep.2015.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023] Open
Abstract
Here, we examine the mechanism by which plasmacytoid dendritic cells (pDCs) and type I interferons promote humoral autoimmunity. In an amyloid-induced experimental autoimmune model, neutrophil depletion enhanced anti-nuclear antibody development, which correlated with heightened IFN-γ production by natural killer (NK) cells. IFN-α/β produced by pDCs activated NK cells via IL-15 induction. Neutrophils released reactive oxygen species (ROS), which negatively modulated the levels of IL-15, thereby inhibiting IFN-γ production. Mice deficient in NADPH oxidase 2 produced increased amounts of IFN-γ and developed augmented titers of autoantibodies. Both the pDC-IFN-α/β pathway and IFN-γ were indispensable in stimulating humoral autoimmunity. Male NZB/W F1 mice expressed higher levels of superoxide than their female lupus-prone siblings, and depletion of neutrophils resulted in spontaneous NK cell and autoimmune B cell activation. Our findings suggest a regulatory role for neutrophils in vivo and highlight the importance of an NK-IFN-γ axis downstream of the pDC-IFN-α/β pathway in systemic autoimmunity.
Collapse
Affiliation(s)
- Xinfang Huang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jingjing Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie Dorta-Estremera
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jeremy Di Domizio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott M Anthony
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Daniel Popkin
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng Liu
- MedImmune, LLC, Gaithersburg, MD 20878, USA
| | | | - Yihong Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Kimberly S Schluns
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique DC subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases that are characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. In this Review, we summarize recent progress in the field of pDC biology, focusing on the molecular mechanisms that regulate the development and functions of pDCs, the pathways involved in their sensing of pathogens and endogenous nucleic acids, their functions at mucosal sites, and their roles in infection, autoimmunity and cancer.
Collapse
|
25
|
Cocita C, Guiton R, Bessou G, Chasson L, Boyron M, Crozat K, Dalod M. Natural Killer Cell Sensing of Infected Cells Compensates for MyD88 Deficiency but Not IFN-I Activity in Resistance to Mouse Cytomegalovirus. PLoS Pathog 2015; 11:e1004897. [PMID: 25954804 PMCID: PMC4425567 DOI: 10.1371/journal.ppat.1004897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses increases susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 is dispensable for antiviral immunity. Hence, a higher redundancy has been proposed in the mechanisms promoting protective immune responses against systemic infections by herpes viruses during natural infections in humans. It has been assumed, but not proven, that mice fail to mount protective MyD88-independent IFN-I responses. In humans, the mechanism that compensates MyD88 deficiency has not been elucidated. To address these issues, we compared resistance to MCMV infection and immune responses between mouse strains deficient for MyD88, the IFN-I receptor and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 or TLR9 drastically decreased production of IFN-I, but not the protective antiviral responses. Moreover, MyD88, but not IFN-I receptor, deficiency could largely be compensated by Ly49H-mediated antiviral NK cell responses. Thus, contrary to the current dogma but consistent with the situation in humans, we conclude that, in mice, in our experimental settings, MyD88 is redundant for IFN-I responses and overall defense against a systemic herpes virus infection. Moreover, we identified direct NK cell sensing of infected cells as one mechanism able to compensate for MyD88 deficiency in mice. Similar mechanisms likely contribute to protect MyD88- or IRAK4-deficient patients from viral infections. Type I interferons (IFN-I) are innate cytokines crucial for vertebrate antiviral defenses. IFN-I exert antiviral effector functions and orchestrate antiviral immunity. IFN-I are induced early after infection, upon sensing of viral particles or infected cells by immune receptors. Intracellular Toll-like receptors (TLR) are selectively expressed in specialized immune cell types such as plasmacytoid dendritic cells (pDC), enabling them to copiously produce IFN-I upon detection of engulfed viral nucleic acids. pDC or intracellular TLR have been reported to be crucial for resistance to experimental infections with many viruses in mice but dispensable for resistance to natural infections in humans. Our aim was to investigate this puzzling difference. Mice deficient for TLR activity mounted strong IFN-I responses despite producing very low IFN-I levels and controlled the infection by a moderate dose of murine cytomegalovirus much better than mice deficient for IFN-I responses. Deficient TLR responses could be compensated by direct recognition of infected cells by natural killer cells. Hence, we identified experimental conditions in mice mimicking the lack of requirement of TLR functions for antiviral defense observed in humans. We used these experimental models to advance our basic understanding of antiviral immunity in a way that might help improve treatments for patients.
