1
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Moreira ET, Lourenço MP, Cunha-Fernandes T, Silva TI, Siqueira LD, Castro-Faria-Neto HC, Reis PA. Minocycline inhibits microglial activation in the CA1 hippocampal region and prevents long-term cognitive sequel after experimental cerebral malaria. J Neuroimmunol 2024; 397:578480. [PMID: 39504755 DOI: 10.1016/j.jneuroim.2024.578480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Cerebral malaria is the worst complication of malaria infection, has a high mortality rate, and may cause different neurodysfunctions, including cognitive decline. Neuroinflammation is an important cause of cognitive damage in neurodegenerative diseases, and microglial cells can be activated in a disease-associated profile leading to tissue damage and neuronal death. Here, we demonstrated that treatment with minocycline reduced blood-brain barrier breakdown and modulated ICAM1 mRNA expression; reduced proinflammatory cytokines, such as TNF-α, IL-1β, IFN-γ, and IL-6; and prevented long-term cognitive decline in contextual and aversive memory tasks. Taken together, our data suggest that microglial cells are activated during experimental cerebral malaria, leading to neuroinflammatory events that end up in cognitive damage. In addition, pharmacological modulation of microglial activation, by drugs such as minocycline may be an important therapeutic strategy in the prevention of long-term memory impairment.
Collapse
Affiliation(s)
- E T Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Universidade Cruzeiro do Sul, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - M P Lourenço
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T Cunha-Fernandes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T I Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - L D Siqueira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - H C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - P A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Silva TID, Fernandes TDC, Sá Moreira ETD, Costa Ferreira AD, Estato V, de Castro Faria Neto HC, Reis PA. Role of Nitric oxide synthase II in cognitive impairment due to experimental cerebral malaria. Nitric Oxide 2024; 153:41-49. [PMID: 39384063 DOI: 10.1016/j.niox.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The role of nitric oxide (NO) in the pathogenesis of cerebral malaria and its cognitive sequelae remains controversial. Cerebral malaria is still the worst complication of Plasmodium falciparum infection, which is characterized by high rates of morbidity and mortality. Even after recovery from infection due to antimalarial therapy, the development of cognitive impairment in survivors reinforces the need to seek new therapies that demonstrate efficacy in preventing long-lasting sequelae. During disease pathogenesis, reactive oxygen and nitrogen species (RONS) are produced after the established intense inflammatory response. Increased expression of the enzyme inducible nitric oxide synthase (iNOS) seems to contribute to tissue injury and the onset of neurological damage. Elevated levels of NO developed by iNOS can induce the production of highly harmful nitrogen-reactive intermediates such as peroxynitrite. To address this, we performed biochemical and behavioral studies in C57BL6 mice, aminoguanidine (specific pharmacological inhibitor of the enzyme iNOS) treated and iNOS-/-, infected with Plasmodium berghei ANKA (PbA), with the aim of clarifying the impact of iNOS on the pathogenesis of cerebral malaria. Our findings underscore the effectiveness of both strategies in reducing cerebral malaria and providing protection against the cognitive impairment associated with the disease. Here, the absence or blockade of the iNOS enzyme was effective in reducing the signs of cerebral malaria detected after six days of infection. This was accompanied by a decrease in the production of pro-inflammatory cytokines and reactive oxygen and nitrogen species. In addition, nitrotyrosine (NT-3), a marker of nitrosative stress, was also reduced. Futher, cognitive dysfunction was analyzed fifteen days after infection in animals rescued from infection by chloroquine treatment (25 mg/kg bw). We observed that both interventions on the iNOS enzyme were able to improve memory and learning loss in mice. In summary, our data suggest that the iNOS enzyme has the potential to serve as a therapeutic target to prevent cognitive sequelae of cerebral malaria.
Collapse
Affiliation(s)
- Tathiany Igreja da Silva
- Laboratório de Imunofarmacologia(1), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Laboratório de Investigação em Neuroprogramação, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Tamires da Cunha Fernandes
- Laboratório de Imunofarmacologia(1), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Emílio Telles de Sá Moreira
- Laboratório de Imunofarmacologia(1), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Universidade Cruzeiro do Sul, Brazil
| | - André da Costa Ferreira
- Laboratório de Imunofarmacologia(1), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Vanessa Estato
- Laboratório de Imunofarmacologia(1), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
4
|
Gonzaga BMDS, Nisimura LM, Coelho LL, Ferreira RR, Horita SIM, Beghini DG, Estato V, de Araújo-Jorge TC, Garzoni LR. Unveiling Lovastatin's Anti-Inflammatory Potential in Mouse's Brain during Acute Trypanosoma cruzi Infection. BIOLOGY 2024; 13:301. [PMID: 38785783 PMCID: PMC11118176 DOI: 10.3390/biology13050301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/25/2024]
Abstract
Neurological commitment is a neglected manifestation of Chagas disease (CD). Meningoencephalitis mainly affects children and immunosuppressed patients, while stroke can occur with or without cardiac compromise. One of the possible causes of stroke development is microvascular commitment. Our group previously described that experimental Trypanossoma cruzi acute infection leads to cerebral microvasculopathy. This condition is characterized by decreased capillary density, increased leukocyte rolling and adhesion, and endothelial dysfunction. CD was discovered 114 years ago, and until today, only two drugs have been available for clinical treatment: benznidazole and nifurtimox. Both present a high cure rate for the acute phase (80%) and small cure rate for the chronic phase (20%). In addition, the high occurrence of side-effects, without proper medical follow-up, can result in treatment abandonment. Therefore, the search for new therapeutic schemes is necessary. Statins are drugs already used in the clinic that have several pleiotropic effects including endothelial function improvement, anti-inflammatory action, as well as trypanocidal effects, making them a potential alternative treatment for brain microvasculopathy in CD. Here, we investigate the effect of lovastatin (LOV) on brain microvasculopathy and inflammatory parameters. Swiss Webster mice were intraperitoneally inoculated with the Y strain of T. cruzi. Treatment with lovastatin (20 mg/kg/day) was initiated 24 h after the infection and continued for 14 consecutive days. We observed that LOV treatment did not affect parasitemia, brain microcirculation alterations, or the reduction in cerebral blood flow caused by T. cruzi infection. Also, LOV did not prevent the increased number of CD3+ cells and eNOS levels in the T. cruzi-infected brain. No alterations were observed on VCAM-1 and MCP-1 expressions, neither caused by infection nor LOV treatment. However, LOV prevented the increase in F4/80+ cells and ICAM-1 levels in the brain caused by acute infection with T. cruzi. These results suggest an anti-inflammatory activity of LOV, but more studies are needed to elucidate the role of LOV in CD acute infection.
Collapse
Affiliation(s)
- Beatriz Matheus de Souza Gonzaga
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Líndice Mitie Nisimura
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Laura Lacerda Coelho
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Roberto Rodrigues Ferreira
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Samuel Iwao Maia Horita
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
- Laboratório de Pesquisa do Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Daniela Gois Beghini
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Vanessa Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, RJ, Brazil;
| | - Tania Cremonini de Araújo-Jorge
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| | - Luciana Ribeiro Garzoni
- Laboratório de Inovações Em Terapias, Ensino E Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (B.M.d.S.G.); (L.M.N.); (L.L.C.); (R.R.F.); (S.I.M.H.); (D.G.B.); (T.C.d.A.-J.)
| |
Collapse
|
5
|
Bensalel J, Gallego-Delgado J. Exploring adjunctive therapies for cerebral malaria. Front Cell Infect Microbiol 2024; 14:1347486. [PMID: 38410724 PMCID: PMC10895034 DOI: 10.3389/fcimb.2024.1347486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cerebral malaria (CM) is one of the most severe complications of malaria infection characterized by coma and neurological effects. Despite standardized treatment of malaria infection with artemisinin-based combination therapies (ACT), the mortality rate is still high, and it primarily affects pediatric patients. ACT reduces parasitemia but fails to adequately target the pathogenic mechanisms underlying CM, including blood-brain-barrier (BBB) disruption, endothelial activation/dysfunction, and hyperinflammation. The need for adjunctive therapies to specifically treat this form of severe malaria is critical as hundreds of thousands of people continue to die each year from this disease. Here we present a summary of some potential promising therapeutic targets and treatments for CM, as well as some that have been tested and deemed ineffective or, in some cases, even deleterious. Further exploration into these therapeutic agents is warranted to assess the effectiveness of these potential treatments for CM patients.
