1
|
Brown GD, Ballou ER, Bates S, Bignell EM, Borman AM, Brand AC, Brown AJP, Coelho C, Cook PC, Farrer RA, Govender NP, Gow NAR, Hope W, Hoving JC, Dangarembizi R, Harrison TS, Johnson EM, Mukaremera L, Ramsdale M, Thornton CR, Usher J, Warris A, Wilson D. The pathobiology of human fungal infections. Nat Rev Microbiol 2024; 22:687-704. [PMID: 38918447 DOI: 10.1038/s41579-024-01062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.
Collapse
Affiliation(s)
- Gordon D Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Andrew M Borman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Carolina Coelho
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Nelesh P Govender
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - William Hope
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - J Claire Hoving
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rachael Dangarembizi
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Thomas S Harrison
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Liliane Mukaremera
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark Ramsdale
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Wang S, Wang Y, Shi X, Herrera-Balandrano DD, Chen X, Liu F, Laborda P. Application and antagonistic mechanisms of atoxigenic Aspergillus strains for the management of fungal plant diseases. Appl Environ Microbiol 2024; 90:e0108524. [PMID: 39287398 PMCID: PMC11497832 DOI: 10.1128/aem.01085-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
This review covers, for the first time, all methods based on the use of Aspergillus strains as biocontrol agents for the management of plant diseases caused by fungi and oomycetes. Atoxigenic Aspergillus strains have been screened in a variety of hosts, such as peanuts, maize kernels, and legumes, during the preharvest and postharvest stages. These strains have been screened against a wide range of pathogens, such as Fusarium, Phytophthora, and Pythium species, suggesting a broad applicability spectrum. The highest efficacies were generally observed when using non-toxigenic Aspergillus strains for the management of mycotoxin-producing Aspergillus strains. The modes of action included the synthesis of antifungal metabolites, such as kojic acid and volatile organic compounds (VOCs), secretion of hydrolytic enzymes, competition for space and nutrients, and induction of disease resistance. Aspergillus strains degraded Sclerotinia sclerotiorum sclerotia, showing high control efficacy against this pathogen. Collectively, although two Aspergillus strains have been commercialized for aflatoxin degradation, a new application of Aspergillus strains is emerging and needs to be optimized.
Collapse
Affiliation(s)
- Suyan Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yanxia Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Xinchi Shi
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | | | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Fengquan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
3
|
Onoda Y, Nagahashi M, Yamashita M, Fukushima S, Aizawa T, Yamauchi S, Fujikawa Y, Tanaka T, Kadomura-Ishikawa Y, Ishida K, Uebanso T, Mawatari K, Blatchley ER, Takahashi A. Accumulated melanin in molds provides wavelength-dependent UV tolerance. Photochem Photobiol Sci 2024; 23:1791-1806. [PMID: 39287919 DOI: 10.1007/s43630-024-00632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Fungal contamination poses a serious threat to public health and food safety because molds can grow under stressful conditions through melanin accumulation. Although ultraviolet (UV) irradiation is popular for inhibiting microorganisms, its effectiveness is limited by our insufficient knowledge about UV tolerance in melanin-accumulating molds. In this study, we first confirmed the protective effect of melanin by evaluating the UV sensitivity of young and mature spores. Additionally, we compared UV sensitivity between spores with accumulated melanin and spores prepared with melanin biosynthesis inhibitors. We found that mature spores were less UV-sensitive than young spores, and that reduced melanin accumulation by inhibitors led to reduced UV sensitivity. These results suggest that melanin protects cells against UV irradiation. To determine the most effective wavelength for inhibition, we evaluated the wavelength dependence of UV tolerance in a yeast (Rhodotorula mucilaginosa) and in molds (Aspergillus fumigatus, Cladosporium halotolerans, Cladosporium sphaerospermum, Aspergillus brasiliensis, Penicillium roqueforti, and Botrytis cinerea). We assessed UV tolerance using a UV-light emitting diode (LED) irradiation system with 13 wavelength-ranked LEDs between 250 and 365 nm, a krypton chlorine (KrCl) excimer lamp device, and a low pressure (LP) Hg lamp device. The inhibition of fungi peaked at around 270 nm, and most molds showed reduced UV sensitivity at shorter wavelengths as they accumulated pigment. Absorption spectra of the pigments showed greater absorption at shorter wavelengths, suggesting greater UV protection at these wavelengths. These results will assist in the development of fungal disinfection systems using UV, such as closed systems of air and water purification.
Collapse
Affiliation(s)
- Yushi Onoda
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Nichia Corporation, Anan, Tokushima, Japan
| | - Miharu Nagahashi
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Michiyo Yamashita
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Shiho Fukushima
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | | | | | | | | | - Yasuko Kadomura-Ishikawa
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Kai Ishida
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Takashi Uebanso
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Kazuaki Mawatari
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN, USA
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Akira Takahashi
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.
| |
Collapse
|
4
|
Piontkivska D, Jorge JMP, Neves R, Crespo P, Ramalho R, Silva Pereira C. Fungi: friends or foes-an outreach science initiative for the collection of airborne fungal spores by high school students. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0019823. [PMID: 38690897 PMCID: PMC11360558 DOI: 10.1128/jmbe.00198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Fungi mostly reproduce through spores that are adapted for airborne dispersal; hence, fungal spores (and fungi) are found virtually everywhere. Fungi can be "friends or foes." Our friends include fungi used in the food and biotech industries, fungi that contribute to the cycling of carbon and nutrients, and those involved in the decontamination of polluted soils and/or water, to mention just a few examples. Many species, however, are foes-they are detrimental to plants, animals, and/or humans. Annually, >1.5 million people die due to invasive fungal infections. With the aim of enhancing microbiology literacy and the understanding of microbial concepts, we set up a project for the collection of airborne spores (the principal agent through which human airways are exposed to fungi). Students from five high schools in the Oeiras municipality partnered with us as citizen scientists; they carried out sampling by collecting fungal spores on adhesive stickers. The fungal spores collected by the students were subsequently processed in the schools and our research laboratory. Results obtained by the students themselves revealed a large variety of fungal species capable of growing in a rich medium at 30°C. In the research laboratory, using selective isolation conditions, 40 thermotolerant fungi were isolated, 32 of which were taxonomically identified as aspergilla, mostly from within the Aspergillus fumigatus taxa, yet exhibiting high genetic heterogeneity. The protocols and results were presented to the students, who were made aware of the local dispersal of airborne fungal spores, including some from potentially pathogenic fungi. Through carrying out scientific activities, the students developed both the interest and the self-confidence needed to implement future environmental investigations.
Collapse
Affiliation(s)
- Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - João M. P. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Rita Neves
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Pedro Crespo
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Renata Ramalho
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | | |
Collapse
|
5
|
Choi S, Kronstad JW, Jung WH. Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi. J Microbiol Biotechnol 2024; 34:1551-1562. [PMID: 38881181 PMCID: PMC11380514 DOI: 10.4014/jmb.2405.05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Fungi employ diverse mechanisms for iron uptake to ensure proliferation and survival in iron-limited environments. Siderophores are secondary metabolite small molecules with a high affinity specifically for ferric iron; these molecules play an essential role in iron acquisition in fungi and significantly influence fungal physiology and virulence. Fungal siderophores, which are primarily hydroxamate types, are synthesized via non-ribosomal peptide synthetases (NRPS) or NRPS-independent pathways. Following synthesis, siderophores are excreted, chelate iron, and are transported into the cell by specific cell membrane transporters. In several human pathogenic fungi, siderophores are pivotal for virulence, as inhibition of their synthesis or transport significantly reduces disease in murine models of infection. This review briefly highlights siderophore biosynthesis and transport mechanisms in fungal pathogens as well the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Understanding siderophore biosynthesis and transport in pathogenic fungi provides valuable insights into fungal biology and illuminates potential therapeutic targets for combating fungal infections.
Collapse
Affiliation(s)
- Sohyeong Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
6
|
Mular A, Hubmann I, Petrik M, Bendova K, Neuzilova B, Aguiar M, Caballero P, Shanzer A, Kozłowski H, Haas H, Decristoforo C, Gumienna-Kontecka E. Biomimetic Analogues of the Desferrioxamine E Siderophore for PET Imaging of Invasive Aspergillosis: Targeting Properties and Species Specificity. J Med Chem 2024; 67:12143-12154. [PMID: 38907990 DOI: 10.1021/acs.jmedchem.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.