Collapse
MESH Headings
- Animals
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Gene Expression Profiling
- Gene Expression Regulation
- Herpesviridae Infections/blood
- Herpesviridae Infections/immunology
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/virology
- Host-Pathogen Interactions
- Immunity, Innate
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/metabolism
- Immunologic Deficiency Syndromes/virology
- Interferon Type I/blood
- Interferon Type I/metabolism
- Interleukin-12/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Mutant Strains
- Muromegalovirus/immunology
- Muromegalovirus/physiology
- Myeloid Differentiation Factor 88/deficiency
- Myeloid Differentiation Factor 88/genetics
- Myeloid Differentiation Factor 88/metabolism
- NK Cell Lectin-Like Receptor Subfamily A/deficiency
- NK Cell Lectin-Like Receptor Subfamily A/genetics
- NK Cell Lectin-Like Receptor Subfamily A/metabolism
- Primary Immunodeficiency Diseases
- Receptor, Interferon alpha-beta/agonists
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- Specific Pathogen-Free Organisms
- Spleen/immunology
- Spleen/metabolism
- Spleen/virology
- Toll-Like Receptor 9/deficiency
- Toll-Like Receptor 9/genetics
- Toll-Like Receptor 9/metabolism
Collapse
Affiliation(s)
- Clément Cocita
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Rachel Guiton
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Gilles Bessou
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Lionel Chasson
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Marilyn Boyron
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Karine Crozat
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Marc Dalod
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail:
| |
Collapse
|
26
|
Constitutive but not inducible attenuation of transforming growth factor β signaling increases natural killer cell responses without directly affecting dendritic cells early after persistent viral infection. J Virol 2015; 89:3343-55. [PMID: 25589641 DOI: 10.1128/jvi.03076-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Rapid innate responses to viral encounters are crucial to shaping the outcome of infection, from viral clearance to persistence. Transforming growth factor β (TGF-β) is a potent immune suppressor that is upregulated early upon viral infection and maintained during chronic infections in both mice and humans. However, the role of TGF-β signaling in regulating individual cell types in vivo is still unclear. Using infections with two different persistent viruses, murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV; Cl13), in their natural rodent host, we observed that TGF-β signaling on dendritic cells (DCs) did not dampen DC maturation or cytokine production in the early stages of chronic infection with either virus in vivo. In contrast, TGF-β signaling prior to (but not during) chronic viral infection directly restricted the natural killer (NK) cell number and effector function. This restriction likely compromised both the early control of and host survival upon MCMV infection but not the long-term control of LCMV infection. These data highlight the context and timing of TGF-β signaling on different innate cells that contribute to the early host response, which ultimately influences the outcome of chronic viral infection in vivo. IMPORTANCE In vivo host responses to pathogens are complex processes involving the cooperation of many different immune cells migrating to specific tissues over time, but these events cannot be replicated in vitro. Viruses causing chronic infections are able to subvert this immune response and represent a human health burden. Here we used two well-characterized viruses that are able to persist in their natural mouse host to dissect the role of the suppressive molecule TGF-β in dampening host responses to infection in vivo. This report presents information that allows an increased understanding of long-studied TGF-β signaling by examining its direct effect on different immune cells that are activated very early after in vivo viral infection and may aid with the development of new antiviral therapeutic strategies.