Collapse
Affiliation(s)
- Johanna Bensalel
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
| | - Julio Gallego-Delgado
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
- Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
6
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
7
|
Plirat W, Chaniad P, Phuwajaroanpong A, Konyanee A, Viriyavejakul P, Septama AW, Punsawad C. Efficacy of artesunate combined with Atractylodes lancea or Prabchompoothaweep remedy extracts as adjunctive therapy for the treatment of cerebral malaria. BMC Complement Med Ther 2023; 23:332. [PMID: 37730604 PMCID: PMC10510250 DOI: 10.1186/s12906-023-04150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Cerebral malaria is one of the most serious complications of Plasmodium infection and causes behavioral changes. However, current antimalarial drugs have shown poor outcomes. Therefore, new antimalarials with neuroprotective effects are urgently needed. This study aimed to evaluate the effects of selected extracts as monotherapy or adjunctive therapy with artesunate on antimalarial, anti-inflammatory, antioxidant, and neuroprotective properties in experimental cerebral malaria (ECM). METHODS ECM was induced in male C57BL/6 mice by infection with Plasmodium berghei ANKA (PbA). Ethanolic extracts of Atractylodes lancea (a dose of 400 mg/kg) and Prabchompoothaweep remedy (a dose of 600 mg/kg) were evaluated as monotherapy and adjunctive therapy combined with artesunate at the onset of signs of cerebral malaria and continued for 7 consecutive days. Parasitemia, clinical scores, and body weight were recorded throughout the study. At day 13 post-infection, mouse brains were dissected and processed for the study of the inflammatory response, oxidative stress, blood-brain barrier (BBB) integrity, histopathological changes, and neurocognitive impairments. RESULTS Ethanolic extracts of A. lancea and Prabchompoothaweep remedy alone improved cerebral malaria outcome in ECM, whereas artesunate combined with extracts of A. lancea or Prabchompoothaweep remedy significantly improved the outcome of artesunate and crude extracts alone. Using real-time PCR, PbA-infected mice that had received the combination treatment showed significantly reduced gene expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), chemokines (CXCL4 and CXCL10), and adhesion molecules (ICAM-1, VCAM1, and CD36). The PbA-infected mice that received the combination treatment showed a significantly decreased malondialdehyde level compared to the untreated group. Similarly, the Evans blue dye assay revealed significantly less dye extravasation in the brains of infected mice administered the combination treatment, indicating improved BBB integrity. Combination treatment improved survival and reduced pathology in the PbA-infected group. Additionally, combination treatment resulted in a significantly reduced level of cognitive impairment, which was analyzed using a novel object recognition test. CONCLUSIONS This study demonstrated that artesunate combined with A. lancea or Prabchompoothaweep remedy extracts as adjunctive therapy reduced mortality, neuroinflammation, oxidative stress, BBB integrity protection, and neurocognitive impairment in the ECM.
Collapse
Affiliation(s)
- Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | | | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, 16915, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
8
|
Burgess V, Maya JD. Statin and aspirin use in parasitic infections as a potential therapeutic strategy: A narrative review. Rev Argent Microbiol 2023; 55:278-288. [PMID: 37019801 DOI: 10.1016/j.ram.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Infections, including zoonoses, constitute a threat to human health due to the spread of resistant pathogens. These diseases generate an inflammatory response controlled by a resolving mechanism involving specialized membrane lipid-derived molecules called lipoxins, resolvins, maresins, and protectins. The production of some of these molecules can be triggered by aspirin or statins. Thus, it is proposed that modulation of the host response could be a useful therapeutic strategy, contributing to the management of resistance to antiparasitic agents or preventing drift to chronic, host-damaging courses. Therefore, the present work presents the state of the art on the use of statins or aspirin for the experimental management of parasitic infections such as Chagas disease, leishmaniasis, toxoplasmosis or malaria. The methodology used was a narrative review covering original articles from the last seven years, 38 of which met the inclusion criteria. Based on the publications consulted, modulation of the resolution of inflammation using statins may be feasible as an adjuvant in the therapy of parasitic diseases. However, there was no strong experimental evidence on the use of aspirin; therefore, further studies are needed to evaluate its role inflammation resolution process in infectious diseases.
Collapse
Affiliation(s)
- Valentina Burgess
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile.
| |
Collapse
|
9
|
de Sousa LP, Rosa-Gonçalves P, Ribeiro-Gomes FL, Daniel-Ribeiro CT. Interplay Between the Immune and Nervous Cognitive Systems in Homeostasis and in Malaria. Int J Biol Sci 2023; 19:3383-3394. [PMID: 37496995 PMCID: PMC10367562 DOI: 10.7150/ijbs.82556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 07/28/2023] Open
Abstract
The immune and nervous systems can be thought of as cognitive and plastic systems, since they are both involved in cognition/recognition processes and can be architecturally and functionally modified by experience, and such changes can influence each other's functioning. The immune system can affect nervous system function depending on the nature of the immune stimuli and the pro/anti-inflammatory responses they generate. Here we consider interactions between the immune and nervous systems in homeostasis and disease, including the beneficial and deleterious effects of immune stimuli on brain function and the impact of severe and non-severe malaria parasite infections on neurocognitive and behavioral parameters in human and experimental murine malaria. We also discuss the effect of immunization on the reversal of cognitive deficits associated with experimental non-severe malaria in a model susceptible to the development of the cerebral form of the illness. Finally, we consider the possibility of using human vaccines, largely exploited as immune-prophylactics for infectious diseases, as therapeutic tools to prevent or mitigate the expression of cognitive deficits in infectious and chronic degenerative diseases.
Collapse
Affiliation(s)
- Luciana Pereira de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
| | - Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
- Laboratório de Biologia, campus Duque de Caxias, Colégio Pedro II, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
| |
Collapse
|
10
|
Araujo-Lima CF, de Cassia Castro Carvalho R, Rosario SL, Leite DI, Aguiar ACC, de Souza Santos LV, de Araujo JS, Salomão K, Kaiser CR, Krettli AU, Bastos MM, Aiub CAF, de Nazaré Correia Soeiro M, Boechat N, Felzenszwalb I. Antiplasmodial, Trypanocidal, and Genotoxicity In Vitro Assessment of New Hybrid α,α-Difluorophenylacetamide-statin Derivatives. Pharmaceuticals (Basel) 2023; 16:782. [PMID: 37375730 DOI: 10.3390/ph16060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Statins present a plethora of pleiotropic effects including anti-inflammatory and antimicrobial responses. A,α-difluorophenylacetamides, analogs of diclofenac, are potent pre-clinical anti-inflammatory non-steroidal drugs. Molecular hybridization based on the combination of pharmacophoric moieties has emerged as a strategy for the development of new candidates aiming to obtain multitarget ligands. METHODS Considering the anti-inflammatory activity of phenylacetamides and the potential microbicidal action of statins against obligate intracellular parasites, the objective of this work was to synthesize eight new hybrid compounds of α,α-difluorophenylacetamides with the moiety of statins and assess their phenotypic activity against in vitro models of Plasmodium falciparum and Trypanosoma cruzi infection besides exploring their genotoxicity safety profile. RESULTS None of the sodium salt compounds presented antiparasitic activity and two acetated compounds displayed mild anti-P. falciparum effect. Against T. cruzi, the acetate halogenated hybrids showed moderate effect against both parasite forms relevant for human infection. Despite the considerable trypanosomicidal activity, the brominated compound revealed a genotoxic profile impairing future in vivo testing. CONCLUSIONS However, the chlorinated derivative was the most promising compound with chemical and biological profitable characteristics, without presenting genotoxicity in vitro, being eligible for further in vivo experiments.
Collapse
Affiliation(s)
- Carlos Fernando Araujo-Lima
- Laboratório de Biologia Celular, LBC Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
- Laboratório de Mutagênese Ambiental, LabMut Instituto de Biologia Roberto Alcantara Gomes, IBRAG-UERJ, Rio de Janeiro 22050-020, RJ, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Instituto Biomédico-UNIRIO, Rio de Janeiro 20211-030, RJ, Brazil
| | - Rita de Cassia Castro Carvalho
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
- Programa de Pós-Graduação em Química, PGQu, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, RJ, Brazil
| | - Sandra Loureiro Rosario
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
| | - Debora Inacio Leite
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, ICB-UFRJ, Rio de Janeiro 21941-902, RJ, Brazil
| | - Anna Caroline Campos Aguiar
- Laboratório de Malária, Centro de Pesquisas René Rachou, CPqRR-FIOCRUZ, Belo Horizonte 30190-002, MG, Brazil
| | - Lizandra Vitoria de Souza Santos
- Laboratório de Mutagênese Ambiental, LabMut Instituto de Biologia Roberto Alcantara Gomes, IBRAG-UERJ, Rio de Janeiro 22050-020, RJ, Brazil
| | | | - Kelly Salomão
- Laboratório de Biologia Celular, LBC Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| | - Carlos Roland Kaiser
- Programa de Pós-Graduação em Química, PGQu, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, RJ, Brazil
| | - Antoniana Ursine Krettli
- Laboratório de Malária, Centro de Pesquisas René Rachou, CPqRR-FIOCRUZ, Belo Horizonte 30190-002, MG, Brazil
| | - Monica Macedo Bastos
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
| | - Claudia Alessandra Fortes Aiub
- Programa de Pós-Graduação em Biologia Molecular e Celular, Instituto Biomédico-UNIRIO, Rio de Janeiro 20211-030, RJ, Brazil
| | | | - Nubia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil
| | - Israel Felzenszwalb
- Laboratório de Mutagênese Ambiental, LabMut Instituto de Biologia Roberto Alcantara Gomes, IBRAG-UERJ, Rio de Janeiro 22050-020, RJ, Brazil
| |
Collapse
|
11
|
