1
|
Garg R, David MS, Yang S, Culotta VC. Metals at the Host-Fungal Pathogen Battleground. Annu Rev Microbiol 2024; 78:23-38. [PMID: 38781605 DOI: 10.1146/annurev-micro-041222-023745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.
Collapse
Affiliation(s)
- Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
2
|
Xiong L, Goerlich K, Do E, Mitchell AP. Strain variation in the Candida albicans iron limitation response. mSphere 2024; 9:e0037224. [PMID: 38980069 PMCID: PMC11288005 DOI: 10.1128/msphere.00372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
Iron acquisition is critical for pathogens to proliferate during invasive infection, and the human fungal pathogen Candida albicans is no exception. The iron regulatory network, established in reference strain SC5314 and derivatives, includes the central player Sef1, a transcription factor that activates iron acquisition genes in response to iron limitation. Here, we explored potential variation in this network among five diverse C. albicans strains through mutant analysis, Nanostring gene expression profiling, and, for two strains, RNA-Seq. Our findings highlight four features that may inform future studies of natural variation and iron acquisition in this species. (i) Conformity: In all strains, major iron acquisition genes are upregulated during iron limitation, and a sef1Δ/Δ mutation impairs that response and growth during iron limitation. (ii) Response variation: Some aspects of the iron limitation response vary among strains, notably the activation of hypha-associated genes. As this gene set is tied to tissue damage and virulence, variation may impact the progression of infection. (iii) Genotype-phenotype variation: The impact of a sef1Δ/Δ mutation on cell wall integrity varies, and for the two strains examined the phenotype correlated with sef1Δ/Δ impact on several cell wall integrity genes. (iv) Phenotype discovery: DNA repair genes were induced modestly by iron limitation in sef1Δ/Δ mutants, with fold changes we would usually ignore. However, the response occurred in both strains tested and was reminiscent of a much stronger response described in Cryptococcus neoformans, a suggestion that it may have biological meaning. In fact, we observed that the iron limitation of a sef1Δ/Δ mutant caused recessive phenotypes to emerge at two heterozygous loci. Overall, our results show that a network that is critical for pathogen proliferation presents variation outside of its core functions.IMPORTANCEA key virulence factor of Candida albicans is the ability to maintain iron homeostasis in the host where iron is scarce. We focused on a central iron regulator, SEF1. We found that iron regulator Sef1 is required for growth, cell wall integrity, and genome integrity during iron limitation. The novel aspect of this work is the characterization of strain variation in a circuit that is required for survival in the host and the connection of iron acquisition to genome integrity in C. albicans.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
4
|
Ni Q, Wu X, Su T, Jiang C, Dong D, Wang D, Chen W, Cui Y, Peng Y. The regulatory subunits of CK2 complex mediate DNA damage response and virulence in Candida Glabrata. BMC Microbiol 2023; 23:317. [PMID: 37891489 PMCID: PMC10612253 DOI: 10.1186/s12866-023-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Candida glabrata which belongs to normal microbiota, has caused significant concern worldwide due to its high prevalence and drug resistance in recent years. C. glabrata has developed many strategies to evade the clearance of the host immune system, thereby causing persistent infection. Although coping with the induced DNA damage is widely acknowledged to be important, the underlying mechanisms remain unclear. RESULTS The present study provides hitherto undocumented evidence of the importance of the regulatory subunits of CgCK2 (CgCkb1 and CgCkb2) in response to DNA damage. Deletion of CgCKB1 or CgCKB2 enhanced cellular apoptosis and DNA breaks and led to cell cycle delay. In addition, deficiencies in survival upon phagocytosis were observed in Δckb1 and Δckb2 strains. Consistently, disruption of CgCKB1 and CgCKB2 attenuated the virulence of C. glabrata in mouse models of invasive candidiasis. Furthermore, global transcriptional profiling analysis revealed that CgCkb1 and CgCkb2 participate in cell cycle resumption and genomic stability. CONCLUSIONS Overall, our findings suggest that the response to DNA damage stress is crucial for C. glabrata to survive in macrophages, leading to full virulence in vivo. The significance of this work lies in providing a better understanding of pathogenicity in C. glabrata-related candidiasis and expanding ideas for clinical therapies.
Collapse
Affiliation(s)
- Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032, China
| | - Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Sibirny AA. Metabolic engineering of non-conventional yeasts for construction of the advanced producers of biofuels and high-value chemicals. BBA ADVANCES 2022; 3:100071. [PMID: 37082251 PMCID: PMC10074886 DOI: 10.1016/j.bbadva.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-conventional yeasts, i.e. yeasts different from Saccharomyces cerevisiae, represent heterogenous group of unicellular fungi consisting of near 1500 species. Some of these species have interesting and sometimes unique properties like ability to grow on methanol, n-alkanes, ferment pentose sugars xylose and l-arabinose, grow at high temperatures (50°С and more), overproduce riboflavin (vitamin B2) and others. These unique properties are important for development of basic science; moreover, some of them possess also significant applied interest for elaboration of new biotechnologies. Current paper represents review of the recent own results and of those of other authors in the field of non-conventional yeast study for construction of the advanced producers of biofuels (ethanol, isobutanol) from lignocellulosic sugars glucose and xylose or crude glycerol (Ogataea polymorpha, Magnusiomyces magnusii) and vitamin B2 (riboflavin) from glucose and cheese whey (Candida famata).
Collapse
Affiliation(s)
- Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine
- University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601 Poland
- Corresponding author at: Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine.
| |
Collapse
|
6
|
Jiang Y, Zhuge B, Qin Y, Zong H, Lu X. Candida glycerinogenes Strains Overexpressing Transcription Factors have Improved Furfural Tolerance in Ethanol Production from Non-detoxified Cellulose Hydrolysate. Curr Microbiol 2022; 79:196. [PMID: 35595863 DOI: 10.1007/s00284-022-02893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Cellulose is one of the main raw materials for production of green ethanol, but the presence of the growth inhibitor furfural in non-detoxified lignocellulosic hydrolysates often seriously affects their utilization. In a previous study, we obtained strains of Candida glycerinogenes that were tolerant to furfural, but at concentrations above 2.5 g L-1 there was a significant increase in the growth lag phase. In this work, transcription factor genes (SEF1, STB5, CAS5, and ETP1) associated with furfural tolerance were identified and employed to obtain modified strains permitting ethanol fermentation of concentrated and non-detoxified cellulose hydrolysates containing more than 2.5 g L-1 furfural. Tolerance to furfural could be increased to 4.5 g L-1 by overexpression of either STB5 or ETP1, which have different regulation patterns. Moreover, in non-detoxified and concentrated cellulose hydrolysate, overexpression of ETP1 significantly shortened the growth lag phase and ethanol fermentation time was reduced by 17-20%. In batch fermentations fed with concentrated non-detoxified lignocellulose hydrolysate, ethanol productivity and maximum ethanol concentration reached 2.4 g L-1 h-1 and 72.5 g L-1, increases of 26.1% and 6.6%, respectively. The results provided a route for the economic use of lignocellulose for chemical production.
Collapse
Affiliation(s)
- Yudi Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Yuyao Qin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Palma M, Mondo S, Pereira M, Vieira É, Grigoriev IV, Sá-Correia I. Genome Sequence and Analysis of the Flavinogenic Yeast Candida membranifaciens IST 626. J Fungi (Basel) 2022; 8:jof8030254. [PMID: 35330255 PMCID: PMC8955749 DOI: 10.3390/jof8030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
The ascomycetous yeast Candida membranifaciens has been isolated from diverse habitats, including humans, insects, and environmental sources, exhibiting a remarkable ability to use different carbon sources that include pentoses, melibiose, and inulin. In this study, we isolated four C. membranifaciens strains from soil and investigated their potential to overproduce riboflavin. C. membranifaciens IST 626 was found to produce the highest concentrations of riboflavin. The volumetric production of this vitamin was higher when C. membranifaciens IST 626 cells were cultured in a commercial medium without iron and when xylose was the available carbon source compared to the same basal medium with glucose. Supplementation of the growth medium with 2 g/L glycine favored the metabolization of xylose, leading to biomass increase and consequent enhancement of riboflavin volumetric production that reached 120 mg/L after 216 h of cultivation. To gain new insights into the molecular basis of riboflavin production and carbon source utilization in this species, the first annotated genome sequence of C. membranifaciens is reported in this article, as well as the result of a comparative genomic analysis with other relevant yeast species. A total of 5619 genes were predicted to be present in C. membranifaciens IST 626 genome sequence (11.5 Mbp). Among them are genes involved in riboflavin biosynthesis, iron homeostasis, and sugar uptake and metabolism. This work put forward C. membranifaciens IST 626 as a riboflavin overproducer and provides valuable molecular data for future development of superior producing strains capable of using the wide range of carbon sources, which is a characteristic trait of the species.