Collapse
|
27
|
Sullivan BM, Teijaro JR, de la Torre JC, Oldstone MBA. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog 2015; 11:e1004588. [PMID: 25569216 PMCID: PMC4287607 DOI: 10.1371/journal.ppat.1004588] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/24/2014] [Indexed: 01/12/2023] Open
Abstract
Many persistent viral infections are characterized by a hypofunctional T cell response and the upregulation of negative immune regulators. These events occur days after the initiation of infection. However, the very early host-virus interactions that determine the establishment of viral persistence remain poorly uncharacterized. Here we show that to establish persistence, LCMV must counteract an innate anti-viral immune response within eight hours after infection. While the virus triggers cytoplasmic RNA sensing pathways soon after infection, LCMV counteracts this pathway through a rapid increase in viral titers leading to a dysfunctional immune response characterized by a high cytokine and chemokine expression profile. This altered immune environment allows for viral replication in the splenic white pulp as well as infection of immune cells essential to an effective anti-viral immune response. Our findings illustrate how early events during infection critically dictate the characteristics of the immune response to infection and facilitate either virus control and clearance or persistence. Lymphocytic Choriomenengitis Virus (LCMV) is an important model for the investigation of the pathogenesis of persistent viral infections. As with humans infected with hepatitis C and Human Immunodeficiency Virus-1, adult mice persistently infected with immunosuppressive strains of LCMV express high levels of negative immune regulators that suppress the adaptive T cell immune response thereby facilitating viral persistence. Unknown, however, is whether and how very early interactions between the virus and the infected host affect the establishment of a persistent infection. Here, we describe host-virus interactions within the first 8–12 hours of infection are critical for establishing a persistent infection. While early induction of an anti-viral type-I interferons is essential for the subsequent adaptive immune response required to clear the virus, LCMV is able to overcome the programmed innate immune response by over-stimulating this response early. This affects not only the rate of viral growth in the host, but also the ability to infect specific immune cells that help shape an effective adaptive immune response. We further describe how and where LCMV is sensed by this early immune response, identify the critical timing of early virus-host interactions that lead to a persistent infection, and identify an early dysregulated immune signature associated with a persistent viral infection. Altogether, these observations are critical to understanding how early virus-host interactions determines the course of infection.
Collapse
Affiliation(s)
- Brian M. Sullivan
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| | - John R. Teijaro
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan Carlos de la Torre
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. A. Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
28
|
Slc15a4 function is required for intact class switch recombination to IgG2c in response to TLR9 stimulation. Immunol Cell Biol 2014; 93:136-46. [PMID: 25310967 DOI: 10.1038/icb.2014.82] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 08/30/2014] [Accepted: 08/31/2014] [Indexed: 12/24/2022]
Abstract
Signalling through Toll-like receptors (TLRs) by endogenous components of viruses or bacteria can promote antibody (Ab) isotype switching to IgG2a/c. Multiple cell types are capable of responding to TLR stimulation in vivo and the processes underlying TLR-induced Ab isotype switching are not fully defined. Here, we used feeble mice, which are deficient in the peptide/histidine transporter solute carrier family 15 member 4 (Slc15a4), and fail to produce cytokines including interferon alpha (IFNα) in response to TLR9 stimulation, to study Ab isotype switching to IgG2c in response to vaccination. We demonstrate that the production of IgG2c in response to CpGA-adjuvanted vaccines was severely reduced in feeble mice, while a more subtle defect was observed for CpGB. The reduced IgG2c production in feeble could not be ascribed to defective plasmacytoid dendritic cell (pDC) responses alone as we found that splenic cDCs and B cells from feeble mice were also defective in response to TLR9 ligation ex vivo. We conclude that Slc15a4 is required for intact function of TLR9-expressing cells and for effective Ab isotype switching to IgG2c in response to CpG-adjuvanted vaccines.