Song X, Cheng W, Zhu H, Li Y, Li J. Additive Therapy of Plasmodium berghei-Induced Experimental Cerebral Malaria via Dihydroartemisinin Combined with Rapamycin and Atorvastatin. Microbiol Spectr 2023:e0231722. [PMID: 36946739 PMCID: PMC10101104 DOI: 10.1128/spectrum.02317-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Cerebral malaria (CM), caused by Plasmodium falciparum, is the primary cause of death from severe malaria. Even after immediate parenteral therapy with antimalarial drugs, the mortality rate remains 15 to 25%. Currently, no effective therapeutic agents are available for the radical treatment of CM. Thus, further in-depth explorations of adjuvant therapies in combination with antimalarial drugs are urgently needed. The experimental cerebral malaria (ECM) model was established by infecting C57BL/6 mice with Plasmodium berghei ANKA. Subsequently, infected mice were continuously treated with dihydroartemisinin (DHA) in combination with rapamycin (RAP) and atorvastatin (AVA) for 5 days at different time points, including day 0, day 3, and day 6 postinfection (p.i.). Treatment efficacy was evaluated by comparing behavioral scores, body weight, parasitemia, survival rate, blood-brain barrier (BBB) integrity, and histopathology. The optimal combination therapy of DHA, RAP, and AVA on day 3 p.i. was selected for ECM. This strategy significantly improved survival rate, reduced parasitemia, improved the rapid murine coma and behavioral scale scores and permeability of the BBB, attenuated cerebrovascular and hepatic central venous obstruction and hemozoin deposition in the liver, and decreased the red pulp area of the spleen, which effectively ameliorated neurological damage in ECM. It also improved histopathology and neurological damage caused by ECM. In this study, the optimal therapeutic strategy for ECM was selected, which is expected to be a potential therapy for human CM. IMPORTANCE Although artemisinin-based combination therapies (ACTs) have greatly improved the clinical outcome of cerebral malaria (CM) as a fatal disease that can permanently disable a significant proportion of children even if they survive, new treatment options are needed as Plasmodium falciparum develops resistance to antimalarial drugs. Recent reports suggest that basal treatment with artemisinin derivatives often fails to protect against cell death, neurological damage, and cognitive deficits. In this study, the combination of dihydroartemisinin with rapamycin and atorvastatin improved the current antimalarial outcomes by overcoming the limitations of current antimalarials for CM morbidity and neurological sequelae. This combination offers a new adjunctive treatment for the clinical treatment of human CM in susceptible populations, including children under 5 years old and pregnant women.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yuting Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
12
|
Song X, Wei W, Cheng W, Zhu H, Wang W, Dong H, Li J. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol 2022; 12:939532. [PMID: 35959375 PMCID: PMC9359465 DOI: 10.3389/fcimb.2022.939532] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wei
- Beijing School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Haifeng Dong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| |
Collapse
|
13
|
Mota S, Bensalel J, Park DH, Gonzalez S, Rodriguez A, Gallego-Delgado J. Treatment Reducing Endothelial Activation Protects against Experimental Cerebral Malaria. Pathogens 2022; 11:643. [PMID: 35745497 PMCID: PMC9229727 DOI: 10.3390/pathogens11060643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral malaria (CM) is the most severe neurological complication of malaria caused by Plasmodium falciparum infection. The available antimalarial drugs are effective at clearing the parasite, but the mortality rate remains as high as 20% of CM cases. At the vascular level, CM is characterized by endothelial activation and dysfunction. Several biomarkers of endothelial activation have been associated with CM severity and mortality, making the brain vascular endothelium a potential target for adjunctive therapies. Statins and Angiotensin II Receptor Blockers (ARBs) are drugs used to treat hypercholesterolemia and hypertension, respectively, that have shown endothelial protective activity in other diseases. Here, we used a combination of a statin (atorvastatin) and an ARB (irbesartan) as adjunctive therapy to conventional antimalarial drugs in a mouse experimental model of CM. We observed that administration of atorvastatin-irbesartan combination decreased the levels of biomarkers of endothelial activation, such as the von Willebrand factor and angiopoietin-1. After mice developed neurological signs of CM, treatment with the combination plus conventional antimalarial drugs increased survival rates of animals 3-4 times compared to treatment with antimalarial drugs alone, with animals presenting lower numbers and smaller hemorrhages in the brain. Taken together, our results support the hypothesis that inhibiting endothelial activation would greatly reduce the CM-associated pathology and mortality.
Collapse
Affiliation(s)
- Sabrina Mota
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Johanna Bensalel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, NY 10468, USA;
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Do Hee Park
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Sandra Gonzalez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (S.M.); (D.H.P.); (S.G.)
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, NY 10468, USA;
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| |
Collapse
|
14
|
Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats. Mol Cell Biochem 2022; 477:2657-2667. [DOI: 10.1007/s11010-022-04463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
15
|
Reis PA, Castro-Faria-Neto HC. Systemic Response to Infection Induces Long-Term Cognitive Decline: Neuroinflammation and Oxidative Stress as Therapeutical Targets. Front Neurosci 2022; 15:742158. [PMID: 35250433 PMCID: PMC8895724 DOI: 10.3389/fnins.2021.742158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
In response to pathogens or damage signs, the immune system is activated in order to eliminate the noxious stimuli. The inflammatory response to infectious diseases induces systemic events, including cytokine storm phenomenon, vascular dysfunction, and coagulopathy, that can lead to multiple-organ dysfunction. The central nervous system (CNS) is one of the major organs affected, and symptoms such as sickness behavior (depression and fever, among others), or even delirium, can be observed due to activation of endothelial and glial cells, leading to neuroinflammation. Several reports have been shown that, due to CNS alterations caused by neuroinflammation, some sequels can be developed in special cognitive decline. There is still no any treatment to avoid cognitive impairment, especially those developed due to systemic infectious diseases, but preclinical and clinical trials have pointed out controlling neuroinflammatory events to avoid the development of this sequel. In this minireview, we point to the possible mechanisms that triggers long-term cognitive decline, proposing the acute neuroinflammatory events as a potential therapeutical target to treat this sequel that has been associated to several infectious diseases, such as malaria, sepsis, and, more recently, the new SARS-Cov2 infection.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Patricia Alves Reis,
| | | |
Collapse
|
16
|
Teixeira L, Temerozo JR, Pereira-Dutra FS, Ferreira AC, Mattos M, Gonçalves BS, Sacramento CQ, Palhinha L, Cunha-Fernandes T, Dias SSG, Soares VC, Barreto EA, Cesar-Silva D, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, Reis PA, Hottz ED, Bozza FA, Bou-Habib DC, Saraiva EM, de Almeida CJG, Viola JPB, Souza TML, Bozza PT. Simvastatin Downregulates the SARS-CoV-2-Induced Inflammatory Response and Impairs Viral Infection Through Disruption of Lipid Rafts. Front Immunol 2022; 13:820131. [PMID: 35251001 PMCID: PMC8895251 DOI: 10.3389/fimmu.2022.820131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.
Collapse
Affiliation(s)
- Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - André Costa Ferreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, Brazil
| | - Mayara Mattos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Barbara Simonson Gonçalves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Suelen S. G. Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ester A. Barreto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Camila R. R. Pão
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Caroline S. de Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia A. Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Dumith C. Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília J. G. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Patrícia T. Bozza, ;
| |
Collapse
|
17
|
Keswani T, Obeidallah A, Nieves E, Sidoli S, Fazzari M, Taylor T, Seydel K, Daily JP. Pipecolic Acid, a Putative Mediator of the Encephalopathy of Cerebral Malaria and the Experimental Model of Cerebral Malaria. J Infect Dis 2022; 225:705-714. [PMID: 34932816 PMCID: PMC8844588 DOI: 10.1093/infdis/jiab615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We explored a metabolic etiology of cerebral malaria (CM) coma. METHODS Plasma metabolites were compared between Malawian children with CM and mild Plasmodium falciparum malaria. A candidate molecule was further studied in animal models of malaria. RESULTS Clinically abnormal concentrations of pipecolic acid (PA) were present in CM plasma, and nearly normal in mild malaria samples. PA is renally cleared and the elevated PA blood levels were associated with renal insufficiency, which was present only in CM subjects. Prior studies demonstrate that PA has neuromodulatory effects and is generated by malaria parasites. PA brain levels in Plasmodium berghei ANKA-infected animals in the experimental cerebral malaria (ECM) model inversely correlated with normal behavior and correlated with blood-brain barrier (BBB) permeability. Mice infected with malaria species that do not induce neurological abnormalities or manifest BBB permeability had elevated plasma PA levels similar to ECM plasma at 7 days postinfection; however, they had low PA levels in the brain compared to ECM mice brains at 7 days postinfection. CONCLUSIONS Our model suggests that malaria-generated PA induces coma in CM and in ECM. The role of BBB permeability and the mechanisms of PA neuromodulation in CM will require additional investigation.
Collapse
Affiliation(s)
- Tarun Keswani
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aisha Obeidallah
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Edward Nieves
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Melissa Fazzari
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
18
|
Simvastatin Improves Microcirculatory Function in Nonalcoholic Fatty Liver Disease and Downregulates Oxidative and ALE-RAGE Stress. Nutrients 2022; 14:nu14030716. [PMID: 35277075 PMCID: PMC8838100 DOI: 10.3390/nu14030716] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Increased reactive oxidative stress, lipid peroxidation, inflammation, and fibrosis, which contribute to tissue damage and development and progression of nonalcoholic liver disease (NAFLD), play important roles in microcirculatory disorders. We investigated the effect of the modulatory properties of simvastatin (SV) on the liver and adipose tissue microcirculation as well as metabolic and oxidative stress parameters, including the advanced lipoxidation end product–receptors of advanced glycation end products (ALE-RAGE) pathway. SV was administered to an NAFLD model constructed using a high-fat–high-carbohydrate diet (HFHC). HFHC caused metabolic changes indicative of nonalcoholic steatohepatitis; treatment with SV protected the mice from developing NAFLD. SV prevented microcirculatory dysfunction in HFHC-fed mice, as evidenced by decreased leukocyte recruitment to hepatic and fat microcirculation, decreased hepatic stellate cell activation, and improved hepatic capillary network architecture and density. SV restored basal microvascular blood flow in the liver and adipose tissue and restored the endothelium-dependent vasodilatory response of adipose tissue to acetylcholine. SV treatment restored antioxidant enzyme activity and decreased lipid peroxidation, ALE-RAGE pathway activation, steatosis, fibrosis, and inflammatory parameters. Thus, SV may improve microcirculatory function in NAFLD by downregulating oxidative and ALE-RAGE stress and improving steatosis, fibrosis, and inflammatory parameters.