Collapse
Affiliation(s)
- Margarida Palma
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.P.); (É.V.); (I.S.-C.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| | - Stephen Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.M.); (I.V.G.)
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mariana Pereira
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.P.); (É.V.); (I.S.-C.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Érica Vieira
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.P.); (É.V.); (I.S.-C.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.M.); (I.V.G.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.P.); (É.V.); (I.S.-C.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Ottilie S, Luth MR, Hellemann E, Goldgof GM, Vigil E, Kumar P, Cheung AL, Song M, Godinez-Macias KP, Carolino K, Yang J, Lopez G, Abraham M, Tarsio M, LeBlanc E, Whitesell L, Schenken J, Gunawan F, Patel R, Smith J, Love MS, Williams RM, McNamara CW, Gerwick WH, Ideker T, Suzuki Y, Wirth DF, Lukens AK, Kane PM, Cowen LE, Durrant JD, Winzeler EA. Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Commun Biol 2022; 5:128. [PMID: 35149760 PMCID: PMC8837787 DOI: 10.1038/s42003-022-03076-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10−100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency. Ottilie et al. employ an experimental evolution approach to investigate the role of transcription factors in yeast chemical resistance. Most emergent mutations in resistant strains were enriched in transcription factor coding genes, highlighting their importance in drug resistance.
Collapse
Affiliation(s)
- Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Eddy Vigil
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Prianka Kumar
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea L Cheung
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Miranda Song
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Jennifer Yang
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Gisel Lopez
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Emmanuelle LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jake Schenken
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Felicia Gunawan
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Reysha Patel
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Joshua Smith
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Melissa S Love
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - Roy M Williams
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.,Aspen Neuroscience, San Diego, CA, 92121, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA, 92037, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Amanda K Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Abstract
Candida albicans filamentation, the ability to convert from oval yeast cells to elongated hyphal cells, is a key factor in its pathogenesis. Previous work has shown that the integral membrane protein Dfi1 is required for filamentation in cells grown in contact with a semisolid surface. Investigations into the downstream targets of the Dfi1 pathway revealed potential links to two transcription factors, Sef1 and Czf1. Sef1 regulates iron uptake and iron utilization genes under low-iron conditions, leading us to hypothesize that there exists a link between iron availability and contact-dependent invasive filamentation. In this study, we showed that Sef1 was not required for contact-dependent filamentation, but it was required for wild-type (WT) expression levels of a number of genes during growth under contact conditions. Czf1 is required for contact-dependent filamentation and for WT levels of expression of several genes. Constitutive expression and activation of either Sef1 or Czf1 individually in a dfi1 null strain resulted in a complete rescue of the dfi1 null filamentation defect. Because Sef1 is normally activated in low-iron environments, we embedded WT and dfi1 null cells in iron-free agar medium supplemented with various concentrations of ferrous ammonium sulfate (FAS). dfi1 null cells embedded in media with a low concentration of iron (20 μM FAS) showed increased filamentation in comparison to mutant cells embedded in higher concentrations of iron (50 to 500 μM). WT cells produced filamentous colonies in all concentrations. Together, the data indicate that Dfi1, Czf1, Sef1, and environmental iron regulate C. albicans contact-dependent filamentation. IMPORTANCECandida albicans is an opportunistic pathogen responsible for a larger proportion of candidiasis and candidemia cases than any other Candida species. The ability of C. albicans cells to invade and cause disease is linked to their ability to filament. Despite this, there are gaps in our knowledge of the environmental cues and intracellular signaling that triggers the switch from commensal organism to filamentous pathogen. In this study, we identified a link between contact-dependent filamentation and iron availability. Over the course of tissue invasion, C. albicans cells encounter a number of different iron microenvironments, from the iron-rich gut to iron-poor tissues. Increased expression of Sef1-dependent iron uptake genes as a result of contact-dependent signaling will promote the adaptation of C. albicans cells to a low-iron-availability environment.
Collapse
|
10
|
Ramírez-Zavala B, Krüger I, Dunker C, Jacobsen ID, Morschhäuser J. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. PLoS Pathog 2022; 18:e1010283. [PMID: 35108336 PMCID: PMC8846550 DOI: 10.1371/journal.ppat.1010283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christine Dunker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
12
|
Wang Y, Zhou J, Zou Y, Chen X, Liu L, Qi W, Huang X, Chen C, Liu NN. Fungal commensalism modulated by a dual-action phosphate transceptor. Cell Rep 2022; 38:110293. [PMID: 35081357 DOI: 10.1016/j.celrep.2021.110293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/01/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Successful host colonization by fungi in fluctuating niches requires response and adaptation to multiple environmental stresses. However, our understanding about how fungal species thrive in the gastrointestinal (GI) ecosystem by combing multifaceted nutritional stress with respect to homeostatic host-commensal interactions is still in its infancy. Here, we discover that depletion of the phosphate transceptor Pho84 across multiple fungal species encountered a substantial cost in gastrointestinal colonization. Mechanistically, Pho84 enhances the gastrointestinal commensalism via a dual-action activity, coordinating both phosphate uptake and TOR activation by induction of the transcriptional regulator Try4 and downstream commensalism-related transcription. As such, Pho84 promotes Candida albicans commensalism, but this does not translate into enhanced pathogenicity. Thus, our study uncovers a specific nutrient-dependent dual-action regulatory pathway for Pho84 on fungal commensalism.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zou
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China
| | - Xiaoqing Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Xinhua Huang
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The Nanjing Unicorn Academy of Innovation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Hollomon JM, Liu Z, Rusin SF, Jenkins NP, Smith AK, Koeppen K, Kettenbach AN, Myers LC, Hogan DA. The Candida albicans Cdk8-dependent phosphoproteome reveals repression of hyphal growth through a Flo8-dependent pathway. PLoS Genet 2022; 18:e1009622. [PMID: 34982775 PMCID: PMC8769334 DOI: 10.1371/journal.pgen.1009622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/19/2022] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities. In Candida albicans, Ssn3 kinase activity co-regulates the transcription of numerous genes involved in hyphal growth, metabolism and nutrient acquisition, immune cell interactions, and drug resistance. Using a strain in which Ssn3 could be rapidly and selectively inhibited, we identified both known and novel Ssn3 targets. We identified two phosphosites in Flo8, a regulator of morphology and virulence, that were shown to negatively regulate Flo8 levels and activity. The data and tools presented here will enable a better understanding of how Ssn3 impacts transcriptional and post-transcriptional regulation in order to coordinate processes during physiological and morphological transitions as well as during steady state growth.
