1
|
Alfadhli A, Bates TA, Barklis RL, Romanaggi C, Tafesse FG, Barklis E. A nanobody interaction with SARS-COV-2 Spike allows the versatile targeting of lentivirus vectors. J Virol 2024; 98:e0079524. [PMID: 39207135 PMCID: PMC11406891 DOI: 10.1128/jvi.00795-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
While investigating methods to target gene delivery vectors to specific cell types, we examined the potential of using a nanobody against the SARS-CoV-2 Spike protein receptor-binding domain to direct lentivirus infection of Spike-expressing cells. Using four different approaches, we found that lentiviruses with surface-exposed nanobody domains selectively infect Spike-expressing cells. Targeting is dependent on the fusion function of the Spike protein, and conforms to a model in which nanobody binding to the Spike protein triggers the Spike fusion machinery. The nanobody-Spike interaction also is capable of directing cell-cell fusion and the selective infection of nanobody-expressing cells by Spike-pseudotyped lentivirus vectors. Significantly, cells infected with SARS-CoV-2 are efficiently and selectively infected by lentivirus vectors pseudotyped with a chimeric nanobody protein. Our results suggest that cells infected by any virus that forms syncytia may be targeted for gene delivery by using an appropriate nanobody or virus receptor mimic. Vectors modified in this fashion may prove useful in the delivery of immunomodulators to infected foci to mitigate the effects of viral infections.IMPORTANCEWe have discovered that lentiviruses decorated on their surfaces with a nanobody against the SARS-CoV-2 Spike protein selectively infect Spike-expressing cells. Infection is dependent on the specificity of the nanobody and the fusion function of the Spike protein and conforms to a reverse fusion model, in which nanobody binding to Spike triggers the Spike fusion machinery. The nanobody-Spike interaction also can drive cell-cell fusion and infection of nanobody-expressing cells with viruses carrying the Spike protein. Importantly, cells infected with SARS-CoV-2 are selectively infected with nanobody-decorated lentiviruses. These results suggest that cells infected by any virus that expresses an active receptor-binding fusion protein may be targeted by vectors for delivery of cargoes to mitigate infections.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
2
|
Kleinpeter A, Mallery DL, Renner N, Albecka A, Klarhof JO, Freed EO, James LC. HIV-1 adapts to lost IP6 coordination through second-site mutations that restore conical capsid assembly. Nat Commun 2024; 15:8017. [PMID: 39271696 PMCID: PMC11399258 DOI: 10.1038/s41467-024-51971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The HIV-1 capsid is composed of capsid (CA) protein hexamers and pentamers (capsomers) that contain a central pore hypothesised to regulate capsid assembly and facilitate nucleotide import early during post-infection. These pore functions are mediated by two positively charged rings created by CA Arg-18 (R18) and Lys-25 (K25). Here we describe the forced evolution of viruses containing mutations in R18 and K25. Whilst R18 mutants fail to replicate, K25A viruses acquire compensating mutations that restore nearly wild-type replication fitness. These compensating mutations, which rescue reverse transcription and infection without reintroducing lost pore charges, map to three adaptation hot-spots located within and between capsomers. The second-site suppressor mutations act by restoring the formation of pentamers lost upon K25 mutation, enabling closed conical capsid assembly both in vitro and inside virions. These results indicate that there is no intrinsic requirement for K25 in either nucleotide import or capsid assembly. We propose that whilst HIV-1 must maintain a precise hexamer:pentamer equilibrium for proper capsid assembly, compensatory mutations can tune this equilibrium to restore fitness lost by mutation of the central pore.
Collapse
Affiliation(s)
- Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - J Ole Klarhof
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
3
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
4
|
Alfadhli A, Bates TA, Barklis RL, Romanaggi C, Tafesse FG, Barklis E. A Nanobody Interaction with SARS-CoV-2 Spike Allows the Versatile Targeting of Lentivirus Vectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597774. [PMID: 38895228 PMCID: PMC11185593 DOI: 10.1101/2024.06.06.597774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
While investigating methods to target gene delivery vectors to specific cell types, we examined the potential of using a nanobody against the SARS-CoV-2 Spike protein receptor binding domain to direct lentivirus infection of Spike-expressing cells. Using three different approaches, we found that lentiviruses with surface-exposed nanobody domains selectively infect Spike-expressing cells. The targeting is dependent on the fusion function of Spike, and conforms to a model in which nanobody binding to the Spike protein triggers the Spike fusion machinery. The nanobody-Spike interaction also is capable of directing cell-cell fusion, and the selective infection of nanobody-expressing cells by Spike-pseudotyped lentivirus vectors. Significantly, cells infected with SARS-CoV-2 are efficiently and selectively infected by lentivirus vectors pseudotyped with a chimeric nanobody protein. Our results suggest that cells infected by any virus that forms syncytia may be targeted for gene delivery using an appropriate nanobody or virus receptor mimic. Vectors modified in this fashion may prove useful in the delivery of immunomodulators to infected foci to mitigate the effects of viral infections. IMPORTANCE We have discovered that lentiviruses decorated on their surfaces with a nanobody against the SARS-CoV-2 Spike protein selectively infect Spike-expressing cells. Infection is dependent on the specificity of the nanobody and the fusion function of the Spike protein, and conforms to a reverse fusion model, in which nanobody binding to Spike triggers the Spike fusion machinery. The nanobody-Spike interaction also can drive cell-cell fusion, and infection of nanobody-expressing cells with viruses carrying the Spike protein. Importantly, cells infected with SARS-CoV-2 are selectively infected with nanobody-decorated lentiviruses. These results suggest that cells infected by any virus that expresses an active receptor-binding fusion protein may be targeted by vectors for delivery of cargoes to mitigate infections.
Collapse
|
5
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. J Virol 2024; 98:e0004724. [PMID: 38651898 PMCID: PMC11092334 DOI: 10.1128/jvi.00047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Dudek AM, Feist WN, Sasu EJ, Luna SE, Ben-Efraim K, Bak RO, Cepika AM, Porteus MH. A simultaneous knockout knockin genome editing strategy in HSPCs potently inhibits CCR5- and CXCR4-tropic HIV-1 infection. Cell Stem Cell 2024; 31:499-518.e6. [PMID: 38579682 PMCID: PMC11212398 DOI: 10.1016/j.stem.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/29/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.