Collapse
Affiliation(s)
- Andrzej Mular
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Isabella Hubmann
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Katerina Bendova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Barbora Neuzilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Mario Aguiar
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Patricia Caballero
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Abraham Shanzer
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
- Public Higher Medical Professional School in Opole, Katowicka 68, 45-060 Opole, Poland
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
7
|
Kortenbosch HH, van Leuven F, van den Heuvel C, Schoustra SE, Zwaan BJ, Snelders E. Catching some air: a method to spatially quantify aerial triazole resistance in Aspergillus fumigatus. Appl Environ Microbiol 2024; 90:e0027124. [PMID: 38842339 PMCID: PMC11267943 DOI: 10.1128/aem.00271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Airborne triazole-resistant spores of the human fungal pathogen Aspergillus fumigatus are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions. We show that prolonged outdoor exposure of sticky seals placed in delta traps, when combined with a two-layered cultivation approach, can regionally yield sufficient colony-forming units (CFUs) for the quantitative assessment of aerial resistance levels at a spatial scale that was up to now unfeasible. When testing our method in a European pilot sampling 12 regions, we demonstrate that there are significant regional differences in airborne CFU numbers, and the triazole-resistant fraction of airborne spores is widespread and varies between 0 and 0.1 for itraconazole (∼4 mg/L) and voriconazole (∼2 mg/L). Our efficient and accessible air sampling protocol opens up extensive options for fine-scale spatial sampling and surveillance studies of airborne A. fumigatus.IMPORTANCEAspergillus fumigatus is an opportunistic fungal pathogen that humans and other animals are primarily exposed to through inhalation. Due to the limited availability of antifungals, resistance to the first choice class of antifungals, the triazoles, in A. fumigatus can make infections by this fungus untreatable and uncurable. Here, we describe and validate a method that allows for the quantification of airborne resistance fractions and quick genotyping of A. fumigatus TR-types. Our pilot study provides proof of concept of the suitability of the method for use by citizen-scientists for large-scale spatial air sampling. Spatial air sampling can open up extensive options for surveillance, health-risk assessment, and the study of landscape-level ecology of A. fumigatus, as well as investigating the environmental drivers of triazole resistance.
Collapse
Affiliation(s)
- Hylke H. Kortenbosch
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Fabienne van Leuven
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Cathy van den Heuvel
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Sijmen E. Schoustra
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Bas J. Zwaan
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| | - Eveline Snelders
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Gelderland, the Netherlands
| |
Collapse
|
8
|
Dohin I, Vinciguerra A, Sama A, Verillaud B, Herman P. Destructive non-invasive infection in isolated frontal sinus aspergilloma: Prevalence and proposition of a new pathogenetic model. Clin Otolaryngol 2024; 49:524-528. [PMID: 38705146 DOI: 10.1111/coa.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Affiliation(s)
- Isabelle Dohin
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Surgical and Medical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Anshul Sama
- Department of Neurosurgery, Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Benjamin Verillaud
- Otorhinolaryngology and Skull Base Center, AP-HP, Hospital Lariboisière, Paris, France
- Université Paris Cité, Paris, France
- Inserm U1141, Paris, France
| | - Philippe Herman
- Otorhinolaryngology and Skull Base Center, AP-HP, Hospital Lariboisière, Paris, France
- Université Paris Cité, Paris, France
- Inserm U1141, Paris, France
| |
Collapse
|
9
|
Philippe A, Salaun M, Quemener M, Noël C, Tallec K, Lacroix C, Coton E, Burgaud G. Colonization and Biodegradation Potential of Fungal Communities on Immersed Polystyrene vs. Biodegradable Plastics: A Time Series Study in a Marina Environment. J Fungi (Basel) 2024; 10:428. [PMID: 38921415 PMCID: PMC11204492 DOI: 10.3390/jof10060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Plastic pollution of the ocean is a major environmental threat. In this context, a better understanding of the microorganisms able to colonize and potentially degrade these pollutants is of interest. This study explores the colonization and biodegradation potential of fungal communities on foamed polystyrene and alternatives biodegradable plastics immersed in a marina environment over time, using the Brest marina (France) as a model site. The methodology involved a combination of high-throughput 18S rRNA gene amplicon sequencing to investigate fungal taxa associated with plastics compared to the surrounding seawater, and a culture-dependent approach to isolate environmentally relevant fungi to further assess their capabilities to utilize polymers as carbon sources. Metabarcoding results highlighted the significant diversity of fungal communities associated with both foamed polystyrene and biodegradable plastics, revealing a dynamic colonization process influenced by the type of polymer and immersion time. Notably, the research suggests a potential for certain fungal species to utilize polymers as a carbon source, emphasizing the need for further exploration of fungal biodegradation potential and mechanisms.
Collapse
Affiliation(s)
- Aurélie Philippe
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Marie Salaun
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Maxence Quemener
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Cyril Noël
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l’Ifremer, F-29280 Plouzané, France;
| | - Kévin Tallec
- CEDRE Centre de Documentation, de Recherche et d’Expérimentations sur les Pollutions Accidentelles des Eaux, 715 Rue Alain Colas, CS 41836, CEDEX 2, 29218 Brest, France; (K.T.); (C.L.)
| | - Camille Lacroix
- CEDRE Centre de Documentation, de Recherche et d’Expérimentations sur les Pollutions Accidentelles des Eaux, 715 Rue Alain Colas, CS 41836, CEDEX 2, 29218 Brest, France; (K.T.); (C.L.)
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (A.P.); (M.S.); (M.Q.); (E.C.)
- Institut Universitaire de France, France
| |
Collapse
|
10
|
van Dijk MAM, Buil JB, Tehupeiory-Kooreman M, Broekhuizen MJ, Broens EM, Wagenaar JA, Verweij PE. Azole Resistance in Veterinary Clinical Aspergillus fumigatus Isolates in the Netherlands. Mycopathologia 2024; 189:50. [PMID: 38864903 PMCID: PMC11169034 DOI: 10.1007/s11046-024-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024]
Abstract
Aspergillus fumigatus is a saprophytic fungal pathogen that causes opportunistic infections in animals and humans. Azole resistance has been reported globally in human A. fumigatus isolates, but the prevalence of resistance in isolates from animals is largely unknown. A retrospective resistance surveillance study was performed using a collection of clinical A. fumigatus isolates from various animal species collected between 2015 and 2020. Agar-based azole resistance screening of all isolates was followed by in vitro antifungal susceptibility testing and cyp51A gene sequencing of the azole-resistant isolates. Over the 5 year period 16 (11.3%) of 142 A. fumigatus culture-positive animals harbored an azole-resistant isolate. Resistant isolates were found in birds (15%; 2/13), cats (21%; 6/28), dogs (8%; 6/75) and free-ranging harbor porpoise (33%; 2/6). Azole-resistance was cyp51A mediated in all isolates: 81.3% (T-67G/)TR34/L98H, 12.5% TR46/Y121F/T289A. In one azole-resistant A. fumigatus isolate a combination of C(-70)T/F46Y/C(intron7)T/C(intron66)T/M172V/E427K single-nucleotide polymorphisms in the cyp51A gene was found. Of the animals with an azole-resistant isolate and known azole exposure status 71.4% (10/14) were azole naive. Azole resistance in A. fumigatus isolates from animals in the Netherlands is present and predominantly cyp51A TR-mediated, supporting an environmental route of resistance selection. Our data supports the need to include veterinary isolates in resistance surveillance programs. Veterinarians should consider azole resistance as a reason for therapy failure when treating aspergillosis and consider resistance testing of relevant isolates.
Collapse
Affiliation(s)
- Marloes A M van Dijk
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands.
| | - Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Marlou Tehupeiory-Kooreman
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Marian J Broekhuizen
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Els M Broens
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, 8221 RA, Lelystad, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Wassano NS, da Silva GB, Reis AH, A Gerhardt J, Antoniel EP, Akiyama D, Rezende CP, Neves LX, Vasconcelos EJR, de Figueiredo FL, Almeida F, de Castro PA, Pinzan CF, Goldman GH, Paes Leme AF, Fill TP, Moretti NS, Damasio A. Sirtuin E deacetylase is required for full virulence of Aspergillus fumigatus. Commun Biol 2024; 7:704. [PMID: 38851817 PMCID: PMC11162503 DOI: 10.1038/s42003-024-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Collapse
Affiliation(s)
- Natália S Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
| | - Gabriela B da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Artur H Reis
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaqueline A Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everton P Antoniel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Akiyama
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Caroline P Rezende
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Leandro X Neves
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Fernanda L de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila F Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriana F Paes Leme
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Taicia P Fill
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| |
Collapse
|
12
|
Wang C, Miller N, Vines D, Severns PM, Momany M, Brewer MT. Azole resistance mechanisms and population structure of the human pathogen Aspergillus fumigatus on retail plant products. Appl Environ Microbiol 2024; 90:e0205623. [PMID: 38651929 PMCID: PMC11107156 DOI: 10.1128/aem.02056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.