Collapse
Affiliation(s)
- Jeffrey M. Hollomon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zhongle Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott F. Rusin
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Nicole P. Jenkins
- Norris Cotton Cancer Center, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Allia K. Smith
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Lawrence C. Myers
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail: (LCM); (DAH)
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail: (LCM); (DAH)
| |
Collapse
|
14
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
15
|
CO 2 enhances the formation, nutrient scavenging and drug resistance properties of C. albicans biofilms. NPJ Biofilms Microbiomes 2021; 7:67. [PMID: 34385462 PMCID: PMC8361082 DOI: 10.1038/s41522-021-00238-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
C. albicans is the predominant human fungal pathogen and frequently colonises medical devices, such as voice prostheses, as a biofilm. It is a dimorphic yeast that can switch between yeast and hyphal forms in response to environmental cues, a property that is essential during biofilm establishment and maturation. One such cue is the elevation of CO2 levels, as observed in exhaled breath for example. However, despite the clear medical relevance, the effect of CO2 on C. albicans biofilm growth has not been investigated to date. Here we show that physiologically relevant CO2 elevation enhances each stage of the C. albicans biofilm-forming process: from attachment through maturation to dispersion. The effects of CO2 are mediated via the Ras/cAMP/PKA signalling pathway and the central biofilm regulators Efg1, Brg1, Bcr1 and Ndt80. Biofilms grown under elevated CO2 conditions also exhibit increased azole resistance, increased Sef1-dependent iron scavenging and enhanced glucose uptake to support their rapid growth. These findings suggest that C. albicans has evolved to utilise the CO2 signal to promote biofilm formation within the host. We investigate the possibility of targeting CO2-activated processes and propose 2-deoxyglucose as a drug that may be repurposed to prevent C. albicans biofilm formation on medical airway management implants. We thus characterise the mechanisms by which CO2 promotes C. albicans biofilm formation and suggest new approaches for future preventative strategies.
Collapse
|
16
|
Candida albicans requires iron to sustain hyphal growth. Biochem Biophys Res Commun 2021; 561:106-112. [PMID: 34022710 DOI: 10.1016/j.bbrc.2021.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. The ability to switch between yeast and hyphal growth forms is critical for its pathogenesis. Hyphal development in C. albicans requires two temporally linked regulations for initiation and maintenance. Here, we performed transcriptome sequencing (RNA-Seq) to analyze the transcriptional consequences for the two different phases of hyphal development. Genome-wide transcription profiling reveals that the sets associated with hyphal initiation were significantly enriched in genes for hyphal cell wall, biofilm matrix and actin polarization. In addition to hypha-specific genes, numerous genes involved in iron acquisition, such as FTR1 and SEF1, are highly induced specifically during sustained hyphal development even when additional free iron is supplied in the medium. Therefore, iron uptake genes are induced by signals that can support prolonged hyphal development in an iron-independent manner. The induction of iron acquisition genes during hyphal elongation was further confirmed by quantitative reverse transcription-PCR under various hypha-inducing conditions. Remarkably, preventing C. albicans from acquiring iron blocks BRG1 activation, leading to impaired hyphal maintenance, and ectopically expressed BRG1 can sustain hyphal development bypassing the requirement of iron. Our study elucidates an underlying mechanism of how multiple virulence factors are interconnected and are induced simultaneously during infection.
Collapse
|
17
|
Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis. J Biol Chem 2021; 297:100727. [PMID: 33933457 PMCID: PMC8217685 DOI: 10.1016/j.jbc.2021.100727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
The human fungal pathogen Candida albicans responds to iron deprivation by a global transcriptome reconfiguration known to be controlled by the transcriptional regulators Hap43 (also known as Cap2), Sef1, and the trimeric Hap2-Hap3-Hap5 complex. However, the relative roles of these regulators are not known. To dissect this system, we focused on the FRP1 and ACO1 genes, which are induced and repressed, respectively, under iron deprivation conditions. Chromatin immunoprecipitation assays showed that the trimeric HAP complex and Sef1 are recruited to both FRP1 and ACO1 promoters. While the HAP complex occupancy at the FRP1 promoter was Sef1-dependent, occupancy of Sef1 was not dependent on the HAP complex. Furthermore, iron deprivation elicited histone H3-Lys9 hyperacetylation and Pol II recruitment mediated by the trimeric HAP complex and Sef1 at the FRP1 promoter. In contrast, at the ACO1 promoter, the HAP trimeric complex and Hap43 promoted histone deacetylation and also limited Pol II recruitment under iron deprivation conditions. Mutational analysis showed that the SAGA subunits Gcn5, Spt7, and Spt20 are required for C. albicans growth in iron-deficient medium and for H3-K9 acetylation and transcription from the FRP1 promoter. Thus, the trimeric HAP complex promotes FRP1 transcription by stimulating H3K9Ac and Pol II recruitment and, along with Hap43, functions as a repressor of ACO1 by maintaining a deacetylated promoter under iron-deficient conditions. Thus, a regulatory network involving iron-responsive transcriptional regulators and the SAGA histone modifying complex functions as a molecular switch to fine-tune tight control of iron homeostasis gene expression in C. albicans.
Collapse
|
18
|
Rai LS, Wijlick LV, Bougnoux ME, Bachellier-Bassi S, d'Enfert C. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans. Yeast 2021; 38:243-250. [PMID: 33533498 DOI: 10.1002/yea.3550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
The yeast Candida albicans is primarily a commensal of humans that colonizes the mucosal surfaces of the gastrointestinal and genital tracts. Yet, C. albicans can under certain circumstances undergo a shift from commensalism to pathogenicity. This transition is governed by fungal factors such as morphological transitions, environmental cues for instance relationships with gut microbiota and the host immune system. C. albicans utilizes distinct sets of regulatory programs to colonize or infect its host and to evade the host defense systems. Moreover, an orchestrated iron acquisition mechanism operates to adapt to specific niches with variable iron availability. Studies on regulatory networks and morphogenesis of these two distinct modes of C. albicans growth, suggest that both yeast and hyphal forms exist in both growth patterns and the regulatory circuits are inter-connected. Here, we summarize current knowledge about C. albicans commensal-to-pathogen shift, its regulatory elements and their contribution to human disease.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Lasse Van Wijlick
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | | | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| |
Collapse
|
19
|
Sircaik S, Román E, Bapat P, Lee KK, Andes DR, Gow NAR, Nobile CJ, Pla J, Panwar SL. The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress. Cell Microbiol 2021; 23:e13307. [PMID: 33403715 PMCID: PMC8044019 DOI: 10.1111/cmi.13307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER‐resident protein, inositol‐requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1‐mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence‐related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin‐induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1‐mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.
Collapse
Affiliation(s)
- Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - Keunsook K Lee
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Sneh Lata Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Petrovska Y, Lyzak O, Dmytruk K, Sibirny A. Effect of Gene SFU1 on Riboflavin Synthesis in Flavinogenic Yeast Candida famata. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720050060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Andreieva Y, Lyzak O, Liu W, Kang Y, Dmytruk K, Sibirny A. SEF1 and VMA1 Genes Regulate Riboflavin Biosynthesis in the Flavinogenic Yeast Candida Famata. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720050023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
23
|
Molecular Elucidation of Riboflavin Production and Regulation in Candida albicans, toward a Novel Antifungal Drug Target. mSphere 2020; 5:5/4/e00714-20. [PMID: 32759338 PMCID: PMC7407072 DOI: 10.1128/msphere.00714-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is an important fungal pathogen causing common superficial infections as well as invasive diseases with an extremely high morbidity and mortality. Antifungal therapies are limited in efficiency and availability. In this research, we describe the regulation of riboflavin production in C. albicans. Since riboflavin biosynthesis is essential to this organism, we can appreciate that targeting it would be a promising new strategy to combat these fungal infections. We provide evidence that one particular enzyme in the production process, CaRib1, would be most promising as an antifungal drug target, as it plays a central role in regulation and proves to be essential in a mouse model of systemic infection. Candida albicans is a major cause of fungal infections, both superficial and invasive. The economic costs as well as consequences for patient welfare are substantial. Only a few treatment options are available due to the high resemblance between fungal targets and host molecules, as both are eukaryotes. Riboflavin is a yellow pigment, also termed vitamin B2. Unlike animals, fungi can synthesize this essential component themselves, thereby leading us to appreciate that targeting riboflavin production is a promising novel strategy against fungal infections. Here, we report that the GTP cyclohydrolase encoded by C. albicansRIB1 (CaRIB1) is essential and rate-limiting for production of riboflavin in the fungal pathogen. We confirm the high potential of CaRib1 as an antifungal drug target, as its deletion completely impairs in vivo infectibility by C. albicans in model systems. Furthermore, the stimulating effect of iron deprivation and PKA activation on riboflavin production seems to involve CaRib1 and the upstream transcription factor CaSef1. Gathering insights in the synthesis mechanism of riboflavin in pathogenic fungi, like C. albicans, will allow us to design a novel strategy and specifically target this process to combat fungal infections. IMPORTANCECandida albicans is an important fungal pathogen causing common superficial infections as well as invasive diseases with an extremely high morbidity and mortality. Antifungal therapies are limited in efficiency and availability. In this research, we describe the regulation of riboflavin production in C. albicans. Since riboflavin biosynthesis is essential to this organism, we can appreciate that targeting it would be a promising new strategy to combat these fungal infections. We provide evidence that one particular enzyme in the production process, CaRib1, would be most promising as an antifungal drug target, as it plays a central role in regulation and proves to be essential in a mouse model of systemic infection.