Collapse
|
19
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
20
|
Oliveira KRHM, Torres MLM, Kauffmann N, de Azevedo Ataíde BJ, de Souza Franco Mendes N, dos Anjos LM, dos Santos Borges R, Bahia CP, Leão LKR, da Conceição Fonseca Passos A, Herculano AM, de Jesus Oliveira Batista E. Euterpe oleracea fruit (Açai)-enriched diet suppresses the development of experimental cerebral malaria induced by Plasmodium berghei (ANKA) infection. BMC Complement Med Ther 2022; 22:11. [PMID: 35016657 PMCID: PMC8751313 DOI: 10.1186/s12906-021-03495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral malaria is one of the most severe complications attributed to protozoal infection by Plasmodium falciparum, gaining prominence in children mortality rates in endemic areas. This condition has a complex pathogenesis associated with behavioral, cognitive and motor sequels in humans and current antimalarial therapies have shown little effect in those aspects. Natural products with antioxidant and anti-inflammatory properties have become a valuable alternative therapeutic option in the treatment of distinct conditions. In this context, this study investigated the neuroprotective effect of Euterpe oleracea (açai) enriched diet during the development of experimental cerebral malaria induced by the inoculation of Swiss albino mice with Plasmodium berghei ANKA strain. Methods After Plasmodium infection, animals were maintained on a feeding with Euterpe oleracea enriched ration and parameters such as survival curve, parasitemia and body weight were routinely monitored. The present study has also evaluated the effect of açai-enriched diet on the blood-brain barrier leakage, histological alterations and neurocognitive impairments in mice developing cerebral malaria. Results Our results demonstrate that between 7th–19th day post infection the survival rate of the group treated with açai enriched ration was higher when compared with Plasmodium-infected mice in which 100% of mice died until the 11th days post-infection, demonstrating that açai diet has a protective effect on the survival of infected treated animals. The same was observed in the brain vascular extravasation, where Evans blue dye assays showed significantly less dye extravasation in the brains of Plasmodium-infected mice treated with açai enriched ration, demonstrating more preserved blood-brain barrier integrity. Açai-enriched diet also attenuate the histopathological alterations elicited by Plasmodium berghei infection. We also showed a decrease of the neurological impairments arising from the exposure of cerebral parenchyma in the group treated with açai diet, ameliorating motor and neuropsychiatric changes, analyzed through the SHIRPA protocol. Conclusion With these results, we conclude that the treatment with açai enriched ration decreased the mortality of infected animals, as well as protected the blood-brain barrier and the neurocognitive deficits in Plasmodium-infected animals.
Collapse
|
21
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:800-811. [DOI: 10.1093/jpp/rgac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
|
22
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
23
|
Xu Y, Dong Y, Wang C, Jiang Q, Chu H, Tian Y. Lovastatin attenuates sevoflurane-induced cognitive disorder in aged rats via reducing Aβ accumulation. Neurochem Int 2021; 148:105078. [PMID: 34048842 DOI: 10.1016/j.neuint.2021.105078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
As a general anesthetic widely used in surgical, sevoflurane has been shown to cause cognitive and memory deficits in the elderly. It's important to find out agents that can counteract sevoflurane-induced cognitive dysfunction. This study is aimed to investigate the effect of lovastatin on sevoflurane-induced cognitive impairment in aged rats and reveal the potential mechanisms. BV-2 cells, rat hippocampal neurons or male aged rats were exposed to 2% sevoflurane for 5 h. The cells were pretreated with 10 μM lovastatin. The rats were intraperitoneally injected with 5 mg/kg/day lovastatin for three days. The results showed that lovastatin enhanced exosomal IDE secretion from sevoflurane-exposed BV-2 cells and promoted Aβ degradation. Lovastatin treatment also inhibited the increased expressions of β-secretase 1 (BACE1) and γ-secretase in hippocampal neurons under sevoflurane exposure in vitro. In animal experiments, the discrimination index in novel object recognition test and percentage of spontaneous alternation in Y-maze test were significantly elevated after lovastatin administration. In addition, Aβ plaque area and contents of soluble Aβ1-40 and Aβ1-42 in the hippocampal tissues were decreased upon lovastatin treatment. Furthermore, lovastatin reversed sevoflurane-induced Aβ accumulation via up-regulating IDE expression, and down-regulating amyloid precursor protein (APP)-related protein expression (β-C-terminal fragment (CTF), BACE1 and γ-secretase). In conclusion, lovastatin alleviates sevoflurane-induced cognitive deficient in aged rats via promoting Aβ degradation and reducing Aβ production. Lovastatin may be beneficial in preventing anesthetic-induced cognitive impairment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunxia Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Cong Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Qian Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Haichao Chu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
24
|
Fujimoto T, Morofuji Y, Kovac A, Erickson MA, Deli MA, Niwa M, Banks WA. Pitavastatin Ameliorates Lipopolysaccharide-Induced Blood-Brain Barrier Dysfunction. Biomedicines 2021; 9:biomedicines9070837. [PMID: 34356901 PMCID: PMC8301395 DOI: 10.3390/biomedicines9070837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 01/02/2023] Open
Abstract
Statins have neuroprotective effects on neurological diseases, including a pleiotropic effect possibly related to blood–brain barrier (BBB) function. In this study, we investigated the effects of pitavastatin (PTV) on lipopolysaccharide (LPS)-induced BBB dysfunction in an in vitro BBB model comprising cocultured primary mouse brain endothelial cells, pericytes, and astrocytes. LPS (1 ng/mL, 24 h) increased the permeability and lowered the transendothelial electrical resistance of the BBB, and the co-administration of PTV prevented these effects. LPS increased the release of interleukin-6, granulocyte colony-stimulating factor, keratinocyte-derived chemokine, monocyte chemotactic protein-1, and regulated on activation, normal T-cell expressed and secreted from the BBB model. PTV inhibited the LPS-induced release of these cytokines. These results suggest that PTV can ameliorate LPS-induced BBB dysfunction, and these effects might be mediated through the inhibition of LPS-induced cytokine production. Clinically, therapeutic approaches using statins combined with novel strategies need to be designed. Our present finding sheds light on the pharmacological significance of statins in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Takashi Fujimoto
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan;
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98108, USA; (M.A.E.); (W.A.B.)
- Veterans Affairs Puget Sound Health Care System, Geriatric Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA 98108, USA
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan;
- National Nagasaki Medical Center, Department of Neurosurgery, 2-1001-1 Kubara, Omura, Nagasaki 856-8562, Japan
- Correspondence: ; Tel.: +81-95-819-7375
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia;
| | - Michelle A. Erickson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98108, USA; (M.A.E.); (W.A.B.)
- Veterans Affairs Puget Sound Health Care System, Geriatric Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA 98108, USA
| | - Mária A. Deli
- Biological Research Centre, Institute of Biophysics, 6726 Szeged, Hungary;
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company, Ltd., Dai-ichi-senshu Bldg. 2nd Floor, 6-19 Chitose-machi, Nagasaki 850-8135, Japan;
| | - William A. Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98108, USA; (M.A.E.); (W.A.B.)
- Veterans Affairs Puget Sound Health Care System, Geriatric Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
25
|
Barbosa-Silva MC, Lima MN, Battaglini D, Robba C, Pelosi P, Rocco PRM, Maron-Gutierrez T. Infectious disease-associated encephalopathies. Crit Care 2021; 25:236. [PMID: 34229735 PMCID: PMC8259088 DOI: 10.1186/s13054-021-03659-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood-brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation.
Collapse
Affiliation(s)
- Maria C Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Blum L, Ulshöfer T, Henke M, Krieg R, Berneburg I, Geisslinger G, Becker K, Parnham MJ, Schiffmann S. The immunomodulatory potential of the arylmethylaminosteroid sc1o. J Mol Med (Berl) 2020; 99:261-272. [PMID: 33330947 PMCID: PMC7819914 DOI: 10.1007/s00109-020-02024-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 11/03/2022]
Abstract
Developing resistance mechanisms of pathogens against established and frequently used drugs are a growing global health problem. Besides the development of novel drug candidates per se, new approaches to counteract resistance mechanisms are needed. Drug candidates that not only target the pathogens directly but also modify the host immune system might boost anti-parasitic defence and facilitate clearance of pathogens. In this study, we investigated whether the novel anti-parasitic steroid compound 1o (sc1o), effective against the parasites Plasmodium falciparum and Schistosoma mansoni, might exhibit immunomodulatory properties. Our results reveal that 50 μM sc1o amplified the inflammatory potential of M1 macrophages and shifted M2 macrophages in a pro-inflammatory direction. Since M1 macrophages used predominantly glycolysis as an energy source, it is noteworthy that sc1o increased glycolysis and decreased oxidative phosphorylation in M2 macrophages. The effect of sc1o on the differentiation and activation of dendritic cells was ambiguous, since both pro- and anti-inflammatory markers were regulated. In conclusion, sc1o has several immunomodulatory effects that could possibly assist the immune system by counteracting the anti-inflammatory immune escape strategy of the parasite P. falciparum or by increasing pro-inflammatory mechanisms against pathogens, albeit at a higher concentration than that required for the anti-parasitic effect. KEY MESSAGES: • The anti-parasitic steroid compound 1o (sc1o) can modulate human immune cells. • Sc1o amplified the potential of M1 macrophages. • Sc1o shifts M2 macrophages to a M1 phenotype. • Dendritic cell differentiation and activation was ambiguously modulated. • Administration of sc1o could possibly assist the anti-parasitic defence.
Collapse
Affiliation(s)
- Leonard Blum
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Marina Henke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Reimar Krieg
- Department of Anatomy II, University Hospital Jena, Teichgraben 7, 07743, Jena, Germany
| | - Isabell Berneburg
- Department of Anatomy II, University Hospital Jena, Teichgraben 7, 07743, Jena, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Simvastatin Posttreatment Controls Inflammation and Improves Bacterial Clearance in Experimental Sepsis. Mediators Inflamm 2020; 2020:1839762. [PMID: 33110395 PMCID: PMC7582071 DOI: 10.1155/2020/1839762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1β. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.