Collapse
Affiliation(s)
- Caroline Wang
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Natalie Miller
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Douglas Vines
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Paul M. Severns
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Michelle Momany
- Fungal Biology Group, Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Marin T. Brewer
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Fageräng B, Götz MP, Cyranka L, Lau C, Nilsson PH, Mollnes TE, Garred P. The Inflammatory Response Induced by Aspergillus fumigatus Conidia Is Dependent on Complement Activation: Insight from a Whole Blood Model. J Innate Immun 2024; 16:324-336. [PMID: 38768576 PMCID: PMC11250388 DOI: 10.1159/000539368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION We aimed to elucidate the inflammatory response of Aspergillus fumigatus conidia in a whole-blood model of innate immune activation and to compare it with the well-characterized inflammatory reaction to Escherichia coli. METHODS Employing a human lepirudin whole-blood model, we analyzed complement and leukocyte activation by measuring the sC5b-9 complex and assessing CD11b expression. A 27-multiplex system was used for quantification of cytokines. Selective cell removal from whole blood and inhibition of C3, C5, and CD14 were also applied. RESULTS Our findings demonstrated a marked elevation in sC5b-9 and CD11b post-A. fumigatus incubation. Thirteen cytokines (TNF, IL-1β, IL-1ra, IL-4, IL-6, IL-8, IL-17, IFNγ, MCP-1, MIP-1α, MIP-1β, FGF-basic, and G-CSF) showed increased levels. A generally lower level of cytokine release and CD11b expression was observed with A. fumigatus conidia than with E. coli. Notably, monocytes were instrumental in releasing all cytokines except MCP-1. IL-1ra was found to be both monocyte and granulocyte-dependent. Pre-inhibiting with C3 and CD14 inhibitors resulted in decreased release patterns for six cytokines (TNF, IL-1β, IL-6, IL-8, MIP-1α, and MIP-1β), with minimal effects by C5-inhibition. CONCLUSION A. fumigatus conidia induced complement activation comparable to E. coli, whereas CD11b expression and cytokine release were lower, underscoring distinct inflammatory responses between these pathogens. Complement C3 inhibition attenuated cytokine release indicating a C3-level role of complement in A. fumigatus immunity.
Collapse
Affiliation(s)
- Beatrice Fageräng
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Peter Götz
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leon Cyranka
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Per H. Nilsson
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Geremia N, Giovagnorio F, Colpani A, De Vito A, Caruana G, Meloni MC, Madeddu G, Panese S, Parisi SG. What do We Know about Cryptic Aspergillosis? Microorganisms 2024; 12:886. [PMID: 38792716 PMCID: PMC11124275 DOI: 10.3390/microorganisms12050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Cryptic Aspergillus species are increasingly recognized as pathogens involved in human disease. They are ubiquitarian fungi with high tenacity in their environment and can express various resistance mechanisms, often due to exposure to antifungal agents employed in agriculture and farming. The identification of such species is increasing thanks to molecular techniques, and a better description of this type of pathogen is granted. Nevertheless, the number of species and their importance in the clinical setting still need to be well studied. Furthermore, their cross-sectional involvement in animal disease, plants, and human activities requires a multidisciplinary approach involving experts from various fields. This comprehensive review aims to provide a sharp vision of the cryptic Aspergillus species, from the importance of correct identification to the better management of the infections caused by these pathogens. The review also accentuates the importance of the One Health approach for this kind of microorganism, given the interconnection between environmental exposure and aspergillosis, embracing transversely the multidisciplinary process for managing the cryptic Aspergillus species. The paper advocates the need for improving knowledge in this little-known species, given the burden of economic and health implications related to the diffusion of these bugs.
Collapse
Affiliation(s)
- Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Dell’Angelo, 30174 Venice, Italy;
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | - Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
- Biomedical Science Department, School in Biomedical Science, University of Sassari, 07100 Sassari, Italy
| | - Giorgia Caruana
- Department of Laboratory Medicine and Pathology, Institute of microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Maria Chiara Meloni
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Sandro Panese
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Dell’Angelo, 30174 Venice, Italy;
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | | |
Collapse
|
15
|
Hu X, Zhou Y, Liu R, Wang J, Guo L, Huang X, Li J, Yan Y, Liu F, Li X, Tan X, Luo Y, Wang P, Zhou S. Protein disulfide isomerase 1 is required for RodA assembling-based conidial hydrophobicity of Aspergillus fumigatus. Appl Environ Microbiol 2024; 90:e0126023. [PMID: 38501925 PMCID: PMC11022560 DOI: 10.1128/aem.01260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.
Collapse
Affiliation(s)
- Xiaotao Hu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Renning Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lingyan Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaofei Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feiyun Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xueying Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinyu Tan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yiqing Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Kulišová M, Rabochová M, Lorinčík J, Brányik T, Hrudka J, Scholtz V, Jarošová Kolouchová I. Exploring Non-Thermal Plasma and UV Radiation as Biofilm Control Strategies against Foodborne Filamentous Fungal Contaminants. Foods 2024; 13:1054. [PMID: 38611358 PMCID: PMC11011738 DOI: 10.3390/foods13071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, non-thermal plasma (NTP) has emerged as a promising tool for decontamination and disinfection within the food industry. Given the increasing resistance of microbial biofilms to conventional disinfectants and their adverse environmental effects, this method has significant potential for eliminating biofilm formation or mitigating the metabolic activity of grown biofilms. A comparative study was conducted evaluating the efficacy of UV radiation and NTP in eradicating mature biofilms of four common foodborne filamentous fungal contaminants: Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The findings reveal that while UV radiation exhibits variable efficacy depending on the duration of exposure and fungal species, NTP induces substantial morphological alterations in biofilms, disrupting hyphae, and reducing extracellular polymeric substance production, particularly in A. alternata and F. culmorum. Notably, scanning electron microscopy analysis demonstrates significant disruption of the hyphae in NTP-treated biofilms, indicating its ability to penetrate the biofilm matrix, which is a promising outcome for biofilm eradication strategies. The use of NTP could offer a more environmentally friendly and potentially more effective alternative to traditional disinfection methods.
Collapse
Affiliation(s)
- Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Michaela Rabochová
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 272 01 Kladno, Czech Republic
| | - Jan Lorinčík
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
| | - Tomáš Brányik
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic;
| | - Jan Hrudka
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Vladimír Scholtz
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Irena Jarošová Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| |
Collapse
|
17
|
Nasiri-Jahrodi A, Barati M, Namdar Ahmadabad H, Badali H, Morovati H. A comprehensive review on the role of T cell subsets and CAR-T cell therapy in Aspergillus fumigatus infection. Hum Immunol 2024; 85:110763. [PMID: 38350795 DOI: 10.1016/j.humimm.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Understanding the immune response to Aspergillus fumigatus, a common cause of invasive fungal infections (IFIs) in immunocompromised individuals, is critical for developing effective treatments. Tcells play a critical role in the immune response to A. fumigatus, with different subsets having distinct functions. Th1 cells are important for controlling fungal growth, while Th2 cells can exacerbate infection. Th17 cells promote the clearance of fungi indirectly by stimulating the production of various antimicrobial peptides from epithelial cells and directly by recruiting and activating neutrophils. Regulatory T cells have varied functions in A.fumigatus infection. They expand after exposure to A. fumigatus conidia and prevent organ injury and fungal sepsis by downregulating inflammation and inhibiting neutrophils or suppressing Th17 cells. Regulatory T cells also block Th2 cells to stop aspergillosis allergies. Immunotherapy with CAR T cells is a promising treatment for fungal infections, including A. fumigatus infections, especially in immunocompromised individuals. However, further research is needed to fully understand the mechanisms underlying the immune response to A. fumigatus and to develop effective immunotherapies with CAR-T cells for this infection. This literature review explores the role of Tcell subsets in A.fumigatus infection, and the effects of CAR-T cell therapy on this fungal infection.