Collapse
Affiliation(s)
- Amanda M Dudek
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William N Feist
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena J Sasu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaya Ben-Efraim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
| | - Alma-Martina Cepika
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575274. [PMID: 38260699 PMCID: PMC10802625 DOI: 10.1101/2024.01.11.575274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select for mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. While viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when entry was bypassed, suggesting the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in mouse BV2 cells. Although the mutant viruses had increased fitness in HeLa cells, they did not have increased fitness in mice. Overall, this work suggests that MNV tropism is not only determined by the presence of the viral receptor but also post-entry factors.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Morizako N, Butlertanaka EP, Tanaka YL, Shibata H, Okabayashi T, Mekata H, Saito A. Generation of a bovine cell line for gene engineering using an HIV-1-based lentiviral vector. Sci Rep 2022; 12:16952. [PMID: 36258028 PMCID: PMC9579131 DOI: 10.1038/s41598-022-20970-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors are indispensable tools for gene engineering in mammalian cells. Conversely, lentiviral vector transduction is severely inhibited in bovine cells. Previous studies demonstrated that this inhibition is caused by the anti-lentiviral host factor tripartite motif containing 5 (TRIM5), which targets incoming HIV-1 virions by interacting with the viral capsid. In this study, we investigated several methods for overcoming the limited applicability of lentiviral vectors in bovine cells. First, we demonstrated that the SPRY domain of bovine TRIM5 is the major determinant of anti-viral activity. Second, we found that mutations that allow the capsid to evade rhesus macaque TRIM5α minimally rescued HIV-1 infectivity in bovine-derived MDBK cells. Third, we found that cyclosporine A, which relieves the inhibition of HIV-1 infection in monkey cells, significantly rescued the impaired HIV-1 infectivity in MDBK cells. Lastly, we successfully generated a bovine cell line lacking intact TRIM5 using the CRISPR/Cas9 technique. This TRIM5 knockout cell line displayed significantly higher susceptibility to an HIV-1-based lentiviral vector. In conclusion, our findings provide a promising gene engineering strategy for bovine cells, thereby contributing to innovations in agriculture and improvements in animal health.
Collapse
Affiliation(s)
- Nanami Morizako
- grid.410849.00000 0001 0657 3887Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan
| | - Erika P. Butlertanaka
- grid.410849.00000 0001 0657 3887Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan
| | - Yuri L. Tanaka
- grid.410849.00000 0001 0657 3887Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan
| | - Honoka Shibata
- grid.410849.00000 0001 0657 3887Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan
| | - Tamaki Okabayashi
- grid.410849.00000 0001 0657 3887Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan ,grid.410849.00000 0001 0657 3887Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan ,grid.410849.00000 0001 0657 3887Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Miyazaki 8891692 Japan
| | - Hirohisa Mekata
- grid.410849.00000 0001 0657 3887Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan
| | - Akatsuki Saito
- grid.410849.00000 0001 0657 3887Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan ,grid.410849.00000 0001 0657 3887Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki 8892192 Japan ,grid.410849.00000 0001 0657 3887Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Miyazaki 8891692 Japan
| |
Collapse
|
9
|
Abstract
Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , ,
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
10
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
11
|
Adachi A, Koma T, Doi N, Nomaguchi M. Commentary: Derivation of Simian Tropic HIV-1 Infectious Clone Reveals Virus Adaptation to a New Host. Front Cell Infect Microbiol 2020; 10:235. [PMID: 32500043 PMCID: PMC7243179 DOI: 10.3389/fcimb.2020.00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| |
Collapse
|
12
|
Adachi A. Grand Challenge in Human/Animal Virology: Unseen, Smallest Replicative Entities Shape the Whole Globe. Front Microbiol 2020; 11:431. [PMID: 32256480 PMCID: PMC7093566 DOI: 10.3389/fmicb.2020.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan.,Tokushima University, Tokushima, Japan
| |
Collapse
|
13
|
Sii-Felice K, Castillo Padilla J, Relouzat F, Cheuzeville J, Tantawet S, Maouche L, Le Grand R, Leboulch P, Payen E. Enhanced Transduction of Macaca fascicularis Hematopoietic Cells with Chimeric Lentiviral Vectors. Hum Gene Ther 2019; 30:1306-1323. [DOI: 10.1089/hum.2018.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karine Sii-Felice
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Javier Castillo Padilla
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francis Relouzat
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Joëlle Cheuzeville
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- bluebird bio France, Fontenay aux Roses, France
| | - Siriporn Tantawet
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Leïla Maouche
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, UMR 1184, IDMIT Department, Institute of Biology François Jacob, INSERM, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Ramathibodi Hospital and Mahidol University, Bangkok, Thailand
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston Massachusetts
| | - Emmanuel Payen
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| |
Collapse
|
14
|
Abstract
Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection. Vesicular stomatitis Indiana virus (VSIV), formerly known as vesicular stomatitis virus (VSV) Indiana (VSVIND), is a model virus that is exceptionally sensitive to the inhibitory action of interferons (IFNs). Interferons induce an antiviral state by stimulating the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs can constrain viral replication, limit tissue tropism, reduce pathogenicity, and inhibit viral transmission. Since VSIV is used as a backbone for multiple oncolytic and vaccine strategies, understanding how ISGs restrict VSIV not only helps in understanding VSIV-induced pathogenesis but also helps us evaluate and understand the safety and efficacy of VSIV-based therapies. Thus, there is a need to identify and characterize the ISGs that possess anti-VSIV activity. Using arrayed ISG expression screening, we identified TRIM69 as an ISG that potently inhibits VSIV. This inhibition was highly specific as multiple viruses, including influenza A virus, HIV-1, Rift Valley fever virus, and dengue virus, were unaffected by TRIM69. Indeed, just one amino acid substitution in VSIV can govern sensitivity/resistance to TRIM69. Furthermore, TRIM69 is highly divergent in human populations and exhibits signatures of positive selection that are consistent with this gene playing a key role in antiviral immunity. We propose that TRIM69 is an IFN-induced inhibitor of VSIV and speculate that TRIM69 could be important in limiting VSIV pathogenesis and might influence the specificity and/or efficacy of vesiculovirus-based therapies. IMPORTANCE Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection.