Collapse
|
28
|
Ogrinc K, Kastrin A, Lotrič-Furlan S, Bogovič P, Rojko T, Cerar-Kišek T, Ružić-Sabljić E, Wormser GP, Strle F. Effect of Statin Use on the Clinical Manifestations, Laboratory Test Results and Outcome of Lyme Neuroborreliosis. J Clin Med 2020; 9:jcm9092995. [PMID: 32948002 PMCID: PMC7563736 DOI: 10.3390/jcm9092995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Statins have anti-inflammatory and potentially antimicrobial activity, but whether they have a beneficial effect on the course of infectious diseases is controversial. In this study, we assessed the impact of pre-existing statin use on the course and outcome of Lyme neuroborreliosis manifested as meningoradiculitis (Bannwarth’s syndrome). One hundred and twenty three consecutive patients with Bannwarth’s syndrome, of whom 18 (14.6%) were being treated with statins, were included in the study. To assess the influence of statin use on the course and outcome of the disease, univariate and multivariable analyses were performed. No statistically significant association was found between statin pre-treatment and the clinical manifestations, laboratory test results, and outcome of Bannwarth’s syndrome. In conclusion, pre-existing use of statins did not significantly impact either the clinical presentation or the outcome of Bannwarth’s syndrome.
Collapse
Affiliation(s)
- Katarina Ogrinc
- Department of Infectious Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (S.L.-F.); (P.B.); (T.R.); (F.S.)
- Correspondence: ; Tel.: +386-1522-2110
| | - Andrej Kastrin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (S.L.-F.); (P.B.); (T.R.); (F.S.)
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (S.L.-F.); (P.B.); (T.R.); (F.S.)
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (S.L.-F.); (P.B.); (T.R.); (F.S.)
| | - Tjaša Cerar-Kišek
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.C.-K.); (E.R.-S.)
| | - Eva Ružić-Sabljić
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.C.-K.); (E.R.-S.)
| | - Gary P. Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, NY 10595, USA;
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (S.L.-F.); (P.B.); (T.R.); (F.S.)
| |
Collapse
|
29
|
Lima MN, Oliveira HA, Fagundes PM, Estato V, Silva AYO, Freitas RJRX, Passos BABR, Oliveira KS, Batista CN, Vallochi AL, Rocco PRM, Castro-Faria-Neto HC, Maron-Gutierrez T. Mesenchymal stromal cells protect against vascular damage and depression-like behavior in mice surviving cerebral malaria. Stem Cell Res Ther 2020; 11:367. [PMID: 32843073 PMCID: PMC7448996 DOI: 10.1186/s13287-020-01874-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Malaria is one of the most critical global infectious diseases. Severe systemic inflammatory diseases, such as cerebral malaria, lead to the development of cognitive and behavioral alterations, such as learning disabilities and loss of memory capacity, as well as increased anxiety and depression. The consequences are profound and usually contribute to reduce the patient's quality of life. There are no therapies to treat the neurological sequelae of cerebral malaria. Mesenchymal stromal cells (MSCs) may be an alternative, since they have been used as therapy for neurodegenerative diseases and traumatic lesions of the central nervous system. So far, no study has investigated the effects of MSC therapy on the blood-brain barrier, leukocyte rolling and adherence in the brain, and depression like-behavior in experimental cerebral malaria. METHODS Male C57BL/6 mice were infected with Plasmodium berghei ANKA (PbA, 1 × 106 PbA-parasitized red blood cells, intraperitoneally). At day 6, PbA-infected animals received chloroquine (25 mg/kg orally for seven consecutive days) as the antimalarial treatment and were then randomized to receive MSCs (1 × 105 cells in 0.05 ml of saline/mouse) or saline (0.05 ml) intravenously. Parasitemia, clinical score, and survival rate were analyzed throughout the experiments. Evans blue assay was performed at 6, 7, and 15 days post-infection (dpi). Behavioral tests were performed at 5 and 15 dpi. Intravital microscopy experiments and brain-derived neurotrophic factor (BDNF) protein expression analyses were performed at 7 dpi, whereas inflammatory mediators were measured at 15 dpi. In vitro, endothelial cells were used to evaluate the effects of conditioned media derived from MSCs (CMMSC) on cell viability by lactate dehydrogenase (LDH) release. RESULTS PbA-infected mice presented increased parasitemia, adherent leukocytes, blood-brain barrier permeability, and reduced BDNF protein levels, as well as depression-like behavior. MSCs mitigated behavioral alterations, restored BDNF and transforming growth factor (TGF)-β protein levels, and reduced blood-brain barrier dysfunction and leukocyte adhesion in the brain microvasculature. In a cultured endothelial cell line stimulated with heme, CMMSC reduced LDH release, suggesting a paracrine mechanism of action. CONCLUSION A single dose of MSCs as adjuvant therapy protected against vascular damage and improved depression-like behavior in mice that survived experimental cerebral malaria.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Helena A Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Paula M Fagundes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Adriano Y O Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Karina S Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Camila N Batista
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Adriana L Vallochi
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
30
|
Guha SK, Sarkar I, Patgaonkar M, Banerjee S, Mukhopadhyay S, Sharma S, Pathak S, Vaidya VA. A history of juvenile mild malaria exacerbates chronic stress-evoked anxiety-like behavior, neuroinflammation, and decline of adult hippocampal neurogenesis in mice. J Neuroimmunol 2020; 348:577363. [PMID: 32919145 DOI: 10.1016/j.jneuroim.2020.577363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 01/23/2023]
Abstract
Children residing in high malaria transmission regions are particularly susceptible to malaria. This early-life window is also a critical period for development and maturation of the nervous system, and inflammatory insults during this period may evoke a persistent increase in vulnerability for psychopathology. We employed a two-hit model of juvenile mild malaria and a two-week chronic unpredictable mild stress (CUMS) regime, commencing 60 days post-parasite clearance, to assess whether a history of juvenile infection predisposed the mice towards mood-related behavioral alterations and neurocognitive deficits. We showed that adult mice with a history of juvenile malaria (A-H/JMAL) exhibited heightened CUMS-associated anxiety-like behavior, with no observable change in cognitive behavior. In contrast, mice with a history of adult malaria did not exhibit such enhanced stress vulnerability. At baseline, A-H/JMAL mice showed increased activated microglia within the hippocampal dentate gyrus subfield. This was accompanied by a decrease in proliferating neuronal progenitors, with total number of immature hippocampal neurons unaltered. This neuroinflammatory and neurogenic decline was further exacerbated by CUMS. At day-14 post-CUMS, hippocampi of A-H/JMAL mice showed significantly higher microglial activation, and a concomitant decrease in progenitor proliferation and number of immature neurons. Taken together, these results suggest that a history of juvenile mild malaria leaves a neuroinflammatory mark within the hippocampal niche, and this may contribute to a heightened stress response in adulthood. Our findings lend credence to the idea that the burden of malaria in early-life results in sustained CNS changes that could contribute to increased vulnerability to adult-onset neuronal insults.
Collapse
Affiliation(s)
- Suman K Guha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishita Sarkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Souvik Banerjee
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
| | - Siuli Mukhopadhyay
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
31
|
de Azevedo-Quintanilha IG, Medeiros-de-Moraes IM, Ferreira AC, Reis PA, Vieira-de-Abreu A, Campbell RA, Weyrich AS, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Haem oxygenase protects against thrombocytopaenia and malaria-associated lung injury. Malar J 2020; 19:234. [PMID: 32611348 PMCID: PMC7327213 DOI: 10.1186/s12936-020-03305-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Malaria-triggered lung injury can occur in both severe and non-severe cases. Platelets may interact with parasitized erythrocytes, leukocytes and endothelium. These interactions can lead to microvessel obstructions and induce release of inflammatory mediators. Induction of the haem oxygenase enzyme is important in the host’s response to free haem and to several other molecules generated by infectious or non-infectious diseases. In addition, an important role for the haem oxygenase-1 isotype has been demonstrated in experimental cerebral malaria and in clinical cases. Therefore, the present work aims to determine the influence of haem oxygenase in thrombocytopaenia and acute pulmonary injury during infection with Plasmodium berghei strain NK65. Methods C57BL/6 mice were infected with P. berghei and analysed 7-10 days post-infection. For each experiment, Cobalt Protoporphyrin IX/CoPPIX or saline were administered. Bronchoalveolar lavage fluid was used for total and differential leukocyte count and for protein measurement. Lungs were used for histological analyses or for analysis of cytokines and western blotting. The lung permeability was analysed by Evans blue dye concentration. Platelet-leukocyte aggregate formation was assayed using the flow cytometer. Results Plasmodium berghei NK65 infection generated an intense lung injury, with increased levels of inflammatory mediators, oedema, and cell migration into the lung. Plasmodium berghei infection was also accompanied by marked thrombocytopaenia and formation of platelet-leukocyte aggregates in peripheral blood. Treatment with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) modified the inflammatory response but did not affect the evolution of parasitaemia. Animals treated with CoPPIX showed an improvement in lung injury, with decreased inflammatory infiltrate in the lung parenchyma, oedema and reduced thrombocytopaenia. Conclusion Data here presented suggest that treatment with CoPPIX inducer leads to less severe pulmonary lung injury and thrombocytopaenia during malaria infection, thus increasing animal survival.