Collapse
Affiliation(s)
- Abozar Nasiri-Jahrodi
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Barati
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hasan Namdar Ahmadabad
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Das S, T C, Selvasembian R, Prabhu AA. Mixed food waste valorization using a thermostable glucoamylase enzyme produced by a newly isolated filamentous fungus: A sustainable biorefinery approach. CHEMOSPHERE 2024; 352:141480. [PMID: 38401866 DOI: 10.1016/j.chemosphere.2024.141480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Food waste is a lucrative source of complex nutrients, which can be transformed into a multitude of bioproducts by the aid of microbial cell factories. The current study emphasizes isolating Glucoamylase enzyme (GA) producing strains that can effectively break down mixed food waste (MW), which serves as a substrate for biomanufacturing. The screening procedure relied heavily on the growth of isolated fungi on starch agar media, to specifically identify the microbes with the highest starch hydrolysis potential. A strain displayed the highest GA activity of 2.9 ± 0.14 U/ml which was selected and identified as Aspergillus fumigatus via molecular methods of identification. Exposure of the A. fumigatus with 200 mM Ethyl methanesulphonate (EMS) led to a 23.79% increase compared to the wild-type GA. The growth conditions like cultivation temperature or the number of spores in the inoculum were investigated. Further, maximum GA activity was exhibited at pH 5, 55 °C, and at 5 mM Ca2+ concentration. The GA showed thermostability, retaining activity even after long periods of exposure to temperatures as high as 95 °C. The improvement of hydrolysis of MW was achieved by Taguchi design where a maximum yield of 0.57 g g-1 glucose was obtained in the hydrolysate. This study puts forth the possibility that mixed food waste, despite containing spices and other microbial growth-inhibitory substances, can be efficiently hydrolyzed to release glucose units, by robust fungal cell factories. The glucose released can then be utilized as a carbon source for the production of value-added products.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chandukishore T
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
19
|
Garstka K, Potoczniak G, Kozłowski H, Rowińska-Żyrek M. Aspergillus fumigatus ZrfC Zn(II) transporter scavengers zincophore-bound Zn(II). Dalton Trans 2024; 53:2848-2858. [PMID: 38231010 DOI: 10.1039/d3dt04083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Aspergillus fumigatus is an opportunistic pathogen that is able to invade and grow in the lungs of immunosuppressed patients and cause invasive pulmonary aspergillosis. The concentration of free Zn(II) in living tissues is much lower than that required for optimal fungal growth; thus, to obtain Zn(II) from the host, Aspergillus fumigatus uses highly specified Zn(II) transporters: ZrfA, ZrfB and ZrfC. The ZrfC transporter plays the main role in Zn(II) acquisition from the host in neutral and mildly alkaline environment via interacting with the secreted Aspf2 zincophore. Understanding the Aspf2-ZrfC interactions is therefore necessary for explaining the process of Zn(II) acquisition by Aspergillus fumigatus, and identifying Zn(II) binding sites in its transporter and describing the thermodynamics of such binding are the fundamental steps to achieve this goal. We focus on two probable ZrfC Zn(II) binding sites and show that the Ac-MNCHFHAGVEHCIGAGESESGSSQ-NH2 region binds Zn(II) with higher affinity than the Ac-TGCHSHGS-NH2 one and that this binding is much stronger than the binding of Zn(II) to the Aspf2 zincophore, allowing efficient Zn(II) transport from the Aspf2 zincophore to the ZrfC transporter. The same ZrfC fragments also able to bind Ni(II), another metal ion essential for fungi that could also compete with Zn(II) binding, with comparable affinity.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Gabriela Potoczniak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
- Institute of Health Sciences, University of Opole, Katowicka 68 St., 45-060 Opole, Poland
| | | |
Collapse
|
20
|
Monforte A, Martin-Gomez MT, Los-Arcos I, Márquez-Algaba E, Berastegui C, Rosado J, Sacanell J, Gavaldà J, Len O. Effect of SARS-CoV-2 preventive measures on early lung transplant fungal acquisition: An observational study. Transpl Infect Dis 2024; 26:e14246. [PMID: 38269450 DOI: 10.1111/tid.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Arnau Monforte
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ibai Los-Arcos
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Márquez-Algaba
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Berastegui
- Department of Pneumology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joel Rosado
- Department of Thoracic Surgery, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Judith Sacanell
- Intensive Care Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan Gavaldà
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Tomazin R, Matos T. Mycological Methods for Routine Air Sampling and Interpretation of Results in Operating Theaters. Diagnostics (Basel) 2024; 14:288. [PMID: 38337804 PMCID: PMC10855394 DOI: 10.3390/diagnostics14030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Many infectious diseases are transmitted via the air and are, therefore, particularly difficult to combat. These infections include various invasive mycoses caused by molds. The usual route of infection is the inhalation of conidia. In hospitals, infection can also occur through the deposition of conidia in otherwise sterile anatomical sites during surgical and other invasive procedures. Therefore, knowledge of airborne mold concentrations can lead to measures to protect patients from fungal infections. The literature on this topic contains insufficient and sometimes ambiguous information. This is evidenced by the fact that there are no international recommendations or guidelines defining the methodology of air sampling and the interpretation of the results obtained. Surgical departments, intensive care units and medical mycology laboratories are, therefore, left to their own devices, leading to significant differences in the implementation of mycological surveillance in hospitals. The aim of this mini-review is to provide an overview of the current methods of air sampling and interpretation of results used in medical mycology laboratories.
Collapse
Affiliation(s)
| | - Tadeja Matos
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
22
|
Dabholkar A, Pandit S, Devkota R, Dhingra S, Lorber S, Puel O, Calvo AM. Role of the osaA Gene in Aspergillus fumigatus Development, Secondary Metabolism and Virulence. J Fungi (Basel) 2024; 10:103. [PMID: 38392775 PMCID: PMC10890407 DOI: 10.3390/jof10020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. Conidiation is also influenced by osaA; both osaA deletion and overexpression resulted in a decrease in spore production. Wild-type expression levels of osaA are necessary for the expression of the conidiation regulatory genes brlA, abaA, and wetA. In addition, osaA is necessary for normal cell wall integrity. Furthermore, the deletion of osaA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, decreased thermotolerance, as well as increased sensitivity to oxidative stress. Metabolomics analysis indicated that osaA deletion or overexpression led to alterations in the production of multiple secondary metabolites, including gliotoxin. This was accompanied by changes in the expression of genes in the corresponding secondary metabolite gene clusters. These effects could be, at least in part, due to the observed reduction in the expression levels of the veA and laeA global regulators when the osaA locus was altered. Importantly, our study shows that osaA is indispensable for virulence in both neutropenic and corticosteroid-immunosuppressed mouse models.
Collapse
Affiliation(s)
- Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Sandesh Pandit
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Ritu Devkota
- Department of Biological Sciences and Eukaryotic Pathogen Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Sourabh Dhingra
- Department of Biological Sciences and Eukaryotic Pathogen Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Ana M Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
23
|
Xu H, Gao Y, Liang T, Wang Q, Wan Z, Li R, Liu W. Isolation of triazole-resistant Aspergillus fumigatus harbouring cyp51A mutations from five patients with invasive pulmonary aspergillosis in Yunnan, China. Mycology 2024; 15:85-90. [PMID: 38558838 PMCID: PMC10976991 DOI: 10.1080/21501203.2023.2299472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 04/04/2024] Open
Abstract
Invasive aspergillosis (IA) is the most severe type of Aspergillus infection. Yunnan has developed agriculture, and the proportion of triazole-resistant A. fumigatus induced by triazole fungicides is much higher than that in other regions of China. Inhalation of triazole-resistant A. fumigatus is one of the main factors inducing IA. We gathered five strains of A. fumigatus from the sputum or bronchoalveolar lavage fluid (BALF) of patients with IA in Yunnan. Subsequent testing showed that all of these strains were resistant to triazoles and harboured mutations in the tandem repeat sequence of the cyp51A promoter region, suggesting that they may be triazole-resistant A. fumigatus present in the environment.
Collapse
Affiliation(s)
- Hui Xu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yuhong Gao
- Department of clinical laboratory, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tianyu Liang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
24
|
Tashiro M, Takazono T, Izumikawa K. Chronic pulmonary aspergillosis: comprehensive insights into epidemiology, treatment, and unresolved challenges. Ther Adv Infect Dis 2024; 11:20499361241253751. [PMID: 38899061 PMCID: PMC11186400 DOI: 10.1177/20499361241253751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic pulmonary aspergillosis (CPA) is a challenging respiratory infection caused by the environmental fungus Aspergillus. CPA has a poor prognosis, with reported 1-year mortality rates ranging from 7% to 32% and 5-year mortality rates ranging from 38% to 52%. A comprehensive understanding of the pathogen, pathophysiology, risk factors, diagnosis, surgery, hemoptysis treatment, pharmacological therapy, and prognosis is essential to manage CPA effectively. In particular, Aspergillus drug resistance and cryptic species pose significant challenges. CPA lacks tissue invasion and has specific features such as aspergilloma. The most critical risk factor for the development of CPA is pulmonary cavitation. Diagnostic approaches vary by CPA subtype, with computed tomography (CT) imaging and Aspergillus IgG antibodies being key. Treatment strategies include surgery, hemoptysis management, and antifungal therapy. Surgery is the curative option. However, reported postoperative mortality rates range from 0% to 5% and complications range from 11% to 63%. Simple aspergilloma generally has a low postoperative mortality rate, making surgery the first choice. Hemoptysis, observed in 50% of CPA patients, is a significant symptom and can be life-threatening. Bronchial artery embolization achieves hemostasis in 64% to 100% of cases, but 50% experience recurrent hemoptysis. The efficacy of antifungal therapy for CPA varies, with itraconazole reported to be 43-76%, voriconazole 32-80%, posaconazole 44-61%, isavuconazole 82.7%, echinocandins 42-77%, and liposomal amphotericin B 52-73%. Combinatorial treatments such as bronchoscopic triazole administration, inhalation, or direct injection of amphotericin B at the site of infection also show efficacy. A treatment duration of more than 6 months is recommended, with better efficacy reported for periods of more than 1 year. In anticipation of improvements in CPA management, ongoing advances in basic and clinical research are expected to contribute to the future of CPA management.
Collapse
Affiliation(s)
- Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
25
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
27
|
El-Dash HA, Yousef NE, Aboelazm AA, Awan ZA, Yahya G, El-Ganiny AM. Optimizing Eco-Friendly Degradation of Polyvinyl Chloride (PVC) Plastic Using Environmental Strains of Malassezia Species and Aspergillus fumigatus. Int J Mol Sci 2023; 24:15452. [PMID: 37895132 PMCID: PMC10607177 DOI: 10.3390/ijms242015452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Worldwide, huge amounts of plastics are being introduced into the ecosystem, causing environmental pollution. Generally, plastic biodegradation in the ecosystem takes hundreds of years. Hence, the isolation of plastic-biodegrading microorganisms and finding optimum conditions for their action is crucial. The aim of the current study is to isolate plastic-biodegrading fungi and explore optimum conditions for their action. Soil samples were gathered from landfill sites; 18 isolates were able to grow on SDA. Only 10 isolates were able to the degrade polyvinyl chloride (PVC) polymer. Four isolates displayed promising depolymerase activity. Molecular identification revealed that three isolates belong to genus Aspergillus, and one isolate was Malassezia sp. Three isolates showed superior PVC-biodegrading activity (Aspergillus-2, Aspergillus-3 and Malassezia) using weight reduction analysis and SEM. Two Aspergillus strains and Malassezia showed optimum growth at 40 °C, while the last strain grew better at 30 °C. Two Aspergillus isolates grew better at pH 8-9, and the other two isolates grow better at pH 4. Maximal depolymerase activity was monitored at 50 °C, and at slightly acidic pH in most isolates, FeCl3 significantly enhanced depolymerase activity in two Aspergillus isolates. In conclusion, the isolated fungi have promising potential to degrade PVC and can contribute to the reduction of environmental pollution in eco-friendly way.