Collapse
|
15
|
Ganser-Pornillos BK, Pornillos O. Restriction of HIV-1 and other retroviruses by TRIM5. Nat Rev Microbiol 2019; 17:546-556. [PMID: 31312031 DOI: 10.1038/s41579-019-0225-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Mammalian cells express a variety of innate immune proteins - known as restriction factors - which defend against invading retroviruses such as HIV-1. Two members of the tripartite motif protein family - TRIM5α and TRIMCyp - were identified in 2004 as restriction factors that recognize and inactivate the capsid shell that surrounds and protects the incoming retroviral core. Research on these TRIM5 proteins has uncovered a novel mode of non-self recognition that protects against cross-species transmission of retroviruses. Our developing understanding of the mechanism of TRIM5 restriction underscores the concept that core uncoating and reverse transcription of the viral genome are coordinated processes rather than discrete steps of the post-entry pathway of retrovirus replication. In this Review, we provide an overview of the current state of knowledge of the molecular mechanism of TRIM5-mediated restriction, highlight recent advances and discuss implications for the development of capsid-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Wu J, Hu Z, Yao H, Wang H, Lei Y, Zhong P, Feng Y, Xing H, Shen Y, Jin L, Liu A, Qin Y, Miao L, Su B, Zhang Y, Guo H. The inference of HIV-1 transmission direction between HIV-1 positive couples based on the sequences of HIV-1 quasi-species. BMC Infect Dis 2019; 19:566. [PMID: 31253127 PMCID: PMC6599307 DOI: 10.1186/s12879-019-4163-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/04/2019] [Indexed: 11/22/2022] Open
Abstract
Background To infer transmission direction of a HIV transmission chain is helpful not only in legal jurisdiction but also in precise intervention to prevent HIV spread. Recently, the direction of transmission is inferred by whether paraphyletic-monophyletic (PM) or a combination of paraphyletic and polyphyletic (PP) topologies is observed or not between the sequences of source and recipient in the phylogenetic tree. However, paraphyly between them often declines over time and may disappear between spouses due to bidirectional transmission after primary infection. In this study, our aim is to test the reliability of inferring HIV transmission direction between epidemiologically linked HIV-1 positive couples using whether or not paraphyly is observed in phylogenetic tree. Methods HIV quasi-species were sequenced using PCR product clones, and then Bayesian analysis of molecular sequences with MCMC was employed to construct phylogenetic relationship of env, gag, pol gene fragments of HIV-1 positive couples using BEAST software. Results Our results showed that all sequences of seven couples except pol sequences of couple 12 and 13 form their own monophyletic cluster in phylogenetic tree including the closest control sequences from GenBank or other studies on local samples, which are supported by significant Bayesian posterior probabilities more than 0.9932. Of seven couples, paraphyly is only observed in phylogenetic tree constructed with env and pol gene sequences of three couples and gag gene sequences of four couples. Paraphyly is not observed in half of HIV positive couples. Pol sequences of couple 13 is separated by Blast selected controls; pol sequences of couple 12 in phylogenetic tree is supported by a lower Bayesian posterior value. Conclusion Paraphyly relationship between sequences of donator and recipient is only observed among partial HIV-1 positive couples with epidemiological link. Phylogenetic relationship is not always the same when various gene regions of HIV are used to conduct phylogenetic analysis. The combination of phylogenetic analysis based on various gene regions of HIV and enough epidemiology investigation is essential when inferring transmission direction of HIV in a transmission chain or in one couple. However, while observed paraphyly can be used to infer transmission direction in HIV-1 positive couple, no observed paraphyly cannot deny it.
Collapse
Affiliation(s)
- Jianjun Wu
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Zhongwang Hu
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Hui Yao
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Hai Wang
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Yanhua Lei
- Hefei Prefecture Center for Disease Control and Prevention, 86 Liu'an Road, Hefei, China
| | - Ping Zhong
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai, China
| | - Yi Feng
- Chinese Center for Disease Control and Prevention, 155 Changbei Road, Beijing, China
| | - Hui Xing
- Chinese Center for Disease Control and Prevention, 155 Changbei Road, Beijing, China
| | - Yuelan Shen
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Lin Jin
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Aiwen Liu
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Yizu Qin
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Lifeng Miao
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, 12560 Fanhuadadao, Hefei, China.
| | - Yibo Zhang
- Department of Hospital Infection Control, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongxiong Guo
- Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, China.
| |
Collapse
|
17
|
Schmidt F, Keele BF, Del Prete GQ, Voronin D, Fennessey CM, Soll S, Kane M, Raymond A, Gifford RJ, KewalRamani V, Lifson JD, Bieniasz PD, Hatziioannou T. Derivation of simian tropic HIV-1 infectious clone reveals virus adaptation to a new host. Proc Natl Acad Sci U S A 2019; 116:10504-10509. [PMID: 31048506 PMCID: PMC6535013 DOI: 10.1073/pnas.1818059116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To replicate in a new host, lentiviruses must adapt to exploit required host factors and evade species-specific antiviral proteins. Understanding how host protein variation drives lentivirus adaptation allowed us to expand the host range of HIV-1 to pigtail macaques. We have previously derived a viral swarm (in the blood of infected animals) that can cause AIDS in this new host. To further exploit this reagent, we generated infectious molecular clones (IMCs) from the viral swarm. We identified clones with high replicative capacity in pigtail peripheral blood mononuclear cells (PBMC) in vitro and used in vivo replication to select an individual IMC, named stHIV-A19 (for simian tropic HIV-1 clone A19), which recapitulated the phenotype obtained with the viral swarm. Adaptation of HIV-1 in macaques led to the acquisition of amino acid changes in viral proteins, such as capsid (CA), that are rarely seen in HIV-1-infected humans. Using stHIV-A19, we show that these CA changes confer a partial resistance to the host cell inhibitor Mx2 from pigtail macaques, but that complete resistance is associated with a fitness defect. Adaptation of HIV-1 to a new host will lead to a more accurate animal model and a better understanding of virus-host interactions.