Collapse
|
24
|
Martínez-Pastor MT, Puig S. Adaptation to iron deficiency in human pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118797. [PMID: 32663505 DOI: 10.1016/j.bbamcr.2020.118797] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.
Collapse
Affiliation(s)
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
25
|
Andreieva Y, Petrovska Y, Lyzak O, Liu W, Kang Y, Dmytruk K, Sibirny A. Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). Yeast 2020; 37:497-504. [PMID: 32529692 DOI: 10.1002/yea.3503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/05/2020] [Accepted: 06/07/2020] [Indexed: 11/11/2022] Open
Abstract
Riboflavin or vitamin B2 is an essential dietary component for humans and animals that is the precursor of flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide involved in numerous enzymatic reactions. The flavinogenic yeast Candida famata overproduces riboflavin under iron starvation; however, regulation of this process is poorly understood. Regulatory gene SEF1 encoding transcription activator has been identified. Its deletion blocks yeast ability to overproduce riboflavin under iron starvation. It was shown here that the SEF1 promoters from other flavinogenic (Candida albicans) and non-flavinogenic (Candida tropicalis) yeasts fused with the open reading frame (ORF) of SEF1 gene from C. famata are able to restore riboflavin oversynthesis in sef1Δ mutants. It is known that in the pathogenic flavinogenic yeast C. albicans, Sfu1 (GATA-type transcription factor) represses SEF1. Here, we found that deletion of SFU1 gene in wild-type C. famata leads to riboflavin oversynthesis. Moreover, it was shown that disruption of VMA1 gene (coding for vacuolar ATPase subunit A) also results in riboflavin oversynthesis in C. famata.
Collapse
Affiliation(s)
- Yuliia Andreieva
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Yana Petrovska
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Oleksii Lyzak
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wen Liu
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine.,Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yingqian Kang
- Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, Guiyang, China
| | - Kostyantyn Dmytruk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Andriy Sibirny
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
26
|
Alkafeef SS, Lane S, Yu C, Zhou T, Solis NV, Filler SG, Huang L, Liu H. Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLoS Genet 2020; 16:e1008881. [PMID: 32525871 PMCID: PMC7319344 DOI: 10.1371/journal.pgen.1008881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/26/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell. Mammalian pathogens occupy a diverse set of niches within the host organism. These niches vary in iron and oxygen availability. As a commensal and pathogen of humans, its ability to regulate iron uptake and utilization in response to bioavailable iron level is critical for its survival in different host environments encompassing a broad range of iron levels. This study aims to understand how C. albicans senses and responds to iron level to regulate multiple aspects of its biology. The cytosolic monothiol glutaredoxin Grx3 is a critical regulator of C. albicans iron homeostasis and virulence. Taking a proteomic approach, we identified a large list of Grx3 associated proteins of diverse functions, including iron-sulfur trafficking, iron homeostasis, metabolism redox homeostasis, protein translation, DNA maintenance and repair. In support of these protein associations, Grx3 is important for all these processes. Thus, Grx3 is a global regulator of iron homeostasis and other iron dependent cellular processes.
Collapse
Affiliation(s)
- Selma S Alkafeef
- Department of Biological Chemistry, University of California, Irvine, California, United States of America.,Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Shelley Lane
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.,David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| |
Collapse
|
27
|
Tripathi A, Liverani E, Tsygankov AY, Puri S. Iron alters the cell wall composition and intracellular lactate to affect Candida albicans susceptibility to antifungals and host immune response. J Biol Chem 2020; 295:10032-10044. [PMID: 32503842 DOI: 10.1074/jbc.ra120.013413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Fungal pathogen Candida albicans has a complex cell wall consisting of an outer layer of mannans and an inner layer of β-glucans and chitin. The fungal cell wall is the primary target for antifungals and is recognized by host immune cells. Environmental conditions such as carbon sources, pH, temperature, and oxygen tension can modulate the fungal cell wall architecture. Cellular signaling pathways, including the mitogen-activated protein kinase (MAPK) pathways, are responsible for sensing environmental cues and mediating cell wall alterations. Although iron has recently been shown to affect β-1,3-glucan exposure on the cell wall, we report here that iron changes the composition of all major C. albicans cell wall components. Specifically, high iron decreased the levels of mannans (including phosphomannans) and chitin; and increased β-1,3-glucan levels. These changes increased the resistance of C. albicans to cell wall-perturbing antifungals. Moreover, high iron cells exhibited adequate mitochondrial functioning; leading to a reduction in accumulation of lactate that signals through the transcription factor Crz1 to induce β-1,3-glucan masking in C. albicans We show here that iron-induced changes in β-1,3-glucan exposure are lactate-dependent; and high iron causes β-1,3-glucan exposure by preventing lactate-induced, Crz1-mediated inhibition of activation of the fungal MAPK Cek1. Furthermore, despite exhibiting enhanced antifungal resistance, high iron C. albicans cells had reduced survival upon phagocytosis by macrophages. Our results underscore the role of iron as an environmental signal in multiple signaling pathways that alter cell wall architecture in C. albicans, thereby affecting its survival upon exposure to antifungals and host immune response.
Collapse
Affiliation(s)
- Aparna Tripathi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Gupta M, Outten CE. Iron-sulfur cluster signaling: The common thread in fungal iron regulation. Curr Opin Chem Biol 2020; 55:189-201. [PMID: 32234663 DOI: 10.1016/j.cbpa.2020.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/02/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Iron homeostasis in fungi involves balancing iron uptake and storage with iron utilization to achieve adequate, nontoxic levels of this essential nutrient. Extensive work in the nonpathogenic yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe has uncovered unique iron regulation networks for each organism that control iron metabolism via distinct molecular mechanisms. However, common themes have emerged from these studies. The activities of all fungal iron-sensing transcription factors characterized to date are regulated via iron-sulfur cluster signaling. Furthermore, glutaredoxins often play a key role in relaying the intracellular iron status to these DNA-binding proteins. Recent work with fungal pathogens, including Candida and Aspergillus species and Cryptococcus neoformans, has revealed novel iron regulation mechanisms, yet similar roles for iron-sulfur clusters and glutaredoxins in iron signaling have been confirmed. This review will focus on these recent discoveries regarding iron regulation pathways in both pathogenic and nonpathogenic fungi.
Collapse
Affiliation(s)
- Malini Gupta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208.
| |
Collapse
|
29
|
Duval C, Macabiou C, Garcia C, Lesuisse E, Camadro J, Auchère F. The adaptive response to iron involves changes in energetic strategies in the pathogen Candida albicans. Microbiologyopen 2020; 9:e970. [PMID: 31788966 PMCID: PMC7002100 DOI: 10.1002/mbo3.970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases known as candidiasis. Its ability to grow in different morphological forms, such as yeasts or filamentous hyphae, contributes to its survival in diverse microenvironments. Iron uptake has been associated with virulence, and C. albicans has developed elaborate strategies for acquiring iron from its host. In this work, we analyze the metabolic changes in response to changes in iron content in the growth medium and compare C. albicans adaptation to the presence or absence of iron. Functional and morphological studies, correlated to a quantitative proteomic analysis, were performed to assess the specific pathways underlying the response to iron, both in the yeast and filamentous forms. Overall, the results show that the adaptive response to iron is associated with a metabolic remodeling affecting the energetic pathways of the pathogen. This includes changes in the thiol-dependent redox status, the activity of key mitochondrial enzymes and the respiratory chain. Iron deficiency stimulates bioenergetic pathways, whereas iron-rich condition is associated with greater biosynthetic needs, particularly in filamentous forms. Moreover, we found that C. albicans yeast cells have an extraordinary capability to adapt to changes in environmental conditions.