Collapse
Affiliation(s)
| | | | - André C Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Universidade Iguaçu, Nova Iguaçu, RJ, Brazil
| | - Patrícia A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana Vieira-de-Abreu
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert A Campbell
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Andrew S Weyrich
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hugo C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Rana R, Sharma R, Kumar A. Repurposing of Existing Statin Drugs for Treatment of Microbial Infections: How Much Promising? Infect Disord Drug Targets 2020; 19:224-237. [PMID: 30081793 DOI: 10.2174/1871526518666180806123230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/20/2018] [Accepted: 07/23/2018] [Indexed: 01/27/2023]
Abstract
Today's microbial infections' resistance to approved drugs, the emergence of new infectious diseases and lack of vaccines, create a huge threat to human health. Thus, there is an urgent need to create novel antimicrobial agents, but the high cost and prolonged timeline of novel drug discovery and development is the major barrier to make new drugs. Therefore, there is a need for specific cost effective approaches in order to identify new drugs for the treatment of various microbial infections. Drug repurposition is an alternative technique to find existing clinically approved drugs for other indications. This approach may enhance the portfolio of Pharmaceutical companies by reducing the time and money required for the development of new chemical entity. In literature, various studies have reported some encouraging results regarding the antimicrobial use of existing statin drugs. Further, some clinical studies have also shown the protective effect of statin drugs in reduction of the morbidity and mortality due to many infectious diseases but complete understanding is still lacking. Thus, there is a need for better understanding of the use of statin drugs, especially in the context of antimicrobial effects. In this review, we try to summarize the use of statin drugs in various infectious diseases and their proposed antimicrobial mechanism of action. Further, current challenges and future perspectives of repurposition of statin drugs as antimicrobial agents have also been discussed.
Collapse
Affiliation(s)
- Ritika Rana
- Department of Pharmacology, Indo-Soviet Friendship Pharmacy College (ISFCP), Moga, Punjab, India
| | - Ruchika Sharma
- Department of Biotechnology, Indo-Soviet Friendship Institute of Professional Studies (ISFIPS), Moga, Punjab, India
| | - Anoop Kumar
- Department of Pharmacology, Indo-Soviet Friendship Pharmacy College (ISFCP), Moga, Punjab, India
| |
Collapse
|
33
|
Vanka R, Nakka VP, Kumar SP, Baruah UK, Babu PP. Molecular targets in cerebral malaria for developing novel therapeutic strategies. Brain Res Bull 2020; 157:100-107. [PMID: 32006570 DOI: 10.1016/j.brainresbull.2020.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Cerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM. Poor diagnosis often leads to inappropriate malaria therapy which in turn progress into a severe form of disease. Activation of multiple cell death pathways such as Inflammation, oxidative stress, apoptosis and disruption of blood brain barrier (BBB) plays critical role in the pathogenesis of CM and secondary brain damage. Thus, understanding such mechanisms of neuronal cell death might help to identify potential molecular targets for CM. Mitigation strategies for mortality rate and long-term cognitive deficits caused by existing anti-malarial drugs still remains a valid research question to ask. In this review, we discuss in detail about critical neuronal cell death mechanisms and the overall significance of adjunctive therapy with recent trends, which provides better insight towards establishing newer therapeutic strategies for CM.
Collapse
Affiliation(s)
- Ravisankar Vanka
- Department of Pharmaceutics, Aditya Pharmacy College, Suramaplem, Gandepalli Mandal, East Godavari, Andhra Pradesh, 533437, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Simhadri Praveen Kumar
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Tamil Nadu 643001, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
34
|
de Azevedo-Quintanilha IG, Vieira-de-Abreu A, Ferreira AC, Reis PA, Silva TI, Nascimento DDO, Campbell RA, Estato V, Weyrich AS, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin αDβ2 influences cerebral edema, leukocyte accumulation and neurologic outcomes in experimental severe malaria. PLoS One 2019; 14:e0224610. [PMID: 31869339 PMCID: PMC6927624 DOI: 10.1371/journal.pone.0224610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Malaria is an infectious disease of major worldwide clinical importance that causes a variety of severe, or complicated, syndromes including cerebral malaria, which is often fatal. Leukocyte integrins are essential for host defense but also mediate physiologic responses of the innate and adaptive immune systems. We previously showed that targeted deletion of the αD subunit (αD-/-) of the αDβ2 integrin, which is expressed on key leukocyte subsets in mice and humans, leads to absent expression of the integrin heterodimer on murine macrophages and reduces mortality in mice infected with Plasmodium berghei ANKA (P. berghei ANKA). To further identify mechanisms involved in the protective effect of αD deletion in this model of severe malaria we examined wild type C57BL/6 (WT) and αD-/- mice after P. berghei ANKA infection and found that vessel plugging and leukocyte infiltration were significantly decreased in the brains of αD-/- animals. Intravital microscopy demonstrated decreased rolling and adhesion of leukocytes in cerebral vessels of αD-/- mice. Flow cytometry analysis showed decreased T-lymphocyte accumulation in the brains of infected αD-/- animals. Evans blue dye exclusion assays demonstrated significantly less dye extravasation in the brains of αD-/- mice, indicating preserved blood-brain barrier integrity. WT mice that were salvaged from P. berghei ANKA infection by treatment with chloroquine had impaired aversive memory, which was not observed in αD-/- mice. We conclude that deletion of integrin αDβ2 alters the natural course of experimental severe malaria, demonstrating previously unrecognized activities of a key leukocyte integrin in immune-inflammatory responses that mediate cerebral involvement.
Collapse
Affiliation(s)
| | - Adriana Vieira-de-Abreu
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia A. Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiany I. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle de O. Nascimento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert A. Campbell
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Vanessa Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew S. Weyrich
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guy A. Zimmerman
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Hugo C. Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Nwafor DC, Brichacek AL, Mohammad AS, Griffith J, Lucke-Wold BP, Benkovic SA, Geldenhuys WJ, Lockman PR, Brown CM. Targeting the Blood-Brain Barrier to Prevent Sepsis-Associated Cognitive Impairment. J Cent Nerv Syst Dis 2019; 11:1179573519840652. [PMID: 31007531 PMCID: PMC6456845 DOI: 10.1177/1179573519840652] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a systemic inflammatory disease resulting from an infection. This disorder affects 750 000 people annually in the United States and has a 62% rehospitalization rate. Septic symptoms range from typical flu-like symptoms (eg, headache, fever) to a multifactorial syndrome known as sepsis-associated encephalopathy (SAE). Patients with SAE exhibit an acute altered mental status and often have higher mortality and morbidity. In addition, many sepsis survivors are also burdened with long-term cognitive impairment. The mechanisms through which sepsis initiates SAE and promotes long-term cognitive impairment in septic survivors are poorly understood. Due to its unique role as an interface between the brain and the periphery, numerous studies support a regulatory role for the blood-brain barrier (BBB) in the progression of acute and chronic brain dysfunction. In this review, we discuss the current body of literature which supports the BBB as a nexus which integrates signals from the brain and the periphery in sepsis. We highlight key insights on the mechanisms that contribute to the BBB's role in sepsis which include neuroinflammation, increased barrier permeability, immune cell infiltration, mitochondrial dysfunction, and a potential barrier role for tissue non-specific alkaline phosphatase (TNAP). Finally, we address current drug treatments (eg, antimicrobials and intravenous immunoglobulins) for sepsis and their potential outcomes on brain function. A comprehensive understanding of these mechanisms may enable clinicians to target specific aspects of BBB function as a therapeutic tool to limit long-term cognitive impairment in sepsis survivors.
Collapse
Affiliation(s)
- Divine C Nwafor
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Allison L Brichacek
- Immunology and Microbial Pathogenesis, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Afroz S Mohammad
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Jessica Griffith
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Brandon P Lucke-Wold
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Stanley A Benkovic
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Paul R Lockman
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Candice M Brown
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Immunology and Microbial Pathogenesis, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
36
|
The Antineuroinflammatory Effect of Simvastatin on Lipopolysaccharide Activated Microglial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9691085. [PMID: 30524484 PMCID: PMC6247388 DOI: 10.1155/2018/9691085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 01/24/2023]
Abstract
Microglial cells, upon hyperactivation, produce proinflammatory cytokines and other oxidative stress mediators causing neuroinflammation, which is associated with the progress of many neurodegenerative diseases. Suppressing the microglial activation has hence been used as an approach for treating such diseases. In this study, the antineuroinflammatory effect of simvastatin was examined in lipopolysaccharide (LPS)-activated rat C6 glioma cells. The cell proliferation and cytotoxic effect of LPS and simvastatin on C6 glioma cells was evaluated by (MTT) assay. Neuroinflammation was induced in differentiated cell lines by treatment with 3.125 μg/mL of LPS for 12 h. Upon induction, the cell lines were treated with different concentrations (3.125, 6.25, 12.5, 25, 50, 100 μM) of simvastatin and incubated in a humidified CO2 incubator for 24 to 48 h. The optimum concentrations of LPS and simvastatin were found to be 3.125 μg/mL and 25 μM, respectively, with a cell viability of more than 90% at 24 h postincubation. Furthermore, proinflammatory marker expression was analyzed by flow cytometry and showed a decrease in interferon-γ, interleukin 6, nuclear factor-κB p65, and tumor necrosis factor-α in simvastatin-treated and LPS-induced neuroinflammatory cells, and the mean fluorescent values were found to be 21.75 ± 0.76, 20.9 ± 1.90, 19.72 ± 1.29, and 16.82 ± 0.97, respectively, as compared to the untreated cells. Thus, we show that simvastatin has the potential to regulate the anti-inflammatory response in microglial cells upon LPS challenge. Hence, simvastatin can be employed as a potent anti-inflammatory drug against neuroinflammatory diseases and neurodegenerative disorders.