Collapse
Affiliation(s)
- Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Dennis Voronin
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Steven Soll
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Melissa Kane
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Alice Raymond
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Robert J Gifford
- Medical Research Council-University of Glasgow Centre for Virus Research, G12 8QQ Glasgow, United Kingdom
| | - Vineet KewalRamani
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065;
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | | |
Collapse
|
18
|
Doi N, Sakai Y, Adachi A, Nomaguchi M. Generation and characterization of new CCR5-tropic HIV-1rmt clones. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 64:272-279. [PMID: 28954995 DOI: 10.2152/jmi.64.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To develop effective non-human primate models for coping with numerous HIV-1/AIDS studies, rhesus macaque-tropic HIV-1 (HIV-1rmt) clones with a variety of biological properties are required. Such clones, if available, are powerful tools to experimentally elucidate HIV-1 replication and pathogenicity in host individuals, and also to develop anti-HIV-1 drugs/vaccines. However, only limited numbers of HIV-1rmt clones have been currently reported. In the present study, we generated new HIV-1rmt clones carrying various CCR5-tropic env (envelope) genes by standard recombinant DNA and intracellular homologous recombination techniques. Resultant virus clones contain the env sequences derived from an AIDS-inducible laboratory or two clinically isolated viral strains. We further constructed their variant clones bearing N160K, S304G, or G310R mutation in Env that potentially can change the viruses to better grow. Newly generated clones were analyzed for their virological properties such as Env expression, single-cycle infectivity, and multi-cycle replication ability. Out of a number of new clones examined, two were found to grow better in macaque cells than the previously constructed clone used for comparison. Our study described here constitutes the initial and essential step towards obtaining CCR5-tropic HIV-1rmt clones useful for various basic and clinical research projects on infected individuals. J. Med. Invest. 64: 272-279, August, 2017.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| | - Yosuke Sakai
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| | | | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| |
Collapse
|
19
|
Interferon-Stimulated Gene (ISG)-Expression Screening Reveals the Specific Antibunyaviral Activity of ISG20. J Virol 2018; 92:JVI.02140-17. [PMID: 29695422 PMCID: PMC6002717 DOI: 10.1128/jvi.02140-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/14/2018] [Indexed: 11/20/2022] Open
Abstract
Bunyaviruses pose a significant threat to human health, prosperity, and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon-stimulated genes (ISGs), whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and the Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae, and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to the case against other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional RNase activity. Through use of an infectious virus-like particle (VLP) assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taking all the data together, we report that ISG20 is a broad and potent antibunyaviral factor but that some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance may influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance. IMPORTANCE There are hundreds of bunyaviruses, many of which cause life-threatening acute diseases in humans and livestock. The interferon (IFN) system is a key component of innate immunity, and type I IFNs limit bunyaviral propagation both in vitro and in vivo. Type I IFN signaling results in the upregulation of hundreds of IFN-stimulated genes (ISGs), whose concerted action generates an “antiviral state.” Although IFNs are critical in limiting bunyaviral replication and pathogenesis, much is still unknown about which ISGs inhibit bunyaviruses. Using ISG-expression screening, we examined the ability of ∼500 unique ISGs to inhibit Bunyamwera orthobunyavirus (BUNV), the prototypical bunyavirus. Using this approach, we identified ISG20, an interferon-stimulated exonuclease, as a potent inhibitor of BUNV. Interestingly, ISG20 possesses highly selective antibunyaviral activity, with multiple bunyaviruses being potently inhibited while some largely escape inhibition. We speculate that the ability of some bunyaviruses to escape ISG20 may influence their pathogenesis.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW HIV-1 infection is of global importance, and still incurs substantial morbidity and mortality. Although major pharmacologic advances over the past two decades have resulted in remarkable HIV-1 control, a cure is still forthcoming. One approach to a cure is to exploit natural mechanisms by which the host restricts HIV-1. Herein, we review past and recent discoveries of HIV-1 restriction factors, a diverse set of host proteins that limit HIV-1 replication at multiple levels, including entry, reverse transcription, integration, translation of viral proteins, and packaging and release of virions. RECENT FINDINGS Recent studies of intracellular HIV-1 restriction have offered unique molecular insights into HIV-1 replication and biology. Studies have revealed insights of how restriction factors drive HIV-1 evolution. Although HIV-1 restriction factors only partially control the virus, their importance is underscored by their effect on HIV-1 evolution and adaptation. The list of host restriction factors that control HIV-1 infection is likely to expand with future discoveries. A deeper understanding of the molecular mechanisms of regulation by these factors will uncover new targets for therapeutic control of HIV-1 infection.
Collapse
Affiliation(s)
- Mary Soliman
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Geetha Srikrishna
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashwin Balagopal
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Complete Genome Sequences of Human Immunodeficiency Type 1 Viruses Genetically Engineered To Be Tropic for Rhesus Macaques. GENOME ANNOUNCEMENTS 2017; 5:5/39/e01063-17. [PMID: 28963223 PMCID: PMC5624769 DOI: 10.1128/genomea.01063-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have constructed two human immunodeficiency type 1 (HIV-1) derivatives, CXCR4 tropic and CCR5 tropic, that replicate in rhesus macaques. They are genetically engineered to be resistant to macaque restriction factors against HIV-1, including TRIM5α, APOBEC3, and tetherin proteins. The two HIV-1 variants described here are fundamental clones aiming for rhesus infection studies of HIV-1.