Collapse
Affiliation(s)
- Celia Duval
- Laboratoire MitochondriesMétaux et Stress OxydantInstitut Jacques MonodUMR 7592Université Paris‐Diderot/CNRS (USPC)ParisFrance
| | - Carole Macabiou
- Laboratoire MitochondriesMétaux et Stress OxydantInstitut Jacques MonodUMR 7592Université Paris‐Diderot/CNRS (USPC)ParisFrance
| | - Camille Garcia
- Plateforme Protéomique structurale et fonctionnelle/Spectrométrie de masseInstitut Jacques MonodUMR 7592Université Paris‐Diderot/CNRS (USPC)ParisFrance
| | - Emmanuel Lesuisse
- Laboratoire MitochondriesMétaux et Stress OxydantInstitut Jacques MonodUMR 7592Université Paris‐Diderot/CNRS (USPC)ParisFrance
| | - Jean‐Michel Camadro
- Laboratoire MitochondriesMétaux et Stress OxydantInstitut Jacques MonodUMR 7592Université Paris‐Diderot/CNRS (USPC)ParisFrance
| | - Françoise Auchère
- Laboratoire MitochondriesMétaux et Stress OxydantInstitut Jacques MonodUMR 7592Université Paris‐Diderot/CNRS (USPC)ParisFrance
| |
Collapse
|
30
|
mSphere of Influence: Decoding Transcriptional Regulatory Networks To Illuminate the Mechanisms of Microbial Pathogenicity. mSphere 2020; 5:5/1/e00917-19. [PMID: 31915232 PMCID: PMC6952206 DOI: 10.1128/msphere.00917-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sadri Znaidi works in the field of molecular mycology with a focus on functional genomics in Candida albicans. In this mSphere of Influence article, he reflects on how the paper “An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis” by Chen et al. (C. Chen, K. Pande, S. D. French, B. B. Tuch, and S. M. Sadri Znaidi works in the field of molecular mycology with a focus on functional genomics in Candida albicans. In this mSphere of Influence article, he reflects on how the paper “An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis” by Chen et al. (C. Chen, K. Pande, S. D. French, B. B. Tuch, and S. M. Noble, Cell Host Microbe 10:118–135, 2011, https://doi.org/10.1016/j.chom.2011.07.005) made an impact on his research on how transcriptional regulatory networks function to control C. albicans’ ability to efficiently interact with the host environment.
Collapse
|
31
|
Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun 2019; 10:5315. [PMID: 31757950 PMCID: PMC6876565 DOI: 10.1038/s41467-019-13298-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023] Open
Abstract
To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), β-glucan. Certain nutrients, stresses and antifungal drugs trigger β-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce β-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced β-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation. The authors show that the fungal pathogen Candida albicans exploits diverse host-associated signals, including specific nutrients and stresses, to promote immune evasion by masking cell wall β-glucan, a major pathogen-associated molecular pattern.
Collapse
|
32
|
Zoppo M, Luca MD, Villarreal SN, Poma N, Barrasa MI, Bottai D, Vyas VK, Tavanti A. A CRISPR/Cas9-based strategy to simultaneously inactivate the entire ALS gene family in Candida orthopsilosis. Future Microbiol 2019; 14:1383-1396. [PMID: 31659913 DOI: 10.2217/fmb-2019-0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: In this study, the CRISPR gene-editing approach was used to simultaneously inactivate all three members of the ALS gene family in the opportunistic pathogen Candida orthopsilosis. Materials & methods: Using a single gRNA and repair template, CRISPR-edited clones were successfully generated in a one-step process in both C. orthopsilosis reference and clinical strains. Results: The phenotypic characterization of the ALS triple-edited strains revealed no impact on growth in liquid or solid media. However, pseudohyphal formation and the ability to adhere to human buccal epithelial cells were significantly decreased in triple-edited clones. Conclusion: Our CRISPR/Cas9 system is a powerful tool for simultaneous editing of fungal gene families, which greatly accelerates the generation of multiple gene-edited Candida strains. Data deposition: Nucleotide sequence data are available in the GenBank databases under the accession numbers MK875971, MK875972, MK875973, MK875974, MK875975, MK875976, MK875977.
Collapse
Affiliation(s)
- Marina Zoppo
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | | | | | - Noemi Poma
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | | | - Daria Bottai
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | - Valmik K Vyas
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| |
Collapse
|
33
|
Schoeters F, Van Dijck P. Protein-Protein Interactions in Candida albicans. Front Microbiol 2019; 10:1792. [PMID: 31440220 PMCID: PMC6693483 DOI: 10.3389/fmicb.2019.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Despite being one of the most important human fungal pathogens, Candida albicans has not been studied extensively at the level of protein-protein interactions (PPIs) and data on PPIs are not readily available in online databases. In January 2018, the database called "Biological General Repository for Interaction Datasets (BioGRID)" that contains the most PPIs for C. albicans, only documented 188 physical or direct PPIs (release 3.4.156) while several more can be found in the literature. Other databases such as the String database, the Molecular INTeraction Database (MINT), and the Database for Interacting Proteins (DIP) database contain even fewer interactions or do not even include C. albicans as a searchable term. Because of the non-canonical codon usage of C. albicans where CUG is translated as serine rather than leucine, it is often problematic to use the yeast two-hybrid system in Saccharomyces cerevisiae to study C. albicans PPIs. However, studying PPIs is crucial to gain a thorough understanding of the function of proteins, biological processes and pathways. PPIs can also be potential drug targets. To aid in creating PPI networks and updating the BioGRID, we performed an exhaustive literature search in order to provide, in an accessible format, a more extensive list of known PPIs in C. albicans.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Ror S, Panwar SL. Sef1-Regulated Iron Regulon Responds to Mitochondria-Dependent Iron-Sulfur Cluster Biosynthesis in Candida albicans. Front Microbiol 2019; 10:1528. [PMID: 31354649 PMCID: PMC6630100 DOI: 10.3389/fmicb.2019.01528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 11/13/2022] Open
Abstract
Iron homeostasis mechanisms allow the prime commensal-pathogen Candida albicans to cope with the profound shift in iron levels in the mammalian host. The regulators, Sef1 and Sfu1 influence activation and repression of genes required for iron uptake and acquisition by inducing the expression of iron regulon genes in iron-deplete conditions and inactivating them in iron-replete condition. Our study for the first time shows that C. albicans coordinates the activation of the iron regulon with the mitochondrial use of iron for Fe–S cluster biosynthesis, a cellular process that is connected to cellular iron metabolism. We took advantage of a mutant defective in mitochondrial biogenesis (fzo1Δ/Δ) to assess the aforesaid link as this mutant exhibited sustained expression of the Sef1 iron regulon, signifying an iron-starved state in the mutant. Our analysis demonstrates that mitochondrion is pivotal for regulation of Fe–S cluster synthesis such that the disruption of this cellular process in fzo1Δ/Δ cells lead to excessive mitochondrial iron accumulation and reduced activity of the Fe–S cluster-containing enzyme aconitase. Sef1 responds to defective Fe–S cluster synthesis by regulated changes in its subcellular localization; it was retained in the nucleus resulting in the induced expression of the iron regulon. We predict that the mitochondrial Fe–S assembly generates a molecule that is critical for ensuring iron-responsive transcriptional activation of the Sef1 regulon. All told, our data marks Fe–S biogenesis as a mechanism that meshes cellular iron procurement with mitochondrial iron metabolism resulting in regulating the Sef1 regulon in C. albicans.