Collapse
|
37
|
Impact of pre-existing treatment with statins on the course and outcome of tick-borne encephalitis. PLoS One 2018; 13:e0204773. [PMID: 30286159 PMCID: PMC6171849 DOI: 10.1371/journal.pone.0204773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Although statins have anti-inflammatory and potentially also antimicrobial (including antiviral) activity, their therapeutic impact on infectious diseases is controversial. In this study, we evaluated whether pre-existing statin use influenced the course and outcome of tick-borne encephalitis. METHODS To assess the influence of statin usage on the severity of acute illness and the outcome of tick-borne encephalitis, univariate and multivariable analyses were performed for 700 adult patients with tick-borne encephalitis of whom 77 (11%) were being treated with statins, and for 410 patients of whom 53 (13%) were receiving statins, respectively. RESULTS Multivariable analyses found no statistically significant association between statin usage and having a milder acute illness. There was also no statistically significant benefit with respect to a favorable outcome defined by the absence of post-encephalitic syndrome (ORs for a favorable outcome at 6 months was 0.96, 95% CI: 0.46-2.04, P = 0.926; at 12 months 0.29, 95% CI: 0.06-1.33, P = 0.111; at 2-7 years after acute illness 0.44, 95% CI: 0.09-2.22, P = 0.321), by a reduction in the frequency of six nonspecific symptoms (fatigue, myalgia/arthralgia memory disturbances, headache, concentration disturbances, irritability) occurring during the 4 week period before the last examination, or by higher SF-36 scores in any of the eight separate domains of health as well as in the physical and mental global overall component. Furthermore, there were no significant differences between patients receiving statins and those who were not in the cerebrospinal fluid or serum levels for any of the 24 cytokines/chemokines measured. CONCLUSIONS In this observational study, we could not prove that pre-existing use of statins affected either the severity of the acute illness or the long-term outcome of tick-borne encephalitis.
Collapse
|
38
|
Estato V, Stipursky J, Gomes F, Mergener TC, Frazão-Teixeira E, Allodi S, Tibiriçá E, Barbosa HS, Adesse D. The Neurotropic Parasite Toxoplasma gondii Induces Sustained Neuroinflammation with Microvascular Dysfunction in Infected Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2674-2687. [PMID: 30121257 DOI: 10.1016/j.ajpath.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is one of the leading parasitic diseases worldwide. Some data suggest that chronic acquired toxoplasmosis could be linked to behavioral alterations in humans. The parasite infects neurons, forming immunologically silent cysts. Cerebral microcirculation homeostasis is determinant to brain functions, and pathologic states can alter capillarity or blood perfusion, leading to neurodegeneration and cognitive deficits. Albino mice were infected with Toxoplasma gondii (ME49 strain) and analyzed after 10, 40, and 180 days. Infected mice presented decreased cerebral blood flow at 10 and 40 days post infection (dpi), which were restored at 180 dpi, as shown by laser speckle contrast imaging. Intravital microscopy demonstrated that infection led to significant capillary rarefaction, accompanied by neuroinflammation, with microglial activation and increased numbers of rolling and adherent leukocytes to the wall of cerebral capillaries. Acetylcholine-induced vasodilation was altered at all time points, and blood brain barrier permeability was evident in infected animals at 40 dpi. Infection reduced angiogenesis, with a decreased number of isolectin B4-stained blood vessels and a decrease in length and branching of laminin-stained capillaries. Sulfadiazine reduced parasite load and partially repaired microvascular damages. We conclude that T. gondii latent infection causes a harmful insult in the brain, promoting neuroinflammation and microcirculatory dysfunction in the brain, with decreased angiogenesis and can contribute to a neurodegenerative process.
Collapse
Affiliation(s)
- Vanessa Estato
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Produtos Naturais, Departamento de Produtos Naturais, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joice Stipursky
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Gomes
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tally C Mergener
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edwards Frazão-Teixeira
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Tibiriçá
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7820890. [PMID: 29849914 PMCID: PMC5903342 DOI: 10.1155/2018/7820890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/04/2018] [Indexed: 11/23/2022]
Abstract
Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs) are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA) antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay), cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS) or cyclophosphamide (CPA). Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM) was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA.
Collapse
|
40
|
Gonçalves-de-Albuquerque CF, Rohwedder I, Silva AR, Ferreira AS, Kurz ARM, Cougoule C, Klapproth S, Eggersmann T, Silva JD, de Oliveira GP, Capelozzi VL, Schlesinger GG, Costa ER, Estrela Marins RDCE, Mócsai A, Maridonneau-Parini I, Walzog B, Macedo Rocco PR, Sperandio M, de Castro-Faria-Neto HC. The Yin and Yang of Tyrosine Kinase Inhibition During Experimental Polymicrobial Sepsis. Front Immunol 2018; 9:901. [PMID: 29760707 PMCID: PMC5936983 DOI: 10.3389/fimmu.2018.00901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are the first cells of our immune system to arrive at the site of inflammation. They release cytokines, e.g., chemokines, to attract further immune cells, but also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly regulated host defense mechanism can become uncontrolled and hyperactive resulting in severe organ damage. Currently, no effective therapy is available to fight sepsis; therefore, novel treatment targets that could prevent excessive inflammatory responses are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have been shown to play a major role in regulating immune cell recruitment and host defense. Leukocytes with SFK depletion display severe spreading and migration defects along with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyrosine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflammation and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed diminished leukocyte adhesion and extravasation in tumor necrosis factor-α-stimulated cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ damage, and clinical outcome improved in a dose-dependent fashion pointing toward an optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib treatment may, therefore, provide a balanced immune response by preventing an overshooting inflammatory reaction on the one side and bacterial overgrowth on the other side.
Collapse
Affiliation(s)
- Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany.,Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ina Rohwedder
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Angela R M Kurz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Klapproth
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Tanja Eggersmann
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Pena de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Laboratório de Genômica Pulmonar, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edlaine Rijo Costa
- Laboratorio de Farmacologia, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita de Cassia Elias Estrela Marins
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Attila Mócsai
- MTA-SE "Lendület" Inflammation Physiology Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Walzog
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Markus Sperandio
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | | |
Collapse
|
41
|
Barichello T, Sayana P, Giridharan VV, Arumanayagam AS, Narendran B, Della Giustina A, Petronilho F, Quevedo J, Dal-Pizzol F. Long-Term Cognitive Outcomes After Sepsis: a Translational Systematic Review. Mol Neurobiol 2018; 56:186-251. [PMID: 29687346 DOI: 10.1007/s12035-018-1048-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
Abstract
Sepsis is systemic inflammatory response syndrome with a life-threatening organ dysfunction that is caused by an unbalanced host immune response in an attempt to eliminate invasive microorganisms. We posed questions, "Does sepsis survivor patients have increased risk of neuropsychiatric manifestations?" and "What is the mechanism by which sepsis induces long-term neurological sequelae, particularly substantial cognitive function decline in survivor patients and in pre-clinical sepsis models?" The studies were identified by searching PubMed/MEDLINE (National Library of Medicine), PsycINFO, EMBASE (Ovid), LILACS (Latin American and Caribbean Health Sciences Literature), IBECS (Bibliographical Index in Spanish in Health Sciences), and Web of Science databases for peer-reviewed journals that were published until January 2018. A total of 3555 papers were included in the primary screening. After that, 130 articles were selected for the study. A number of pre-clinical studies have shown an auto amplification of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in the first few hours after sepsis induction, also increased blood-brain barrier permeability, elevated levels of matrix metalloproteinases, increased levels of damage-associated molecular patterns were demonstrated. In addition, the rodents presented long-term cognitive impairment in different behavioral tasks that were prevented by blocking the mechanism of action of these inflammatory mediators. Clinical studies have showed that sepsis survivors presented increased bodily symptoms such as fatigue, pain, visual disturbances, gastrointestinal problems, and neuropsychiatric problems compared to before sepsis. Sepsis leaves the survivors with an aftermath of physiological, neuropsychiatric, and functional impairment. Systematic review registration: CRD42017071755.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA. .,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Pavani Sayana
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | | | - Boomadevi Narendran
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Amanda Della Giustina
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.,Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
42
|
Differences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neurodegeneration. Toxicol Appl Pharmacol 2018. [DOI: 10.1016/j.taap.2018.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Papa MP, Meuren LM, Coelho SVA, Lucas CGDO, Mustafá YM, Lemos Matassoli F, Silveira PP, Frost PS, Pezzuto P, Ribeiro MR, Tanuri A, Nogueira ML, Campanati L, Bozza MT, Paula Neto HA, Pimentel-Coelho PM, Figueiredo CP, de Aguiar RS, de Arruda LB. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption. Front Microbiol 2017; 8:2557. [PMID: 29312238 PMCID: PMC5743735 DOI: 10.3389/fmicb.2017.02557] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/08/2017] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.