Collapse
Affiliation(s)
- Heba A. El-Dash
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| | - Nehal E. Yousef
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| | - Abeer A. Aboelazm
- Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Amira M. El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| |
Collapse
|
28
|
Wassano NS, da Silva GB, Reis AH, Gerhardt JA, Antoniel EP, Akiyama D, Rezende CP, Neves LX, Vasconcelos E, Figueiredo FL, Almeida F, de Castro PA, Pinzan CF, Goldman GH, Leme AFP, Fill TP, Moretti NS, Damasio A. Deacetylation by sirtuins is important for Aspergillus fumigatus pathogenesis and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.558961. [PMID: 37808717 PMCID: PMC10557594 DOI: 10.1101/2023.09.25.558961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein acetylation is a crucial post-translational modification that controls gene expression and a variety of biological processes. Sirtuins, a prominent class of NAD + -dependent lysine deacetylases, serve as key regulators of protein acetylation and gene expression in eukaryotes. In this study, six single knockout strains of fungal pathogen Aspergillus fumigatus were constructed, in addition to a strain lacking all predicted sirtuins (SIRTKO). Phenotypic assays suggest that sirtuins are involved in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. AfsirE deletion resulted in attenuation of virulence, as demonstrated in murine and Galleria infection models. The absence of AfSirE leads to altered acetylation status of proteins, including histones and non-histones, resulting in significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Collapse
|
29
|
Zhou D, Gong J, Duan C, He J, Zhang Y, Xu J. Genetic structure and triazole resistance among Aspergillus fumigatus populations from remote and undeveloped regions in Eastern Himalaya. mSphere 2023; 8:e0007123. [PMID: 37341484 PMCID: PMC10449526 DOI: 10.1128/msphere.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous mold and a common human fungal pathogen. Recent molecular population genetic and epidemiological analyses have revealed evidence for long-distance gene flow and high genetic diversity within most local populations of A. fumigatus. However, little is known about the impact of regional landscape factors in shaping the population diversity patterns of this species. Here we sampled extensively and investigated the population structure of A. fumigatus from soils in the Three Parallel Rivers (TPR) region in Eastern Himalaya. This region is remote, undeveloped and sparsely populated, bordered by glaciated peaks more than 6,000 m above sea level, and contained three rivers separated by tall mountains over very short horizontal distances. A total of 358 A. fumigatus strains from 19 sites along the three rivers were isolated and analyzed at nine loci containing short tandem repeats. Our analyses revealed that mountain barriers, elevation differences, and drainage systems all contributed low but statistically significant genetic variations to the total A. fumigatus population in this region. We found abundant novel alleles and genotypes in the TPR population of A. fumigatus and significant genetic differentiation between this population and those from other parts of Yunnan and the globe. Surprisingly, despite limited human presence in this region, about 7% of the A. fumigatus isolates were resistant to at least one of the two medical triazoles commonly used for treating aspergillosis. Our results call for greater surveillance of this and other human fungal pathogens in the environment. IMPORTANCE The extreme habitat fragmentation and substantial environmental heterogeneity in the TPR region have long known to contribute to geographically shaped genetic structure and local adaptation in several plant and animal species. However, there have been limited studies of fungi in this region. Aspergillus fumigatus is a ubiquitous pathogen capable of long-distance dispersal and growth in diverse environments. In this study, using A. fumigatus as a model, we investigated how localized landscape features contribute to genetic variations in fungal populations. Our results revealed that elevation and drainage isolation rather than direct physical distances significantly impacted genetic exchange and diversity among the local A. fumigatus populations. Interestingly, within each local population, we found high allelic and genotypic diversities, and with evidence ~7% of all isolates being resistant to two medical triazoles, itraconazole and voriconazole. Given the high frequency of ARAF found in mostly natural soils of sparsely populated sites in the TPR region, close monitoring of their dynamics in nature and their effects on human health is needed.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
- Key Laboratory of Biological Genetic Resources Mining and Molecular Breeding of Qianxinan Prefecture, Minzu Normal University of Xingyi, Xingyi, China
| | - Jianchuan Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Chengyan Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Jingrui He
- School of Life Science, Yunnan University, Kunming, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Martins C, Piontkivska D, Mil-Homens D, Guedes P, Jorge JMP, Brinco J, Bárria C, Santos ACF, Barras R, Arraiano C, Fialho A, Goldman GH, Silva Pereira C. Increased Production of Pathogenic, Airborne Fungal Spores upon Exposure of a Soil Mycobiota to Chlorinated Aromatic Hydrocarbon Pollutants. Microbiol Spectr 2023; 11:e0066723. [PMID: 37284774 PMCID: PMC10434042 DOI: 10.1128/spectrum.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Organic pollutants are omnipresent and can penetrate all environmental niches. We evaluated the hypothesis that short-term (acute) exposure to aromatic hydrocarbon pollutants could increase the potential for fungal virulence. Specifically, we analyzed whether pentachlorophenol and triclosan pollution results in the production of airborne fungal spores with greater virulence than those derived from an unpolluted (Control) condition. Each pollutant altered the composition of the community of airborne spores compared to the control, favoring an increase in strains with in vivo infection capacity (the wax moth Galleria mellonella was used as an infection model). Fungi subsisting inside larvae at 72 h postinjection with airborne spore inocula collected in polluted and unpolluted conditions exhibited comparable diversity (mainly within Aspergillus fumigatus). Several virulent Aspergillus strains were isolated from larvae infected with the airborne spores produced in a polluted environment. Meanwhile, strains isolated from larvae injected with spores from the control, including one A. fumigatus strain, showed no virulence. Potential pathogenicity increased when two Aspergillus virulent strains were assembled, suggesting the existence of synergisms that impact pathogenicity. None of the observed taxonomic or functional traits could separate the virulent from the avirulent strains. Our study emphasizes pollution stress as a possible driver of phenotypic adaptations that increase Aspergillus pathogenicity, as well as the need to better understand the interplay between pollution and fungal virulence. IMPORTANCE Fungi colonizing soil and organic pollutants often meet. The consequences of this encounter constitute an outstanding question. We scrutinized the potential for virulence of airborne fungal spores produced under unpolluted and polluted scenarios. The airborne spores showed increased diversity of strains with higher infection capacity in Galleria mellonella whenever pollution is present. Inside the larvae injected with either airborne spore community, the surviving fungi demonstrated a similar diversity, mainly within Aspergillus fumigatus. However, the isolated Aspergillus strains greatly differ since virulence was only observed for those associated with a polluted environment. The interplay between pollution and fungal virulence still hides many unresolved questions, but the encounter is costly: pollution stress promotes phenotypic adaptations that may increase Aspergillus pathogenicity.
Collapse
Affiliation(s)
- Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dalila Mil-Homens
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Paula Guedes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - João M. P. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Brinco
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ariana C. F. Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Barras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Arsénio Fialho
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Gustavo H. Goldman
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
31
|
Shukla P, Deswal D, Narula AK. Antifungal activity of novel azetidine tethered chitosan synthesized via multicomponent reaction approach. J Mycol Med 2023; 33:101409. [PMID: 37354816 PMCID: PMC10266883 DOI: 10.1016/j.mycmed.2023.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The increasing incidences of fungal infections among Covid-19 infected patients is a global public concern and urgently demands novel antifungals. Biopolymers like chitosan hold unique structural properties and thus can be utilized in the synthesis of biologically important scaffolds. To address the current scenario, the author's synthesized novel chitosan-azetidine derivative by adopting one-pot multicomponent reaction approach. The influence of chemical modification on the structural characteristics was investigated by means of spectroscopic techniques viz. FT-IR and 1HNMR and elemental analysis. Additionally, the authors investigated the antifungal potential of chitosan-azetidine derivative against Aspergillus fumigatus 3007 and the results indicated higher antifungal effect with an antifungal inhibitory index of 26.19%. The SEM and confocal microscopy images also reflected a significant inhibitory effect on the morphology of fungal mycelia, thus reflecting the potential of synthesized chitosan-azetidine derivativeas a potential antifungal agent.