Collapse
Affiliation(s)
- Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Abstract
Cryptococcus neoformans is a fungal pathogen that primarily affects severely immunocompromised patients, resulting in 200,000 deaths every year. This yeast occurs in the environment and can establish disease upon inhalation into the lungs of a mammalian host. In this harsh environment it must survive engulfment by host phagocytes, including the oxidative stresses it experiences inside them. To adapt to these challenging conditions, C. neoformans deploys a variety of regulatory proteins to alter gene expression levels and enhance its ability to survive. We have elucidated the role of a protein complex that regulates the cryptococcal response to oxidative stress, survival within phagocytes, and ability to cause disease. These findings are important because they advance our understanding of cryptococcal disease, which we hope will help in the efforts to control this devastating infection. Cryptococcus neoformans kills 200,000 people worldwide each year. After inhalation, this environmental yeast proliferates either extracellularly or within host macrophages. Under conditions of immunocompromise, cryptococci disseminate from the lungs to the brain, causing a deadly meningoencephalitis that is difficult and expensive to treat. Cryptococcal adaptation to the harsh lung environment is a critical first step in its pathogenesis, and consequently a compelling topic of study. This adaptation is mediated by a complex transcriptional program that integrates cellular responses to environmental stimuli. Although several key regulators in this process have been examined, one that remains understudied in C. neoformans is the Mediator complex. In other organisms, this complex promotes transcription of specific genes by increasing assembly of the RNA polymerase II preinitiation complex. We focused on the Kinase Module of Mediator, which consists of cyclin C (Ssn801), cyclin-dependent kinase 8 (Cdk8), Med12, and Med13. This module provides important inhibitory control of Mediator complex assembly and activity. Using transcriptomics, we discovered that Cdk8 and Ssn801 together regulate cryptococcal functions such as the ability to grow on acetate and the response to oxidative stress, both of which were experimentally validated. Deletion of CDK8 yielded altered mitochondrial morphology and the dysregulation of genes involved in oxidation-reduction processes. This strain exhibited increased susceptibility to oxidative stress, resulting in an inability of mutant cells to proliferate within phagocytes, decreased lung burdens, and attenuated virulence in vivo. These findings increase our understanding of cryptococcal adaptation to the host environment and its regulation of oxidative stress resistance and virulence.
Collapse
|
36
|
Fourie R, Kuloyo OO, Mochochoko BM, Albertyn J, Pohl CH. Iron at the Centre of Candida albicans Interactions. Front Cell Infect Microbiol 2018; 8:185. [PMID: 29922600 PMCID: PMC5996042 DOI: 10.3389/fcimb.2018.00185] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Iron is an absolute requirement for both the host and most pathogens alike and is needed for normal cellular growth. The acquisition of iron by biological systems is regulated to circumvent toxicity of iron overload, as well as the growth deficits imposed by iron deficiency. In addition, hosts, such as humans, need to limit the availability of iron to pathogens. However, opportunistic pathogens such as Candida albicans are able to adapt to extremes of iron availability, such as the iron replete environment of the gastrointestinal tract and iron deficiency during systemic infection. C. albicans has developed a complex and effective regulatory circuit for iron acquisition and storage to circumvent iron limitation within the human host. As C. albicans can form complex interactions with both commensal and pathogenic co-inhabitants, it can be speculated that iron may play an important role in these interactions. In this review, we highlight host iron regulation as well as regulation of iron homeostasis in C. albicans. In addition, the review argues for the need for further research into the role of iron in polymicrobial interactions. Lastly, the role of iron in treatment of C. albicans infection is discussed.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Oluwasegun O Kuloyo
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Bonang M Mochochoko
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
37
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
38
|
Rehman L, Su X, Li X, Qi X, Guo H, Cheng H. FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae. Curr Genet 2017; 64:645-659. [PMID: 29177887 DOI: 10.1007/s00294-017-0780-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023]
Abstract
Ferric reductases are integral membrane proteins involved in the reduction of environmental ferric iron into the biologically available ferrous iron. In the most overwhelming phytopathogenic fungus, Verticillium dahliae, these ferric reductase are not studied in details. In this study we explored the role of FreB gene (VDAG_06616) in the ferric reduction and virulence of V. dahliae by generating the knockout mutants (ΔFreB) and complementary strains (ΔFreB-C) using protoplast transformation. When cultured on media supplemented with FeSO4, FeCl3 and no iron, ΔFreB exhibited significantly reduced growth and spore production especially on media with no iron. Transmembrane ferric reductase activity of ΔFreB was decreased up to 50% than wild type strains (Vd-wt). The activity was fully restored in ΔFreB-C. Meanwhile, the expression levels of other related genes (Frect-4, Frect-5, Frect-6 and Met) were obviously increased in ΔFreB. Compared with the Vd-wt and ΔFreB-C, ΔFreB-1 and ΔFreB-2 were impaired in colony diameter and spore number on different carbon sources (starch, sucrose, galactose and xylose). ΔFreB-1 and ΔFreB-2 were also highly sensitive to oxidative stress as revealed by the plate diffusion assay when 100 µM H2O2 was applied to the fungal culture. When Nicotiana benthamiana plants were inoculated, ΔFreB exhibited less disease symptoms than Vd-wt and ΔFreB-C. In conclusion, the present findings not only indicate that FreB mediates the ferric metabolism and is required for the full virulence in V. dahliae, but would also accelerate future investigation to uncover the pathogenic mechanism of this fungus.
Collapse
Affiliation(s)
- Latifur Rehman
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaokang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiliang Qi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
39
|
Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced MDR1 Expression and Fluconazole Resistance. Antimicrob Agents Chemother 2017; 61:AAC.01344-17. [PMID: 28807921 DOI: 10.1128/aac.01344-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1, a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2, the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated.
Collapse
|
40
|
Mediator Tail Module Is Required for Tac1-Activated CDR1 Expression and Azole Resistance in Candida albicans. Antimicrob Agents Chemother 2017; 61:AAC.01342-17. [PMID: 28807920 DOI: 10.1128/aac.01342-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
The human fungal pathogen Candida albicans develops drug resistance after long-term exposure to azole drugs in the treatment of chronic candidiasis. Gain-of-function (GOF) mutations in the transcription factor Tac1 and the consequent expression of its targets, drug efflux pumps Cdr1 and Cdr2, are a common mechanism by which C. albicans acquires fluconazole resistance. The mechanism by which GOF mutations hyperactivate Tac1 is currently unknown. Here, we define a transcriptional activation domain (TAD) at the C terminus of Tac1. GOF mutations within the Tac1 TAD, outside the context of full-length Tac1, generally do not enhance its absolute potential as a transcriptional activator. Negative regulation of the Tac1 TAD by the Tac1 middle region is necessary for the activating effect of GOF mutations or fluphenazine to be realized. We have found that full-length Tac1, when hyperactivated by xenobiotics or GOF mutations, facilitates the recruitment of the Mediator coactivator complex to the CDR1 promoter. Azole resistance and the activation of Tac1 target genes, such as CDR1, are dependent on the Tac1 TAD and subunits of the Mediator tail module. The dependence of different Tac1 target promoters on the Mediator tail module, however, varies widely. Lastly, we show that hyperactivation of Tac1 is correlated with its Mediator-dependent phosphorylation, a potentially useful biomarker for Tac1 hyperactivation. The role of Mediator in events downstream of Tac1 hyperactivation in fluconazole-resistant clinical isolates is complex and provides opportunities and challenges for therapeutic intervention.