Collapse
Affiliation(s)
- Michelle P. Papa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lana M. Meuren
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sharton V. A. Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina G. de Oliveira Lucas
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmin M. Mustafá
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola P. Silveira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula S. Frost
- Núcleo de Neurociências da Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milene R. Ribeiro
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio L. Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Loraine Campanati
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor A. Paula Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro M. Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia P. Figueiredo
- Núcleo de Neurociências da Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato S. de Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B. de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Freitas F, Estato V, Reis P, Castro-Faria-Neto HC, Carvalho V, Torres R, Lessa MA, Tibirica E. Acute simvastatin treatment restores cerebral functional capillary density and attenuates angiotensin II-induced microcirculatory changes in a model of primary hypertension. Microcirculation 2017; 24. [DOI: 10.1111/micc.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Felipe Freitas
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
| | - Vanessa Estato
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
| | - Patricia Reis
- Laboratory of Immunopharmacology; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
| | - Hugo C. Castro-Faria-Neto
- Laboratory of Immunopharmacology; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
- Estácio de Sá University; Rio de Janeiro Brazil
| | - Vinícius Carvalho
- Laboratory of Inflammation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
| | - Rafael Torres
- Laboratory of Inflammation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
| | - Marcos A. Lessa
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
| | - Eduardo Tibirica
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro RJ Brazil
| |
Collapse
|
45
|
Cerebral Malaria Causes Enduring Behavioral and Molecular Changes in Mice Brain Without Causing Gross Histopathological Damage. Neuroscience 2017; 369:66-75. [PMID: 29113928 DOI: 10.1016/j.neuroscience.2017.10.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 01/13/2023]
Abstract
Malaria, parasitic disease considered a major health public problem, is caused by Plasmodium protozoan genus and transmitted by the bite of infected female Anopheles mosquito genus. Cerebral malaria (CM) is the most severe presentation of malaria, caused by P. falciparum and responsible for high mortality and enduring development of cognitive deficits which may persist even after cure and cessation of therapy. In the present study we evaluated selected behavioral, neurochemical and neuropathologic parameters after rescue from experimental cerebral malaria caused by P. berghei ANKA in C57BL/6 mice. Behavioral tests showed impaired nest building activity as well as increased marble burying, indicating that natural behavior of mice remains altered even after cure of infection. Regarding the neurochemical data, we found decreased α2/α3 Na+,K+-ATPase activity and increased immunoreactivity of phosphorylated Na+,K+-ATPase at Ser943 in cerebral cortex after CM. In addition, [3H]-Flunitrazepam binding assays revealed a decrease of benzodiazepine/GABAA receptor binding sites in infected animals. Moreover, in hippocampus, dot blot analysis revealed increased levels of protein carbonyls, suggesting occurrence of oxidative damage to proteins. Interestingly, no changes in the neuropathological markers Fluoro-Jade C, Timm staining or IBA-1 were detected. Altogether, present data indicate that behavioral and neurochemical alterations persist even after parasitemia clearance and CM recovery, which agrees with available clinical findings. Some of the molecular mechanisms reported in the present study may underlie the behavioral changes and increased seizure susceptibility that persist after recovery from CM and may help in the future development of therapeutic strategies for CM sequelae.
Collapse
|
46
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
47
|
Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells. Mediators Inflamm 2017; 2017:2582745. [PMID: 28546657 PMCID: PMC5435995 DOI: 10.1155/2017/2582745] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
The anti-inflammatory effects of statins (HMG-CoA reductase inhibitors) within the cardiovascular system are well-established; however, their neuroinflammatory potential is unclear. It is currently unknown whether statins' neurological effects are lipid-dependent or due to pleiotropic mechanisms. Therefore, the assumption that all statin compounds will have the same effect within the central nervous system is potentially inappropriate, with no studies to date having compared all statins in a single model. Thus, the aim of this study was to compare the effects of the six statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) within a single in vitro model of neuroinflammation. To achieve this, PMA-differentiated THP-1 cells were used as surrogate microglial cells, and LPS was used to induce inflammatory conditions. Here, we show that pretreatment with all statins was able to significantly reduce LPS-induced interleukin (IL)-1β and tumour necrosis factor (TNF)-α release, as well as decrease LPS-induced prostaglandin E2 (PGE2). Similarly, global reactive oxygen species (ROS) and nitric oxide (NO) production were decreased following pretreatment with all statins. Based on these findings, it is suggested that more complex cellular models should be considered to further compare individual statin compounds, including translation into in vivo models of acute and/or chronic neuroinflammation.
Collapse
|
48
|
Simvastatin Attenuates Endothelial Activation through 15-Epi-Lipoxin A4 Production in Murine Chronic Chagas Cardiomyopathy. Antimicrob Agents Chemother 2017; 61:AAC.02137-16. [PMID: 27993857 DOI: 10.1128/aac.02137-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/14/2016] [Indexed: 01/17/2023] Open
Abstract
Current treatments for chronic Chagas cardiomyopathy, a disease with high mortality rates and caused by the protozoan Trypanosoma cruzi, are unsatisfactory. Myocardial inflammation, including endothelial activation, is responsible for the structural and functional damage seen in the chronic phase. The clinical efficacy of benznidazole could be improved by decreasing chronic inflammation. Statins, which have anti-inflammatory properties, may improve the action of benznidazole. Here, the action of simvastatin in a murine model of chronic Chagas cardiomyopathy and the link with the production of the proresolving eicosanoid 15-epi-lipoxin A4, produced by 5-lipoxygenase, are evaluated. Simvastatin decreased the expression of the adhesion molecules E-selectin, intracellular adhesion molecule type 1 (ICAM-1), and vascular cell adhesion molecule type 1 (VCAM-1) in T. cruzi-infected mice. However, when this drug was administered to 5-lipoxygenase-deficient mice, the anti-inflammatory effect was not observed unless exogenous 15-epi-lipoxin A4 was administered. Thus, in chronic Chagas disease, 5-epi-lipoxin A4 induced by simvastatin treatment could improve the pathophysiological condition of patients by increasing the trypanocidal action of benznidazole.
Collapse
|
49
|
Mazeraud A, Pascal Q, Verdonk F, Heming N, Chrétien F, Sharshar T. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis. Clin Chest Med 2017; 37:333-45. [PMID: 27229649 DOI: 10.1016/j.ccm.2016.01.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sepsis-associated encephalopathy (SAE), a complication of sepsis, is often complicated by acute and long-term brain dysfunction. SAE is associated with electroencephalogram pattern changes and abnormal neuroimaging findings. The major processes involved are neuroinflammation, circulatory dysfunction, and excitotoxicity. Neuroinflammation and microcirculatory alterations are diffuse, whereas excitotoxicity might occur in more specific structures involved in the response to stress and the control of vital functions. A dysfunction of the brainstem, amygdala, and hippocampus might account for the increased mortality, psychological disorders, and cognitive impairment. This review summarizes clinical and paraclinical features of SAE and describes its mechanisms at cellular and structural levels.
Collapse
Affiliation(s)
- Aurelien Mazeraud
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; Sorbonne Paris Cité, Paris Descartes University, Rue de l'école de médecine, Paris 75006, France; General Intensive Care, Assistance Publique Hopitaux de Paris, Raymond Poincaré Teaching Hosptal, Garches 92380, France
| | - Quentin Pascal
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France
| | - Franck Verdonk
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; Sorbonne Paris Cité, Paris Descartes University, Rue de l'école de médecine, Paris 75006, France
| | - Nicholas Heming
- General Intensive Care, Assistance Publique Hopitaux de Paris, Raymond Poincaré Teaching Hosptal, Garches 92380, France
| | - Fabrice Chrétien
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; Sorbonne Paris Cité, Paris Descartes University, Rue de l'école de médecine, Paris 75006, France; Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, 1 rue cabanis, Paris 75014, France
| | - Tarek Sharshar
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; General Intensive Care, Assistance Publique Hopitaux de Paris, Raymond Poincaré Teaching Hosptal, Garches 92380, France; Versailles-Saint Quentin University, Avenue de Paris, Versailles 78000, France.
| |
Collapse
|
50
|
Reis PA, Alexandre PCB, D'Avila JC, Siqueira LD, Antunes B, Estato V, Tibiriça EV, Verdonk F, Sharshar T, Chrétien F, Castro-Faria-Neto HC, Bozza FA. Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction. Brain Behav Immun 2017; 60:293-303. [PMID: 27833044 DOI: 10.1016/j.bbi.2016.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Acute brain dysfunction is a frequent condition in sepsis patients and is associated with increased mortality and long-term neurocognitive consequences. Impaired memory and executive function are common findings in sepsis survivors. Although neuroinflammation and blood-brain barrier dysfunction have been associated with acute brain dysfunction and its consequences, no specific treatments are available that prevent cognitive impairment after sepsis. Experimental sepsis was induced in Swiss Webster mice by intraperitoneal injection of cecal material (5mg/kg, 500μL). Control groups (n=5/group each experiment) received 500μL of saline. Support therapy recover (saline 0.9%, 1mL and imipenem 30mg/kg) were applied (6, 24 and 48h post injection, n=5-10/group, each experiment), together or not with additive orally treatment with statins (atorvastatin/simvastatin 20mg/kg b.w.). Survival rate was monitored at 6, 24 and 48h. In a setting of experiments, animals were euthanized at 6 and 24h after induction for biochemical, immunohistochemistry and intravital analysis. Statins did not prevented mortality in septic mice, however survivors presented lower clinical score. At another setting of experiments, after 15days, mice survivors from fecal supernatant peritoneal sepsis presented cognitive dysfunction for contextual hippocampal and aversive amygdala-dependent memories, which was prevented by atorvastatin/simvastatin treatment. Systemic and brain tissue levels of proinflammatory cytokines/chemokines and activation of microglial were lower in septic mice treated with statins. Brain lipid peroxidation and myeloperoxidase levels were also reduced by statins treatment. Intravital examination of the brain vessels of septic animals revealed decreased functional capillary density and increased rolling and adhesion of leukocytes, and blood flow impairment, which were reversed by treatment with statins. In addition, treatment with statins restored the cholinergic vasodilator response due to sepsis. Taken together, these data demonstrated that statins reverse microvascular dysfunction and reduce neuroinflammation during sepsis, preventing the development of long-term cognitive decline.
Collapse
Affiliation(s)
- Patricia A Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Pedro C B Alexandre
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Joana C D'Avila
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Luciana D Siqueira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Barbara Antunes
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Vanessa Estato
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Eduardo V Tibiriça
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Franck Verdonk
- Department of Histopathology and Animal Models, Institut Pasteur, Paris, France
| | - Tarek Sharshar
- Department of Histopathology and Animal Models, Institut Pasteur, Paris, France
| | - Fabrice Chrétien
- Department of Histopathology and Animal Models, Institut Pasteur, Paris, France
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil; Faculdade de Medicina, Universidade Estácio de Sá, Brazil
| | - Fernando A Bozza
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Rio de Janeiro, Brazil; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| |
Collapse
|