Collapse
|
22
|
Allosteric HIV-1 Integrase Inhibitors Lead to Premature Degradation of the Viral RNA Genome and Integrase in Target Cells. J Virol 2017; 91:JVI.00821-17. [PMID: 28615207 DOI: 10.1128/jvi.00821-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
Recent evidence indicates that inhibition of HIV-1 integrase (IN) binding to the viral RNA genome by allosteric integrase inhibitors (ALLINIs) or through mutations within IN yields aberrant particles in which the viral ribonucleoprotein complexes (vRNPs) are eccentrically localized outside the capsid lattice. These particles are noninfectious and are blocked at an early reverse transcription stage in target cells. However, the basis of this reverse transcription defect is unknown. Here, we show that the viral RNA genome and IN from ALLINI-treated virions are prematurely degraded in target cells, whereas reverse transcriptase remains active and stably associated with the capsid lattice. The aberrantly shaped cores in ALLINI-treated particles can efficiently saturate and be degraded by a restricting TRIM5 protein, indicating that they are still composed of capsid proteins arranged in a hexagonal lattice. Notably, the fates of viral core components follow a similar pattern in cells infected with eccentric particles generated by mutations within IN that inhibit its binding to the viral RNA genome. We propose that IN-RNA interactions allow packaging of both the viral RNA genome and IN within the protective capsid lattice to ensure subsequent reverse transcription and productive infection in target cells. Conversely, disruption of these interactions by ALLINIs or mutations in IN leads to premature degradation of both the viral RNA genome and IN, as well as the spatial separation of reverse transcriptase from the viral genome during early steps of infection.IMPORTANCE Recent evidence indicates that HIV-1 integrase (IN) plays a key role during particle maturation by binding to the viral RNA genome. Inhibition of IN-RNA interactions yields aberrant particles with the viral ribonucleoprotein complexes (vRNPs) eccentrically localized outside the conical capsid lattice. Although these particles contain all of the components necessary for reverse transcription, they are blocked at an early reverse transcription stage in target cells. To explain the basis of this defect, we tracked the fates of multiple viral components in infected cells. Here, we show that the viral RNA genome and IN in eccentric particles are prematurely degraded, whereas reverse transcriptase remains active and stably associated within the capsid lattice. We propose that IN-RNA interactions ensure the packaging of both vRNPs and IN within the protective capsid cores to facilitate subsequent reverse transcription and productive infection in target cells.
Collapse
|
23
|
He H, Xue J, Wang W, Liu L, Ye C, Cong Z, Kimata JT, Qin C, Zhou P. Efficient Transduction of Human and Rhesus Macaque Primary T Cells by a Modified Human Immunodeficiency Virus Type 1-Based Lentiviral Vector. Hum Gene Ther 2016; 28:271-285. [PMID: 28042947 DOI: 10.1089/hum.2016.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α restriction and efficiently transduces both human and rhesus primary T cells.
Collapse
Affiliation(s)
- Huan He
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Jing Xue
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Weiming Wang
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Lihong Liu
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Chaobaihui Ye
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| | - Zhe Cong
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jason T Kimata
- 3 Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, Texas
| | - Chuan Qin
- 2 Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Paul Zhou
- 1 The Unit of Anti-Viral Immunity and Genetic Therapy, the Key Laboratory of Molecular Virology and Immunology, the Institut Pasteur of Shanghai , Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Jimenez-Moyano E, Ruiz A, Kløverpris HN, Rodriguez-Plata MT, Peña R, Blondeau C, Selwood DL, Izquierdo-Useros N, Moris A, Clotet B, Goulder P, Towers GJ, Prado JG. Nonhuman TRIM5 Variants Enhance Recognition of HIV-1-Infected Cells by CD8+ T Cells. J Virol 2016; 90:8552-62. [PMID: 27440884 PMCID: PMC5021395 DOI: 10.1128/jvi.00819-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tripartite motif-containing protein 5 (TRIM5) restricts human immunodeficiency virus type 1 (HIV-1) in a species-specific manner by uncoating viral particles while activating early innate responses. Although the contribution of TRIM5 proteins to cellular immunity has not yet been studied, their interactions with the incoming viral capsid and the cellular proteasome led us to hypothesize a role for them. Here, we investigate whether the expression of two nonhuman TRIM5 orthologs, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), both of which are potent restrictors of HIV-1, could enhance immune recognition of infected cells by CD8(+) T cells. We illustrate how TRIM5 restriction improves CD8(+) T-cell-mediated HIV-1 inhibition. Moreover, when TRIM5 activity was blocked by the nonimmunosuppressive analog of cyclosporine (CsA), sarcosine-3(4-methylbenzoate)-CsA (SmBz-CsA), we found a significant reduction in CD107a/MIP-1β expression in HIV-1-specific CD8(+) T cells. This finding underscores the direct link between TRIM5 restriction and activation of CD8(+) T-cell responses. Interestingly, cells expressing RhT5 induced stronger CD8(+) T-cell responses through the specific recognition of the HIV-1 capsid by the immune system. The underlying mechanism of this process may involve TRIM5-specific capsid recruitment to cellular proteasomes and increase peptide availability for loading and presentation of HLA class I antigens. In summary, we identified a novel function for nonhuman TRIM5 variants in cellular immunity. We hypothesize that TRIM5 can couple innate viral sensing and CD8(+) T-cell activation to increase species barriers against retrovirus infection. IMPORTANCE New therapeutics to tackle HIV-1 infection should aim to combine rapid innate viral sensing and cellular immune recognition. Such strategies could prevent seeding of the viral reservoir and the immune damage that occurs during acute infection. The nonhuman TRIM5 variants, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), are attractive candidates owing to their potency in sensing HIV-1 and blocking its activity. Here, we show that expression of RhT5 and TCyp in HIV-1-infected cells improves CD8(+) T-cell-mediated inhibition through the direct activation of HIV-1-specific CD8(+) T-cell responses. We found that the potency in CD8(+) activation was stronger for RhT5 variants and capsid-specific CD8(+) T cells in a mechanism that relies on TRIM5-dependent particle recruitment to cellular proteasomes. This novel mechanism couples innate viral sensing with cellular immunity in a single protein and could be exploited to develop innovative therapeutics for control of HIV-1 infection.