Collapse
|
29
|
Abstract
Plasmacytoid dendritic cells (pDCs) were initially identified as the prominent natural type I interferon-producing cells during viral infection. Over the past decade, the aberrant production of interferon α/β by pDCs in response to self-derived molecular entities has been critically implicated in the pathogenesis of systemic lupus erythematosus and recognized as a general feature underlying other autoimmune diseases. On top of imperative studies on human pDCs, the functional involvement and mechanism by which the pDC-interferon α/β pathway facilitates the progression of autoimmunity have been unraveled recently from investigations with several experimental lupus models. This article reviews correlating information obtained from human in vitro characterization and murine in vivo studies and highlights the fundamental and multifaceted contribution of pDCs to the pathogenesis of systemic autoimmune manifestation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Ng CT, Snell LM, Brooks DG, Oldstone MBA. Networking at the level of host immunity: immune cell interactions during persistent viral infections. Cell Host Microbe 2013; 13:652-64. [PMID: 23768490 DOI: 10.1016/j.chom.2013.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Persistent viral infections are the result of a series of connected events that culminate in diminished immunity and the inability to eliminate infection. By building our understanding of how distinct components of the immune system function both individually and collectively in productive versus abortive responses, new potential therapeutic targets can be developed to overcome immune dysfunction and thus fight persistent infections. Using lymphocytic choriomeningitis virus (LCMV) as a model of a persistent virus infection and drawing parallels to persistent human viral infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV), we describe the cellular relationships and interactions that determine the outcome of initial infection and highlight immune targets for therapeutic intervention to prevent or treat persistent infections. Ultimately, these findings will further our understanding of the immunologic basis of persistent viral infection and likely lead to strategies to treat human viral infections.
Collapse
Affiliation(s)
- Cherie T Ng
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
31
|
Kobayashi T, Tanaka T, Toyama-Sorimachi N. How do cells optimize luminal environments of endosomes/lysosomes for efficient inflammatory responses? J Biochem 2013; 154:491-9. [DOI: 10.1093/jb/mvt099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
32
|
Swiecki M, Wang Y, Gilfillan S, Colonna M. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog 2013; 9:e1003728. [PMID: 24204273 PMCID: PMC3812046 DOI: 10.1371/journal.ppat.1003728] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) produce type I interferons (IFN-I) and proinflammatory cytokines in response to viruses; however, their contribution to antiviral immunity in vivo is unclear. In this study, we investigated the impact of pDC depletion on local and systemic antiviral responses to herpes simplex virus (HSV) infections using CLEC4C-DTR transgenic mice. We found that pDC do not appear to influence viral burden or survival after vaginal HSV-2 infection, nor do they seem to contribute to virus-specific CD8 T cell responses following subcutaneous HSV-1 infection. In contrast, pDC were important for early IFN-I production, proinflammatory cytokine production, NK cell activation and CD8 T cell responses during systemic HSV-2 and HSV-1 infections. Our data also indicate that unlike pDC, TLR3-expressing cells are important for promoting antiviral responses to HSV-1 regardless of the route of virus administration. Herpes simplex viruses (HSV) cause a variety of diseases in human from the common cold sore to more severe illnesses such as pneumonia, herpes simplex keratitis, genital herpes and encephalitis. HSV are large double-stranded DNA viruses that infect epithelial or epidermal cells before establishing a latent infection in sensory neurons. Both innate and adaptive immune responses are necessary for limiting viral replication and maintaining latency. Viral detection through distinct pathogen recognition pathways triggers several signaling cascades that lead to the production of proinflammatory cytokines and type I interferons, which establish inflammation, confer an antiviral state and promote immune responses. Our study provides new insights into the cell types and pathogen recognition pathways involved in antiviral defense to HSV at local and systemic barriers and thus, might facilitate the development of novel strategies to treat HSV infections.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | | | | | | |
Collapse
|