Collapse
|
41
|
Huang X, Chen X, He Y, Yu X, Li S, Gao N, Niu L, Mao Y, Wang Y, Wu X, Wu W, Wu J, Zhou D, Zhan X, Chen C. Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans. PLoS Pathog 2017; 13:e1006414. [PMID: 28570675 PMCID: PMC5469625 DOI: 10.1371/journal.ppat.1006414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 06/13/2017] [Accepted: 05/16/2017] [Indexed: 12/26/2022] Open
Abstract
Efficient assimilation of alternative carbon sources in glucose-limited host niches is critical for colonization of Candida albicans, a commensal yeast that frequently causes opportunistic infection in human. C. albicans evolved mechanistically to regulate alternative carbon assimilation for the promotion of fungal growth and commensalism in mammalian hosts. However, this highly adaptive mechanism that C. albicans employs to cope with alternative carbon assimilation has yet to be clearly understood. Here we identified a novel role of C. albicans mitochondrial complex I (CI) in regulating assimilation of alternative carbon sources such as mannitol. Our data demonstrate that CI dysfunction by deleting the subunit Nuo2 decreases the level of NAD+, downregulates the NAD+-dependent mannitol dehydrogenase activity, and consequently inhibits hyphal growth and biofilm formation in conditions when the carbon source is mannitol, but not fermentative sugars like glucose. Mannitol-dependent morphogenesis is controlled by a ROS-induced signaling pathway involving Hog1 activation and Brg1 repression. In vivo studies show that nuo2Δ/Δ mutant cells are severely compromised in gastrointestinal colonization and the defect can be rescued by a glucose-rich diet. Thus, our findings unravel a mechanism by which C. albicans regulates carbon flexibility and commensalism. Alternative carbon assimilation might represent a fitness advantage for commensal fungi in successful colonization of host niches. Most fermentative sugars like glucose, although routinely used in laboratory cell culture medium, are in fact only present at very low levels and even absent in many host niches. Therefore, assimilation of alternative nutrients is essential for the survival, proliferation and infection of most clinically important microbial pathogens like C. albicans in their hosts. In this study, we show that mitochondrial complex I (CI) is indispensable for proper hyphal growth and biofilm formation of C. albicans cells when mannitol, but not fermentative sugars like glucose or mannose, is used as the sole carbon source. We also find that a specific signaling pathway that senses and responds to the alternative carbon source incorporates input from mitochondrially-derived molecules like reactive oxygen species (ROS) to influence activation of the Hog1 MAPK and expression of the biofilm-regulator Brg1. Our findings further demonstrate that CI dysfunction confers a severe defect of C. albicans in gastrointestinal colonization and changing the diet with glucose is able to significantly rescue the commensal defect. Our study suggests that C. albicans has a unique regulatory system to sense and utilize the alternative carbon sources abundant in the GI tract and to promote commensalism. Significantly, CI activity appears to play a vital role in this highly adaptive system to regulate commensalism, in addition to its well-characterized role in virulence.
Collapse
Affiliation(s)
- Xinhua Huang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai University, Shanghai, China
| | - Yongmin He
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Shanshan Li
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Ning Gao
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lida Niu
- Department of Dermatology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yinhe Mao
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Wang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xianwei Wu
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Pierrehumbert A, Ischer F, Coste AT. Unexpected Transcripts in Tn7 orf19.2646 C. albicans Mutant Lead to Low Fungal Burden Phenotype In vivo. Front Microbiol 2017; 8:873. [PMID: 28559890 PMCID: PMC5432668 DOI: 10.3389/fmicb.2017.00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
The commensal fungus Candida albicans is the major cause of fungal systemic infection in immuno-compromised patients, with a mortality rate approaching 50% in the case of bloodstream infections. There is therefore a clear need to better understand fungal biology during infection to improve treatment. One of the particularities of C. albicans is its capacity to adapt to drastically diverse environments such as brain, bloodstream or gut. Adaptations to environmental change are mediated by transcription factors (TF) that modulate the expression of their target genes. Previous screening of a collection of Tn7 C. albicans TF mutants in vivo identified orf19.2646 as playing a crucial role in the ability of the fungus to survive within its host. Indeed, the orf19.2646 Tn7 interruption mutant strain displayed a reduced fungal burden compared to the wild-type strain. Surprisingly, an independent deletion mutant did not recapitulate the phenotype of the Tn7 interruption mutant. In the present study, we therefore investigated the difference between these two mutants and determined by performing a RACE analysis whether unexpected transcripts of the Tn7 mutant occurred. We found that two such transcripts upstream and downstream of the Tn7 insertion site were produced. The two transcripts were expressed in an orf19.2646 deletion mutant which displayed a significantly reduced fungal burden level compared to the wild-type in G. mellonella. When the regions corresponding to these transcripts were deleted in the Tn7 mutants, the strains lacking both regions displayed a fungal burden similar to that of the wild-type strain. This study shows for the first time that mRNA transcription may occur downstream of a Tn7 sequence. In addition, these results demonstrated that the low fungal burden phenotype observed in the orf19.2646 Tn7 mutant is due to the presence of these two transcripts together participating to an unidentified virulence mechanism to be further elucidated.
Collapse
Affiliation(s)
- Aude Pierrehumbert
- Institute of Microbiology, University of Lausanne and University Hospital CenterLausanne, Switzerland
| | - Françoise Ischer
- Institute of Microbiology, University of Lausanne and University Hospital CenterLausanne, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University of Lausanne and University Hospital CenterLausanne, Switzerland
| |
Collapse
|
43
|
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts. mBio 2016; 7:mBio.01782-16. [PMID: 27795405 PMCID: PMC5082906 DOI: 10.1128/mbio.01782-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. IMPORTANCE The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment.
Collapse
|
44
|
Liu Z, Moran GP, Sullivan DJ, MacCallum DM, Myers LC. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp. PLoS Genet 2016; 12:e1006373. [PMID: 27741243 PMCID: PMC5065183 DOI: 10.1371/journal.pgen.1006373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023] Open
Abstract
Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of ‘free,’ non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large ‘free’ pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the activation domain of ‘free’ Tlo protein competes with DNA bound transcription factors for targets that regulate key aspects of C. albicans cell physiology. The ascomycete fungus Candida albicans is a leading cause of hospital-acquired bloodstream infections in the United States. Due to limited anti-fungal drug options, there is an approximately 40% mortality rate and over 10,000 deaths per year associated with systemic C. albicans infections. It is unknown why C. albicans is the primary cause of systemic Candidiasis, versus related ascomycetes such as Candida dubliniensis. The genomes of C. albicans and C. dubliniensis are remarkably similar, yet C. dubliniensis has reduced virulence and exhibits less phenotypic plasticity. A striking genomic difference between the fungi is the amplification of the TLO (TeLOmere-associated) genes in C. albicans, which encode a fungal-specific subunit of the Mediator co-activator complex. Amplification results in a large pool of ‘free’ (non-Mediator associated) Tlo protein in C. albicans that is absent in C. dubliniensis. Engineering a large ‘free’ pool of Tlo protein in C. dubliniensis, through overexpression, results in phenotypes common in C. albicans, yet typically absent in C. dubliniensis. Tlo proteins contain a potent transcriptional activation domain. Nuclear localization of the Tlo activation domain is necessary and sufficient for the TLO overexpression phenotypes. This study provides a mechanistic explanation for how TLO amplification in C. albicans may enhance its virulence.