Collapse
Affiliation(s)
| | - Alba Ruiz
- AIDS Research Institute, IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Henrik N Kløverpris
- KwaZulu-Natal Research Institute for TB and HIV, University of KwaZulu-Natal, Durban, South Africa
| | | | - Ruth Peña
- AIDS Research Institute, IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Caroline Blondeau
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - David L Selwood
- The Wolfson Institute for Biomedical Research, University College London, United Kingdom
| | | | - Arnaud Moris
- Sorbonne Universités, UPMC University Paris 6, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections-Paris, Paris, France
| | - Bonaventura Clotet
- AIDS Research Institute, IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Julia G Prado
- AIDS Research Institute, IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
25
|
Sultana T, Nakayama EE, Tobita S, Yokoyama M, Seki Y, Saito A, Nomaguchi M, Adachi A, Akari H, Sato H, Shioda T. Novel mutant human immunodeficiency virus type 1 strains with high degree of resistance to cynomolgus macaque TRIMCyp generated by random mutagenesis. J Gen Virol 2016; 97:963-976. [PMID: 26795727 DOI: 10.1099/jgv.0.000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Old World monkey TRIM5α strongly suppresses human immunodeficiency virus type 1 (HIV-1) replication. A fusion protein comprising cynomolgus macaque (CM) TRIM5 and cyclophilin A (CM TRIMCyp) also potently suppresses HIV-1 replication. However, CM TRIMCyp fails to suppress a mutant HIV-1 that encodes a mutant capsid protein containing a SIVmac239-derived loop between α-helices 4 and 5 (L4/5). There are seven amino acid differences between L4/5 of HIV-1 and SIVmac239. Here, we investigated the minimum numbers of amino acid substitutions that would allow HIV-1 to evade CM TRIMCyp-mediated suppression. We performed random PCR mutagenesis to construct a library of HIV-1 variants containing mutations in L4/5, and then we recovered replication-competent viruses from CD4+ MT4 cells that expressed high levels of CM TRIMCyp. CM TRIMCyp-resistant viruses were obtained after three rounds of selection in MT4 cells expressing CM TRIMCyp and these were found to contain four amino acid substitutions (H87R, A88G, P90D and P93A) in L4/5. We then confirmed that these substitutions were sufficient to confer CM TRIMCyp resistance to HIV-1. In a separate experiment using a similar method, we obtained novel CM TRIM5α-resistant HIV-1 strains after six rounds of selection and rescue. Analysis of these mutants revealed that V86A and G116E mutations in the capsid region conferred partial resistance to CM TRIM5α without substantial fitness cost when propagated in MT4 cells expressing CM TRIM5α. These results confirmed and further extended the previous notion that CM TRIMCyp and CM TRIM5α recognize the HIV-1 capsid in different manners.
Collapse
Affiliation(s)
- Tahmina Sultana
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Satoshi Tobita
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yohei Seki
- Center of Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Akatsuki Saito
- Center of Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirofumi Akari
- Center of Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan.,Laboratory of Evolutional Virology, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
26
|
Portilho DM, Fernandez J, Ringeard M, Machado AK, Boulay A, Mayer M, Müller-Trutwin M, Beignon AS, Kirchhoff F, Nisole S, Arhel NJ. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells. Cell Rep 2015; 14:355-69. [PMID: 26748714 PMCID: PMC4713866 DOI: 10.1016/j.celrep.2015.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/20/2015] [Accepted: 12/06/2015] [Indexed: 01/03/2023] Open
Abstract
During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. Primate dendritic cells (DCs) lack efficient TRIM5α-mediated retroviral restriction In DCs TRIM5α is sequestered in the nucleus in a SUMOylation-dependent manner TRIM5α nuclear sequestration allows DC sensing of retroviral DNA by cGAS
Collapse
Affiliation(s)
- Débora M Portilho
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Juliette Fernandez
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | | | - Anthony K Machado
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Aude Boulay
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Martha Mayer
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Anne-Sophie Beignon
- CEA-iMETI/Division of Immuno-Virology, Université Paris Sud, INSERM U1184, 92260 Fontenay-aux-Roses, France
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sébastien Nisole
- INSERM UMR-S 1124, Université Paris Descartes, 75006 Paris, France
| | - Nathalie J Arhel
- INSERM U941, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France.
| |
Collapse
|
27
|
Garfinkel DJ, Tucker JM, Saha A, Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Purzycka KJ. A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces. Curr Genet 2015; 62:321-9. [PMID: 26650614 DOI: 10.1007/s00294-015-0550-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022]
Abstract
Retrotransposons and retroviral insertions have molded the genomes of many eukaryotes. Since retroelements transpose via an RNA intermediate, the additive nature of the replication cycle can result in massive increases in copy number if left unchecked. Host organisms have countered with several defense systems, including domestication of retroelement genes that now act as restriction factors to minimize propagation. We discovered a novel truncated form of the Saccharomyces Ty1 retrotransposon capsid protein, dubbed p22 that inhibits virus-like particle (VLP) assembly and function. The p22 restriction factor expands the repertoire of defense proteins targeting the capsid and highlights a novel host-parasite strategy. Instead of inhibiting all transposition by domesticating the restriction gene as a distinct locus, Ty1 and budding yeast may have coevolved a relationship that allows high levels of transposition when Ty1 copy numbers are low and progressively less transposition as copy numbers rise. Here, we offer a perspective on p22 restriction, including its mode of expression, effect on VLP functions, interactions with its target, properties as a nucleic acid chaperone, similarities to other restriction factors, and future directions.
Collapse
Affiliation(s)
- David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA.