Collapse
Affiliation(s)
- P Shukla
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
| | - D Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi 110078, India
| | - A K Narula
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078, India; Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi 110078, India.
| |
Collapse
|
32
|
Hokken MWJ, Coolen JPM, Steenbreker H, Zoll J, Baltussen TJH, Verweij PE, Melchers WJG. The Transcriptome Response to Azole Compounds in Aspergillus fumigatus Shows Differential Gene Expression across Pathways Essential for Azole Resistance and Cell Survival. J Fungi (Basel) 2023; 9:807. [PMID: 37623579 PMCID: PMC10455693 DOI: 10.3390/jof9080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic pathogen Aspergillus fumigatus is found on all continents and thrives in soil and agricultural environments. Its ability to readily adapt to novel environments and to produce billions of spores led to the spread of azole-resistant A. fumigatus across the globe, posing a threat to many immunocompromised patients, including critically ill patients with severe influenza or COVID-19. In our study, we sought to compare the adaptational response to azoles from A. fumigatus isolates that differ in azole susceptibility and genetic background. To gain more insight into how short-term adaptation to stressful azole compounds is managed through gene expression, we conducted an RNA-sequencing study on the response of A. fumigatus to itraconazole and the newest clinically approved azole, isavuconazole. We observed many similarities in ergosterol biosynthesis up-regulation across isolates, with the exception of the pan-azole-resistant isolate, which showed very little differential regulation in comparison to other isolates. Additionally, we found differential regulation of membrane efflux transporters, secondary metabolites, iron metabolism, and various stress response and cell signaling mechanisms.
Collapse
Affiliation(s)
- Margriet W. J. Hokken
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Hilbert Steenbreker
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
| | - Jan Zoll
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
33
|
Nji QN, Babalola OO, Mwanza M. Soil Aspergillus Species, Pathogenicity and Control Perspectives. J Fungi (Basel) 2023; 9:766. [PMID: 37504754 PMCID: PMC10381279 DOI: 10.3390/jof9070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Five Aspergillus sections have members that are established agricultural pests and producers of different metabolites, threatening global food safety. Most of these pathogenic Aspergillus species have been isolated from almost all major biomes. The soil remains the primary habitat for most of these cryptic fungi. This review explored some of the ecological attributes that have contributed immensely to the success of the pathogenicity of some members of the genus Aspergillus over time. Hence, the virulence factors of the genus Aspergillus, their ecology and others were reviewed. Furthermore, some biological control techniques were recommended. Pathogenic effects of Aspergillus species are entirely accidental; therefore, the virulence evolution prediction model in such species becomes a challenge, unlike their obligate parasite counterparts. In all, differences in virulence among organisms involved both conserved and species-specific genetic factors. If the impacts of climate change continue, new cryptic Aspergillus species will emerge and mycotoxin contamination risks will increase in all ecosystems, as these species can metabolically adjust to nutritional and biophysical challenges. As most of their gene clusters are silent, fungi continue to be a source of underexplored bioactive compounds. The World Soil Charter recognizes the relevance of soil biodiversity in supporting healthy soil functions. The question of how a balance may be struck between supporting healthy soil biodiversity and the control of toxic fungi species in the field to ensure food security is therefore pertinent. Numerous advanced strategies and biocontrol methods so far remain the most environmentally sustainable solution to the control of toxigenic fungi in the field.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
34
|
Hu Y, Wu W. Application of Membrane Filtration to Cold Sterilization of Drinks and Establishment of Aseptic Workshop. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:89-106. [PMID: 36933166 PMCID: PMC10024305 DOI: 10.1007/s12560-023-09551-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Aseptic packaging of high quality beverage is necessary and its cold-pasteurization or sterilization is vital. Studies on application of ultrafiltration or microfiltration membrane to cold- pasteurization or sterilization for the aseptic packaging of beverages have been reviewed. Designing and manufacturing ultrafiltration or microfiltration membrane systems for cold-pasteurization or sterilization of beverage are based on the understanding of size of microorganisms and theoretical achievement of filtration. It is concluded that adaptability of membrane filtration, especially its combination with other safe cold method, to cold- pasteurization and sterilization for the aseptic packaging of beverages should be assured without a shadow of doubt in future.
Collapse
Affiliation(s)
- Yunhao Hu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China
| | - Wenbiao Wu
- College of Food Science, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
- Research Center of Grains, Oils and Foods Engineering Design, Industrial Research Institute, Southwest University, No.2 Tian Shengqiao, Beibei, Chongqing, People's Republic of China.
| |
Collapse
|
35
|
Rozaliyani A, Antariksa B, Nurwidya F, Zaini J, Setianingrum F, Hasan F, Nugrahapraja H, Yusva H, Wibowo H, Bowolaksono A, Kosmidis C. The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp. Life (Basel) 2023; 13:life13041017. [PMID: 37109545 PMCID: PMC10142979 DOI: 10.3390/life13041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The heterogeneity of the lung microbiome and its alteration are prevalently seen among chronic lung diseases patients. However, studies to date have primarily focused on the bacterial microbiome in the lung rather than fungal composition, which might play an essential role in the mechanisms of several chronic lung diseases. It is now well established that Aspergillus spp. colonies may induce various unfavorable inflammatory responses. Furthermore, bacterial microbiomes such as Pseudomonas aeruginosa provide several mechanisms that inhibit or stimulate Aspergillus spp. life cycles. In this review, we highlighted fungal and bacterial microbiome interactions in the respiratory tract, with a focus on Aspergillus spp.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Budhi Antariksa
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Fariz Nurwidya
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Jamal Zaini
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Firman Hasan
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Husna Nugrahapraja
- Life Science and Biotechnology, Bandung Institute of Technology, Bandung 40312, Indonesia
| | - Humaira Yusva
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
| | - Chris Kosmidis
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
36
|
Schiefermeier-Mach N, Heinrich L, Lechner L, Perkhofer S. Regulation of Surfactant Protein Gene Expression by Aspergillus fumigatus in NCl-H441 Cells. Microorganisms 2023; 11:microorganisms11041011. [PMID: 37110432 PMCID: PMC10143823 DOI: 10.3390/microorganisms11041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes serious lung diseases in immunocompromised patients. The lung surfactant produced by alveolar type II and Clara cells in the lungs is an important line of defense against A. fumigatus. The surfactant consists of phospholipids and surfactant proteins (SP-A, SP-B, SP-C and SP-D). The binding to SP-A and SP-D proteins leads to the agglutination and neutralization of lung pathogens as well as the modulation of immune responses. SP-B and SP-C proteins are essential for surfactant metabolism and can modulate the local immune response; however, the molecular mechanisms remain unclear. We investigated changes in the SP gene expression in human lung NCI-H441 cells infected with conidia or treated with culture filtrates obtained from A. fumigatus. To further identify fungal cell wall components that may affect the expression of SP genes, we examined the effect of different A. fumigatus mutant strains, including dihydroxynaphthalene (DHN)-melanin-deficient ΔpksP, galactomannan (GM)-deficient Δugm1 and galactosaminogalactan (GAG)-deficient Δgt4bc strains. Our results show that the tested strains alter the mRNA expression of SP, with the most prominent and consistent downregulation of the lung-specific SP-C. Our findings also suggest that secondary metabolites rather than the membrane composition of conidia/hyphae inhibit SP-C mRNA expression in NCI-H441 cells.
Collapse
Affiliation(s)
- Natalia Schiefermeier-Mach
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Lea Heinrich
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Lukas Lechner
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Susanne Perkhofer
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| |
Collapse
|
37
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
38
|
Al Hallak M, Verdier T, Bertron A, Roques C, Bailly JD. Fungal Contamination of Building Materials and the Aerosolization of Particles and Toxins in Indoor Air and Their Associated Risks to Health: A Review. Toxins (Basel) 2023; 15:toxins15030175. [PMID: 36977066 PMCID: PMC10054896 DOI: 10.3390/toxins15030175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is now well established that biological pollution is a major cause of the degradation of indoor air quality. It has been shown that microbial communities from the outdoors may significantly impact the communities detected indoors. One can reasonably assume that the fungal contamination of the surfaces of building materials and their release into indoor air may also significantly impact indoor air quality. Fungi are well known as common contaminants of the indoor environment with the ability to grow on many types of building materials and to subsequently release biological particles into the indoor air. The aerosolization of allergenic compounds or mycotoxins borne by fungal particles or vehiculated by dust may have a direct impact on the occupant’s health. However, to date, very few studies have investigated such an impact. The present paper reviewed the available data on indoor fungal contamination in different types of buildings with the aim of highlighting the direct connections between the growth on indoor building materials and the degradation of indoor air quality through the aerosolization of mycotoxins. Some studies showed that average airborne fungal spore concentrations were higher in buildings where mould was a contaminant than in normal buildings and that there was a strong association between fungal contamination and health problems for occupants. In addition, the most frequent fungal species on surfaces are also those most commonly identified in indoor air, regardless the geographical location in Europe or the USA. Some fungal species contaminating the indoors may be dangerous for human health as they produce mycotoxins. These contaminants, when aerosolized with fungal particles, can be inhaled and may endanger human health. However, it appears that more work is needed to characterize the direct impact of surface contamination on the airborne fungal particle concentration. In addition, fungal species growing in buildings and their known mycotoxins are different from those contaminating foods. This is why further in situ studies to identify fungal contaminants at the species level and to quantify their average concentration on both surfaces and in the air are needed to be better predict health risks due to mycotoxin aerosolization.