Collapse
Affiliation(s)
- Zhongle Liu
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gary P. Moran
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Dublin, Ireland
| | - Derek J. Sullivan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Dublin, Ireland
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lawrence C. Myers
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
45
|
Polvi EJ, Averette AF, Lee SC, Kim T, Bahn YS, Veri AO, Robbins N, Heitman J, Cowen LE. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genet 2016; 12:e1006350. [PMID: 27695031 PMCID: PMC5047589 DOI: 10.1371/journal.pgen.1006350] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation modulates morphogenetic circuitry and echinocandin resistance, and illuminate a novel facet to metal homeostasis at the host-pathogen interface, with broad therapeutic potential. Invasive fungal infections pose a serious threat to human health worldwide, with Candida albicans being a leading fungal pathogen. Mortality is in part due to the limited arsenal of effective antifungals, with drug resistance on the rise. The echinocandins, which target the fungal cell wall, are the newest class of antifungal, and echinocandin resistance has already emerged. Here, we screened a library of 1,280 pharmacologically active compounds to identify those that potentiate echinocandin activity against an echinocandin-resistant isolate. The lead compound was a chelator, DTPA, which affects resistance by depleting magnesium. Genome sequencing of mutants resistant to the combination of DTPA and echinocandin revealed mutations in the gene encoding Nik1, which signals upstream of the Hog1 stress response pathway. We established that DTPA acts through Nik1 to modulate Hog1 signaling and enhance echinocandin activity, and that this combination has therapeutic benefits in a murine model of candidiasis. We also discovered that DTPA modulates C. albicans morphogenesis, a key virulence trait. DTPA induced filamentation by chelating zinc, in a manner that is contingent upon core filamentation pathways and specialized circuitry. Thus, we establish novel roles for metal homeostasis in C. albicans pathogenesis, thereby illuminating new therapeutic strategies for life-threatening infectious disease.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Taeyup Kim
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yong-Sun Bahn
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
46
|
Xu N, Dong YJ, Yu QL, Zhang B, Zhang M, Jia C, Chen YL, Zhang B, Xing LJ, Li MC. Convergent Regulation of Candida albicans Aft2 and Czf1 in Invasive and Opaque Filamentation. J Cell Biochem 2016; 116:1908-18. [PMID: 25716417 DOI: 10.1002/jcb.25146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022]
Abstract
Candida albicans is the most common fungal pathogen of mucosal infections and invasive diseases in immuno-compromised humans. The abilities of yeast-hyphal growth and white-opaque switching affect C. albicans physiology and virulence. Here, we showed that C. albicans Aft2 regulator was required for embedded filamentous growth and opaque cell-type formation. Under low-temperature matrix embedded conditions, Aft2 functioned downstream of Czf1-mediated pathway and was required for invasive filamentation. Moreover, deletion of AFT2 significantly reduced opaque cell-type formation under N-acetylglucosamine (GlcNAc) inducing conditions. Ectopic expression of CZF1 slightly increased the white-opaque switching frequency in the aft2Δ/Δ mutant, but did not completely restore to wild-type levels, suggesting that Czf1 at least partially bypassed the essential requirement for Aft2 in response to opaque-inducing cues. In addition, multiple environmental cues altered AFT2 mRNA and protein levels, such as low temperature, physical environment and GlcNAc. Although the absence of Czf1 or Efg1 also increased the expression level of AFT2 gene, deletion of CZF1 remarkably reduced the stability of Aft2 protein. Furthermore, C. albicans Aft2 physically interacted with Czf1 under all tested conditions, whereas the interaction between Aft2 and Efg1 was barely detectable under embedded conditions, supporting the hypothesis that Aft2, together with Czf1, contributed to activate filamentous growth by antagonizing Efg1-mediated repression under matrix-embedded conditions.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yi-Jie Dong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qi-Lin Yu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Meng Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Lu Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lai-Jun Xing
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ming-Chun Li
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
47
|
Amorim-Vaz S, Sanglard D. Novel Approaches for Fungal Transcriptomics from Host Samples. Front Microbiol 2016; 6:1571. [PMID: 26834721 PMCID: PMC4717316 DOI: 10.3389/fmicb.2015.01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/28/2015] [Indexed: 11/13/2022] Open
Abstract
Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is, however, technically challenging due to the low proportion of fungal RNA in host tissues. Two emerging technologies were used recently to circumvent this problem. One consists of the detection of low abundance fungal RNA using capture and reporter gene probes which is followed by emission and quantification of resulting fluorescent signals (nanoString). The other is based first on the capture of fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and subjected to RNA sequencing (RNA-seq). Here we detail these two transcriptome approaches and discuss their advantages and limitations and future perspectives in microbial transcriptomics from host material.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
48
|
Brault A, Mourer T, Labbé S. Molecular basis of the regulation of iron homeostasis in fission and filamentous yeasts. IUBMB Life 2015; 67:801-15. [PMID: 26472434 DOI: 10.1002/iub.1441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/01/2015] [Indexed: 11/08/2022]
Abstract
When iron load exceeds that needed by fission and filamentous yeasts, iron-regulatory GATA-type transcription factors repress genes encoding iron acquisition systems. In contrast, under iron starvation, optimization of cellular iron utilization is coordinated by a specialized regulatory subunit of the CCAAT-binding factor that fosters repression of genes encoding iron-using proteins. Despite these findings, there is still limited knowledge concerning the mechanisms by which these iron-responsive regulators respond to high- or low-iron availability. To provide a framework for understanding common and distinct properties of iron-dependent transcriptional regulators, a repertoire of their functional domains in different fungal species is presented here. In addition, discovery of interacting partners of these iron-responsive factors contributes to provide additional insight into their properties.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thierry Mourer
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
49
|
RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans. mBio 2015; 6:e00942-15. [PMID: 26396240 PMCID: PMC4600103 DOI: 10.1128/mbio.00942-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In vivo transcriptional analyses of microbial pathogens are often hampered by low proportions of pathogen biomass in host organs, hindering the coverage of full pathogen transcriptome. We aimed to address the transcriptome profiles of Candida albicans, the most prevalent fungal pathogen in systemically infected immunocompromised patients, during systemic infection in different hosts. We developed a strategy for high-resolution quantitative analysis of the C. albicans transcriptome directly from early and late stages of systemic infection in two different host models, mouse and the insect Galleria mellonella. Our results show that transcriptome sequencing (RNA-seq) libraries were enriched for fungal transcripts up to 1,600-fold using biotinylated bait probes to capture C. albicans sequences. This enrichment biased the read counts of only ~3% of the genes, which can be identified and removed based on a priori criteria. This allowed an unprecedented resolution of C. albicans transcriptome in vivo, with detection of over 86% of its genes. The transcriptional response of the fungus was surprisingly similar during infection of the two hosts and at the two time points, although some host- and time point-specific genes could be identified. Genes that were highly induced during infection were involved, for instance, in stress response, adhesion, iron acquisition, and biofilm formation. Of the in vivo-regulated genes, 10% are still of unknown function, and their future study will be of great interest. The fungal RNA enrichment procedure used here will help a better characterization of the C. albicans response in infected hosts and may be applied to other microbial pathogens. IMPORTANCE Understanding the mechanisms utilized by pathogens to infect and cause disease in their hosts is crucial for rational drug development. Transcriptomic studies may help investigations of these mechanisms by determining which genes are expressed specifically during infection. This task has been difficult so far, since the proportion of microbial biomass in infected tissues is often extremely low, thus limiting the depth of sequencing and comprehensive transcriptome analysis. Here, we adapted a technology to capture and enrich C. albicans RNA, which was next used for deep RNA sequencing directly from infected tissues from two different host organisms. The high-resolution transcriptome revealed a large number of genes that were so far unknown to participate in infection, which will likely constitute a focus of study in the future. More importantly, this method may be adapted to perform transcript profiling of any other microbes during host infection or colonization.
Collapse
|
50
|
Marty AJ, Broman AT, Zarnowski R, Dwyer TG, Bond LM, Lounes-Hadj Sahraoui A, Fontaine J, Ntambi JM, Keleş S, Kendziorski C, Gauthier GM. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis. PLoS Pathog 2015; 11:e1004959. [PMID: 26114571 PMCID: PMC4482641 DOI: 10.1371/journal.ppat.1004959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. Blastomyces dermatitidis belongs to a group of human pathogenic fungi that convert between two forms, mold and yeast, in response to temperature. Growth as yeast (37°C) in tissue facilitates immune evasion, whereas growth as mold (22°C) promotes environmental survival, sexual reproduction, and generation of transmissible spores. Despite the importance of dimorphism, how fungi regulate temperature adaptation is poorly understood. We identified SREB, a transcription factor that regulates disparate processes including dimorphism. SREB null mutants, which lack SREB, fail to fully complete the conversion to mold at 22°C. The goal of our research was to characterize how SREB regulates transcription during the switch to mold. Gene expression microarray along with chromatin binding and biochemical analyses indicated that SREB affected several processes including iron homeostasis, lipid biosynthesis, and lipid droplet formation. In vivo, SREB directly bound and regulated genes involved with iron uptake, lipid biosynthesis, and transcription. Functional analysis suggested that lipid metabolism may influence filamentous growth at 22°C. In addition, SREB interacted with another transcription factor, HAPX.
Collapse
Affiliation(s)
- Amber J. Marty
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Aimee T. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Teigan G. Dwyer
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Laura M. Bond
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Anissa Lounes-Hadj Sahraoui
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - James M. Ntambi
- Department of Biochemistry, Department of Nutritional Sciences, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Statistics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|