| | - Jessica M Tucker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
28
|
The Ty1 Retrotransposon Restriction Factor p22 Targets Gag. PLoS Genet 2015; 11:e1005571. [PMID: 26451601 PMCID: PMC4599808 DOI: 10.1371/journal.pgen.1005571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
A novel form of copy number control (CNC) helps maintain a low number of Ty1 retrovirus-like transposons in the Saccharomyces genome. Ty1 produces an alternative transcript that encodes p22, a trans-dominant negative inhibitor of Ty1 retrotransposition whose sequence is identical to the C-terminal half of Gag. The level of p22 increases with copy number and inhibits normal Ty1 virus-like particle (VLP) assembly and maturation through interactions with full length Gag. A forward genetic screen for CNC-resistant (CNCR) mutations in Ty1 identified missense mutations in GAG that restore retrotransposition in the presence of p22. Some of these mutations map within a predicted UBN2 domain found throughout the Ty1/copia family of long terminal repeat retrotransposons, and others cluster within a central region of Gag that is referred to as the CNCR domain. We generated multiple alignments of yeast Ty1-like Gag proteins and found that some Gag proteins, including those of the related Ty2 elements, contain non-Ty1 residues at multiple CNCR sites. Interestingly, the Ty2-917 element is resistant to p22 and does not undergo a Ty1-like form of CNC. Substitutions conferring CNCR map within predicted helices in Ty1 Gag that overlap with conserved sequence in Ty1/copia, suggesting that p22 disturbs a central function of the capsid during VLP assembly. When hydrophobic residues within predicted helices in Gag are mutated, Gag level remains unaffected in most cases yet VLP assembly and maturation is abnormal. Gag CNCR mutations do not alter binding to p22 as determined by co-immunoprecipitation analyses, but instead, exclude p22 from Ty1 VLPs. These findings suggest that the CNCR alleles enhance retrotransposition in the presence of p22 by allowing productive Gag-Gag interactions during VLP assembly. Our work also expands the strategies used by retroviruses for developing resistance to Gag-like restriction factors to now include retrotransposons. The presence of transposable elements in the eukaryotic genome threatens genomic stability and normal gene function, thus various defense mechanisms exist to silence element expression and target integration to benign locations in the genome. Even though the budding yeast Saccharomyces lacks many of the defense systems present in other eukaryotes, including RNAi, DNA methylation, and APOBEC3 proteins, they maintain low numbers of mobile elements in their genome. In the case of the Saccharomyces retrotransposon Ty1, a system called copy number control (CNC) helps determine the number of elements in the genome. Recently, we demonstrated that the mechanism of CNC relies on a trans-acting protein inhibitor of Ty1 expressed from the element itself. This protein inhibitor, called p22, impacts the replication of Ty1 as its copy number increases. To identify a molecular target of p22, mutagenized Ty1 was subjected to a forward genetic screen for CNC-resistance. Mutations in specific domains of Gag, including the UBN2 Gag motif and a novel region we have named the CNCR domain, confer CNCR by preventing the incorporation of p22 into assembling virus-like particles (VLPs), which restores maturation and completion of the Ty1 life cycle. The mechanism of Ty1 inhibition by p22 is conceptually similar to Gag-like restriction factors in mammals since they inhibit normal particle function. In particular, resistance to p22 and the enJS56A1 restriction factor of sheep involves exclusion of the restriction factor during particle assembly, although Ty1 CNCR achieves this in a way that is distinct from the Jaagsiekte retrovirus escape mutants. Our work introduces an intriguing variation on resistance mechanisms to retroviral restriction factors.
Collapse
|
29
|
The KT Jeang Retrovirology prize 2015: Paul Bieniasz. Retrovirology 2015; 12:84. [PMID: 26438335 PMCID: PMC4595249 DOI: 10.1186/s12977-015-0208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
|
30
|
Douam F, Gaska JM, Winer BY, Ding Q, von Schaewen M, Ploss A. Genetic Dissection of the Host Tropism of Human-Tropic Pathogens. Annu Rev Genet 2015; 49:21-45. [PMID: 26407032 DOI: 10.1146/annurev-genet-112414-054823] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infectious diseases are the second leading cause of death worldwide. Although the host multitropism of some pathogens has rendered their manipulation possible in animal models, the human-restricted tropism of numerous viruses, bacteria, fungi, and parasites has seriously hampered our understanding of these pathogens. Hence, uncovering the genetic basis underlying the narrow tropism of such pathogens is critical for understanding their mechanisms of infection and pathogenesis. Moreover, such genetic dissection is essential for the generation of permissive animal models that can serve as critical tools for the development of therapeutics or vaccines against challenging human pathogens. In this review, we describe different experimental approaches utilized to uncover the genetic foundation regulating pathogen host tropism as well as their relevance for studying the tropism of several important human pathogens. Finally, we discuss the current and future uses of this knowledge for generating genetically modified animal models permissive for these pathogens.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Jenna M Gaska
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| |
Collapse
|
31
|
Abstract
HIV type 1 (HIV-1) has a very narrow host range that is limited to humans and chimpanzees. HIV-1 cannot replicate well in Old World monkey cells such as rhesus and cynomolgus monkeys. Tripartite motif (TRIM)5α is a key molecule that confers potent resistance against HIV-1 infection and is composed of really interesting new gene, B-box2, coiled-coil and PRYSPRY domains. Interaction between TRIM5α PRYSPRY domains and HIV-1 capsid core triggers the anti-HIV-1 activity of TRIM5α. Analysis of natural HIV variants and extensive mutational experiments has revealed the presence of critical amino acid residues in both the PRYSPRY domain and HIV capsid for potent HIV suppression by TRIM5α. Genetic manipulation of the human TRIM5 gene could establish human cells totally resistant to HIV-1, which may lead to a cure for HIV-1 infection in the future.