Collapse
Affiliation(s)
- Mohamad Al Hallak
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Thomas Verdier
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Alexandra Bertron
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), INSA Toulouse, 135 Avenue de Rangueil, 31400 Toulouse, France
| | - Christine Roques
- Laboratoire Génie Chimique (LGC), Université de Toulouse, CNRS, 35 Chemin des Maraîchers, 31400 Toulouse, France
| | - Jean-Denis Bailly
- École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allées Emile Monso, 31030 Toulouse, France
- Correspondence:
| |
Collapse
|
39
|
Korfanty G, Heifetz E, Xu J. Assessing thermal adaptation of a global sample of Aspergillus fumigatus: Implications for climate change effects. Front Public Health 2023; 11:1059238. [PMID: 36875405 PMCID: PMC9978374 DOI: 10.3389/fpubh.2023.1059238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Aspergillus fumigatus is a common environmental mold and a major cause of opportunistic infections in humans. It's distributed among many ecological niches across the globe. A major virulence factor of A. fumigatus is its ability to grow at high temperature. However, at present, little is known about variations among strains in their growth at different temperatures and how their geographic origins may impact such variations. In this study, we analyzed 89 strains from 12 countries (Cameroon, Canada, China, Costa Rica, France, India, Iceland, Ireland, New Zealand, Peru, Saudi Arabia, and USA) representing diverse geographic locations and temperature environments. Each strain was grown at four temperatures and genotyped at nine microsatellite loci. Our analyses revealed a range of growth profiles, with significant variations among strains within individual geographic populations in their growths across the temperatures. No statistically significant association was observed between strain genotypes and their thermal growth profiles. Similarly geographic separation contributed little to differences in thermal adaptations among strains and populations. The combined analyses among genotypes and growth rates at different temperatures in the global sample suggest that most natural populations of A. fumigatus are capable of rapid adaptation to temperature changes. We discuss the implications of our results to the evolution and epidemiology of A. fumigatus under increasing climate change.
Collapse
Affiliation(s)
| | | | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
40
|
What's New in Prevention of Invasive Fungal Diseases during Hospital Construction and Renovation Work: An Overview. J Fungi (Basel) 2023; 9:jof9020151. [PMID: 36836266 PMCID: PMC9966904 DOI: 10.3390/jof9020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
The goal of the overview was to give insight into the recent data of invasive fungal diseases (IFDs) associated with construction and renovation in healthcare settings as well as the recent evidence about available prevention and infection control measures. The number of studies describing IFD outbreaks associated with construction or renovation is on the rise again. Applying adequate prevention measures is still a challenge not just for healthcare workers but also for architects and construction workers as well. The role of multidisciplinary teams in the planning and monitoring of prevention measures cannot be overemphasized. Dust control is an inevitable part of every prevention plan. HEPA filters are helpful in the prevention of fungal outbreaks in hematologic patients, but further studies are needed to clarify the extent in which they contribute as specific control measures. The cut-off value for a "threating" level of fungal spore contamination still remains to be defined. The value of antifungal prophylaxis is difficult to assess because other preventive measures are simultaneously applied. Recommendations are still based on few meta-analyses, a large number of descriptive reports, and the opinion of respective authorities. Outbreak reports in the literature are a valuable resource and should be used for education as well as for preparing outbreak investigations.
Collapse
|
41
|
Wang Z, Qu S, Gao D, Shao Q, Nie C, Xing C. A Strategy of On-Demand Immune Activation for Antifungal Treatment Using Near-Infrared Responsive Conjugated Polymer Nanoparticles. NANO LETTERS 2023; 23:326-335. [PMID: 36548213 DOI: 10.1021/acs.nanolett.2c04484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pathogenic fungal infection is a major clinical threat because pathogenic fungi have developed resistant mechanisms to evade the innate immune response, especially interactions with macrophages. Herein, a strategy to activate immune responses of macrophages to fungi based on near-infrared (NIR) responsive conjugated polymer nanoparticles (CPNs-M) is reported for antifungal immunotherapy. Under NIR light irradiation, CPNs-M exposes β-glucan on the surface of fungal conidia by photothermal damage and drug released from CPNs-M. The exposed β-glucan elicits macrophage recognition and subsequently activates calcium-calmodulin (Ca2+-CaM) signaling followed by the LC3-associated phagocytosis (LAP) pathway to kill fungal conidia. Consequently, a remarkable elimination of intracellular fugal conidia and successful treatment of fungal pneumonia are achieved. This remote regulation strategy to restore pathogen-immune cell interaction on demand provides a new insight into combatting intractable intracellular infections.
Collapse
Affiliation(s)
- Zijuan Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shuyi Qu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular Biophysics, Hebei University of Technology, Tianjin 300130, China
| | - Qi Shao
- Key Laboratory of Hebei Province for Molecular Biophysics, Hebei University of Technology, Tianjin 300130, China
| | - Chenyao Nie
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
42
|
Moss RB. Severe Fungal Asthma: A Role for Biologics and Inhaled Antifungals. J Fungi (Basel) 2023; 9:jof9010085. [PMID: 36675906 PMCID: PMC9861760 DOI: 10.3390/jof9010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Allergic asthma has traditionally been treated with inhaled and systemic glucocorticosteroids. A continuum of allergic fungal airways disease associated with Aspergillus fumigatus colonization and/or atopic immune responses that encompasses fungal asthma, severe asthma with fungal sensitization and allergic bronchopulmonary aspergillosis is now recognized along a phenotypic severity spectrum of T2-high immune deviation lung disease. Oral triazoles have shown clinical, anti-inflammatory and microbiologic efficacy in this setting; in the future inhaled antifungals may improve the therapeutic index. Humanized monoclonal antibody biologic agents targeting T2-high disease also show efficacy and promise of improved control in difficult cases. Developments in these areas are highlighted in this overview.
Collapse
Affiliation(s)
- Richard B Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road, Suite 350, Palo Alto, CA 94304, USA
| |
Collapse
|
43
|
Kim KH, Kang S, Seo H, Yun CW. AfSec1 is a signal peptidase and removes signal peptides of 1,3-β-glucanosyltransferases in Aspergillus fumigatus. Med Mycol 2022; 61:6993075. [PMID: 36657388 DOI: 10.1093/mmy/myad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
To identify the infection mechanism of Aspergillus fumigatus, which is an opportunistic fungal pathogen, we analyzed the expression profile of the whole genome of A. fumigatus during the infection of murine macrophages. A previously reported RNA-seq data analysis showed that many genes involved in cell wall synthesis were upregulated during the infection process. Interestingly, AfSec1 (3g12840), which encodes a putative signal peptidase, was upregulated dramatically, and its putative target protein Gel1, which encodes a 1,3-β-glucanosyltransferase, was also upregulated. Instead of the AfSec1 deletion strain, the AfSec1-ΔP strain was constructed, in which the promoter region of AfSec1 was deleted, and AfSec1 expression was not detected in the AfSec1-ΔP strain. The expression of AfSec1 was recovered by the introduction of the promoter region (the AfSec1-ΔP/P strain). The nonprocessed form of Gel1 was identified in the AfSec1-ΔP strain, which lacked the promoter, but mature forms of Gel1 were found in the wild-type and in AfSec1-ΔP/P, which was the promoter complementation strain. In the plate assay, the AfSec1-ΔP strain showed higher sensitivity against caspofungin than the wild-type. However, compared with the wild-type, the deletion strain showed no difference in the sensitivity to other antifungal drugs, such as amphotericin B and voriconazole, which inhibit different targets compared with caspofungin. The AfSec1-ΔP strain exhibited ∼20% lower levels of β-glucan in the cell wall than the wild-type. Finally, the virulence decreased when the promoter region of AfSec1 was deleted, as observed in the murine infection test and conidia-killing assay using human macrophages and neutrophils. These results suggest that AfSec1 exerts signal peptidase activity on its target Gel1 and has an important role in fungal pathogenesis.
Collapse
Affiliation(s)
- Ki-Hwan Kim
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Suzie Kang
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Hyewon Seo
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea.,NeuroEsgel Co., Anam-dong, Sungbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
44
|
Specific Focus on Antifungal Peptides against Azole Resistant Aspergillus fumigatus: Current Status, Challenges, and Future Perspectives. J Fungi (Basel) 2022; 9:jof9010042. [PMID: 36675863 PMCID: PMC9864941 DOI: 10.3390/jof9010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The prevalence of fungal infections is increasing worldwide, especially that of aspergillosis, which previously only affected people with immunosuppression. Aspergillus fumigatus can cause allergic bronchopulmonary aspergillosis and endangers public health due to resistance to azole-type antimycotics such as fluconazole. Antifungal peptides are viable alternatives that combat infection by forming pores in membranes through electrostatic interactions with the phospholipids as well as cell death to peptides that inhibit protein synthesis and inhibit cell replication. Engineering antifungal peptides with nanotechnology can enhance the efficacy of these therapeutics at lower doses and reduce immune responses. This manuscript explains how antifungal peptides combat antifungal-resistant aspergillosis and also how rational peptide design with nanotechnology and artificial intelligence can engineer peptides to be a feasible antifungal alternative.
Collapse
|
45
|
Baldin C, Kühbacher A, Merschak P, Wagener J, Gsaller F. Modular Inducible Multigene Expression System for Filamentous Fungi. Microbiol Spectr 2022; 10:e0367022. [PMID: 36350143 PMCID: PMC9769661 DOI: 10.1128/spectrum.03670-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Inducible promoters are indispensable elements when considering the possibility to modulate gene expression on demand. Desirable traits of conditional expression systems include their capacity for tight downregulation, high overexpression, and in some instances for fine-tuning, to achieve a desired product's stoichiometry. Although the number of inducible systems is slowly increasing, suitable promoters comprising these features are rare. To date, the concomitant use of multiple regulatable promoter platforms for controlled multigene expression has been poorly explored. This work provides pioneer work in the human pathogenic fungus Aspergillus fumigatus, wherein we investigated different inducible systems, elucidated three candidate promoters, and proved for the first time that up to three systems can be used simultaneously without interfering with each other. Proof of concept was obtained by conditionally expressing three antifungal drug targets within the ergosterol biosynthetic pathway under the control of the xylose-inducible PxylP system, the tetracycline-dependent Tet-On system, and the thiamine-repressible PthiA system. IMPORTANCE In recent years, inducible promoters have gained increasing interest for industrial or laboratory use and have become key instruments for protein expression, synthetic biology, and metabolic engineering. Constitutive, high-expressing promoters can be used to achieve high expression yields; however, the continuous overexpression of specific proteins can lead to an unpredictable metabolic burden. To prevent undesirable effects on the expression host's metabolism, the utilization of tunable systems that allow expression of a gene product on demand is indispensable. Here, we elucidated several excellent tunable promoter systems and verified that each can be independently induced in a single strain to ultimately develop a unique conditional multigene expression system. This highly efficient, modular toolbox has the potential to significantly advance applications in fundamental as well as applied research in which regulatable expression of several genes is a key requirement.
Collapse
Affiliation(s)
- Clara Baldin
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kühbacher
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Wagener
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Rayón-López G, Carapia-Minero N, Medina-Canales MG, García-Pérez BE, Reséndiz-Sánchez J, Pérez NO, Rodríguez-Tovar AV, Ramírez-Granillo A. Lipid-Like Biofilm from a Clinical Brain Isolate of Aspergillus terreus: Quantification, Structural Characterization and Stages of the Formation Cycle. Mycopathologia 2022; 188:35-49. [PMID: 36515766 DOI: 10.1007/s11046-022-00692-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
Invasive infections caused by filamentous fungi have increased considerably due to the alteration of the host's immune response. Aspergillus terreus is considered an emerging pathogen and has shown resistance to amphotericin B treatment, resulting in high mortality. The development of fungal biofilm is a virulence factor, and it has been described in some cases of invasive aspergillosis. In addition, although the general composition of fungal biofilms is known, findings related to biofilms of a lipid nature are rarely reported. In this study, we present the identification of a clinical strain of A. terreus by microbiological and molecular tools, also its in vitro biofilm development capacity: (i) Biofilm formation was quantified by Crystal Violet and reduction of tetrazolium salts assays, and simultaneously the stages of biofilm development were described by Scanning Electron Microscopy in High Resolution (SEM-HR). (ii) Characterization of the organizational structure of the biofilm was performed by SEM-HR. The hyphal networks developed on the surface, the abundant air channels created between the ECM (extracellular matrix) and the hyphae fused in anastomosis were described. Also, the presence of microhyphae is reported. (iii) The chemical composition of the ECM was analyzed by SEM-HR and CLSM (Confocal Laser Scanning Microscopy). Proteins, carbohydrates, nucleic acids and a relevant presence of lipid components were identified. Some structures of apparent waxy appearance were highlighted by SEM-HR and backscatter-electron diffraction, for which CLSM was previously performed. To our knowledge, this work is the first description of a lipid-type biofilm in filamentous fungi, specifically of the species A. terreus from a clinical isolate.
Collapse
Affiliation(s)
- Gerardo Rayón-López
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Natalee Carapia-Minero
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | | | - Jesús Reséndiz-Sánchez
- Mycology Laboratory, Hospital Infantil de México "Dr. Federico Gómez", Mexico City, Mexico
| | - Néstor O Pérez
- Research and Development Department Probiomed SA de CV, Tenancingo Edo. de Mex., Mexico
| | - Aída Verónica Rodríguez-Tovar
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
- Laboratorio de Micología Médica, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala s/n, ENCB-Instituto Politécnico Nacional, 11340, México, CDMX, México.
| | - Adrián Ramírez-Granillo
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
- Clinical Laboratory Technician Academy, Centro de Estudios Científicos y Tecnológicos No. 6 "Miguel Othón de Mendizábal", IPN, Mexico City, Mexico.
- Laboratorio de Micología Médica, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala s/n, ENCB-Instituto Politécnico Nacional, 11340, México, CDMX, México.
| |
Collapse
|
47
|
Fungal Zinc Homeostasis and Its Potential as an Antifungal Target: A Focus on the Human Pathogen Aspergillus fumigatus. Microorganisms 2022; 10:microorganisms10122469. [PMID: 36557722 PMCID: PMC9785309 DOI: 10.3390/microorganisms10122469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic airborne fungus that causes severe invasive aspergillosis in immunocompromised patients. Zinc is an essential micronutrient for the growth of A. fumigatus and even for all microorganisms. An increasing number of studies have reported that fungal zinc acquisition ability plays a key role in fungal survival in hosts with an extremely zinc-limited microenvironment. The ability to fight scarcity and excess of zinc are tightly related to fungal virulence and may be used as new potential targets. Because the regulation of zinc homeostasis is important, a thorough understanding of the functional genes involved in the regulatory network for zinc homeostasis is required for fungal pathogens. The current mini-review summarized potential zinc homeostasis regulators in A. fumigatus and classified these regulators according to localization and function, which were identified or predicted based on A. fumigatus or deduced from homologs in model yeasts. Future perspectives for zinc homeostasis regulators as potential antifungal targets to treat invasive aspergillosis are also discussed.
Collapse
|
48
|
Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification. PLoS Pathog 2022; 18:e1010976. [DOI: 10.1371/journal.ppat.1010976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover, the biological functions of the Elongator complex in human fungal pathogens remain unknown. In this study, we verified that the Elongator complex of the opportunistic fungal pathogen Aspergillus fumigatus consists of six subunits (Elp1-6), and the loss of any subunit results in similarly defective colony phenotypes with impaired hyphal growth and reduced conidiation. The catalytic subunit-Elp3 of the Elongator complex includes a S-adenosyl methionine binding (rSAM) domain and a lysine acetyltransferase (KAT) domain, and it plays key roles in the hyphal growth, biofilm-associated exopolysaccharide galactosaminogalactan (GAG) production, adhesion and virulence of A. fumigatus; however, Elp3 does not affect H3K14 acetylation levels in vivo. LC–MS/MS chromatograms revealed that loss of Elp3 abolished the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNA wobble uridine (U34), and the overexpression of tRNAGlnUUG and tRNAGluUUC, which normally harbor mcm5s2U modifications, mainly rescues the defects of the Δelp3 mutant, suggesting that tRNA modification rather than lysine acetyltransferase is responsible for the primary function of Elp3 in A. fumigatus. Strikingly, global proteomic comparison analyses showed significantly upregulated expression of genes related to amino acid metabolism in the Δelp3 mutant strain compared to the wild-type strain. Western blotting showed that deletion of elp3 resulted in overexpression of the amino acid starvation-responsive transcription factor CpcA, and deletion of CpcA markedly reversed the defective phenotypes of the Δelp3 mutant, including attenuated virulence. Therefore, the findings of this study demonstrate that A. fumigatus Elp3 functions as a tRNA-modifying enzyme in the regulation of growth, GAG production, adhesion and virulence by maintaining intracellular amino acid homeostasis. More broadly, our study highlights the importance of U34 tRNA modification in regulating cellular metabolic states and virulence traits of fungal pathogens.
Collapse
|
49
|
Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:3009. [PMID: 36432738 PMCID: PMC9697101 DOI: 10.3390/plants11223009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Aspergillus species consists of a group of opportunistic fungi that is virulent when the immunity of the host is compromised. Among the various species, Aspergillus fumigatus is the most prevalent species. However, the prevalence of fungal infections caused by non-fumigatus Aspergillus has been increasing. Polyenes, echinocandins and azoles are the three main classes of antifungal agents being used for the treatment of aspergillosis. Nevertheless, the incidence of resistance towards these three classes has been rising over the years among several Aspergillus spp. The side effects associated with these conventional antifungal agents have also limited their usage. This urges the need for the discovery of a safe and effective antifungal agent, which presents a major challenge in medicine today. Plants present a rich source of bioactive molecules which have been proven effective against a wide range of infections and conditions. Therefore, this present review intends to examine the current literature available regarding the efficacy and mechanism of action of plant extracts and their compounds against Aspergillus spp. In addition, novel drug delivery systems of plant extracts against Aspergillus spp. were also included in this review.
Collapse
Affiliation(s)
- Lee Fang Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vi Lien Yap
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Malarvili Selvaraja
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mun Yee Leong
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Puay Luan Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
50
|
Lofgren LA, Ross BS, Cramer RA, Stajich JE. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol 2022; 20:e3001890. [PMID: 36395320 PMCID: PMC9714929 DOI: 10.1371/journal.pbio.3001890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/01/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A. fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence-absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A. fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A. fumigatus, with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence-absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A. fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.
Collapse
Affiliation(s)
- Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brandon S. Ross
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|