Collapse
|
32
|
Jung U, Urak K, Veillette M, Nepveu-Traversy MÉ, Pham QT, Hamel S, Rossi JJ, Berthoux L. Preclinical Assessment of Mutant Human TRIM5α as an Anti-HIV-1 Transgene. Hum Gene Ther 2015; 26:664-79. [PMID: 26076730 DOI: 10.1089/hum.2015.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Current HIV-1 gene therapy approaches aim at stopping the viral life cycle at its earliest steps, such as entry or immediate postentry events. Among the most widely adopted strategies are CCR5 downregulation/knockout and the use of broadly neutralizing antibodies. However, the long-term efficacy and side effects are still unclear. TRIM5α is an interferon-stimulated restriction factor that can intercept incoming retroviruses within one hour of cytosolic entry and potently inhibit the infectivity of restriction-sensitive viruses. The human TRIM5α (TRIM5αhu) generally does not efficiently target HIV-1, but point mutations in its capsid-binding domain can confer anti-HIV-1 activity. Although the mechanisms by which TRIM5αhu mutants inhibit HIV-1 are relatively well understood, their characterization as potential transgenes for gene therapy is lacking. Additionally, previous reports of general immune activation by overexpression of TRIM5α have hindered its broad adoption as a potential transgene. Here we demonstrate the ability of the R332G-R335G TRIM5αhu mutant to efficiently restrict highly divergent HIV-1 strains, including Group O, as well as clinical isolates bearing cytotoxic T lymphocyte escape mutations. R332G-R335G TRIM5αhu efficiently protected human lymphocytes against HIV-1 infection, even when expressed at relatively low levels following lentiviral transduction. Most importantly, under these conditions Rhesus macaque TRIM5α (TRIM5αRh) and TRIM5αhu (wild-type or mutated) had no major effects on the NF-κB pathway. Transgenic TRIM5α did not modulate the kinetics of IκBα, JunB, and TNFAIP3 expression following TNF-α treatment. Finally, we show that human lymphocytes expressing R332G-R335G TRIM5αhu have clear survival advantages over unmodified parental cells in the presence of pathogenic, replication-competent HIV-1. These results support the relevance of R332G-R335G and other mutants of TRIM5αhu as candidate effectors for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Ulrike Jung
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Kevin Urak
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Maxime Veillette
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | | | - Quang Toan Pham
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - Sophie Hamel
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - John J Rossi
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California.,3 Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California
| | - Lionel Berthoux
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| |
Collapse
|
33
|
Nomaguchi M, Nakayama EE, Yokoyama M, Doi N, Igarashi T, Shioda T, Sato H, Adachi A. Distinct combinations of amino acid substitutions in N-terminal domain of Gag-capsid afford HIV-1 resistance to rhesus TRIM5α. Microbes Infect 2014; 16:936-44. [PMID: 25195168 DOI: 10.1016/j.micinf.2014.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/28/2022]
Abstract
TRIM5α is a potent anti-retroviral factor that interacts with viral capsid (CA) in a species-specific manner. Recently, we and others reported generation of two distinct HIV-1 CAs that effectively overcome rhesus TRIM5α-imposed species barrier. In this study, to directly compare the effect of different mutations in the two HIV-1 CAs on evasion from macaque TRIM5-restriction, we newly generated macaque-tropic HIV-1 (HIV-1mt) proviral clones carrying the distinct CAs in the same genomic backbone, and examined their replication abilities in macaque TRIM5-overexpressing human cells and in rhesus cells. Comparative analysis of amino acid sequences and homology modeling-based structures revealed that, while both CAs gained some mutated amino acids with similar physicochemical properties, their overall appearances of N-terminal domains were different. Experimentally, the two CAs exhibited incomplete TRIM5α-resistance relative to SIVmac239 CA and different degrees of susceptibility to various TRIM5 proteins. Finally, two HIV-1mt clones carrying a different combination of the CA mutations were found to grow to a comparable extent in established and primary rhesus cells. Our data show that there could be some distinct CA patterns to confer significant TRIM5-resistance on HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Naoya Doi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan; Japanese Foundation for AIDS Prevention, Chiyoda-ku, Tokyo, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
| |
Collapse
|
34
|
Abstract
Myxovirus resistance 2 (Mx2/MxB) has recently been uncovered as an effector of the anti-HIV-1 activity of type I interferons (IFNs) that inhibits HIV-1 at an early stage postinfection, after reverse transcription but prior to proviral integration into host DNA. The mechanistic details of Mx2 antiviral activity are not yet understood, but a few substitutions in the HIV-1 capsid have been shown to confer resistance to Mx2. Through a combination of in vitro evolution and unbiased mutagenesis, we further map the determinants of sensitivity to Mx2 and reveal that multiple capsid (CA) surfaces define sensitivity to Mx2. Intriguingly, we reveal an unanticipated sensitivity determinant within the C-terminal domain of capsid. We also report that Mx2s derived from multiple primate species share the capacity to potently inhibit HIV-1, whereas selected nonprimate orthologs have no such activity. Like TRIM5α, another CA targeting antiretroviral protein, primate Mx2s exhibit species-dependent variation in antiviral specificity against at least one extant virus and multiple HIV-1 capsid mutants. Using a combination of chimeric Mx2 proteins and evolution-guided approaches, we reveal that a single residue close to the N terminus that has evolved under positive selection can determine antiviral specificity. Thus, the variable N-terminal region can define the spectrum of viruses inhibited by Mx2. Importance: Type I interferons (IFNs) inhibit the replication of most mammalian viruses. IFN stimulation upregulates hundreds of different IFN-stimulated genes (ISGs), but it is often unclear which ISGs are responsible for inhibition of a given virus. Recently, Mx2 was identified as an ISG that contributes to the inhibition of HIV-1 replication by type I IFN. Thus, Mx2 might inhibit HIV-1 replication in patients, and this inhibitory action might have therapeutic potential. The mechanistic details of how Mx2 inhibits HIV-1 are currently unclear, but the HIV-1 capsid protein is the likely viral target. Here, we determine the regions of capsid that specify sensitivity to Mx2. We demonstrate that Mx2 from multiple primates can inhibit HIV-1, whereas Mx2 from other mammals (dogs and sheep) cannot. We also show that primate variants of Mx2 differ in the spectrum of lentiviruses they inhibit and that a single residue in Mx2 can determine this antiviral specificity.
Collapse
|
35
|
Kovalskyy DB, Ivanov DN. Recognition of the HIV capsid by the TRIM5α restriction factor is mediated by a subset of pre-existing conformations of the TRIM5α SPRY domain. Biochemistry 2014; 53:1466-76. [PMID: 24506064 DOI: 10.1021/bi4014962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of the TRIM5α restriction factor to the HIV capsid is mediated by the C-terminal SPRY domain of TRIM5α. Atomic-level details of this host-pathogen interaction, which involves mobile variable loops of the SPRY domain, remain unclear. Some of the key determinants of restriction are encompassed by the long and disordered v1 loop of the SPRY domain. We applied molecular modeling to elucidate the conformational repertoire of the v1 loop and its role in the interaction with the capsid. All-atom replica exchange molecular dynamics revealed multiple transient, interconverting states of the v1 loop consistent with the intrinsic disorder observed experimentally. The docking of the SPRY conformations representing 10 most populated states onto the high-resolution model of the assembled HIV-1 capsid revealed that a subset of v1 conformations produced plausible binding poses, in which the SPRY domain binds close to the pseudo-2-fold symmetry axis and the v1 loop spans the interhexamer gap. Such binding mode is well supported by the NMR binding data and known escape mutants. We speculate that the binding mode that involves interaction of the capsid with a subset of preexisting SPRY conformations arising from the intrinsic disorder of the v1 loop may explain the remarkable ability of TRIM5α to resist viral evasion by mutagenesis and to restrict divergent retroviruses.
Collapse
Affiliation(s)
- Dmytro B Kovalskyy
- Department of Biochemistry and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | | |
Collapse
|