1
|
Kelly E, Awan A, Sweeney C, Wildes D, De Gascun C, Hassan J, Riordan M. Torque Teno Virus Loads as a Marker of Immunosuppression in Pediatric Kidney Transplant Recipients. Pediatr Transplant 2024; 28:e14857. [PMID: 39318279 DOI: 10.1111/petr.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Long-term renal function and survival after kidney transplantation rely on appropriate immunosuppressive treatment to prevent the risk of rejection. New biomarkers are needed to accurately assess the degree of immunosuppression in renal transplant recipients in order to avoid organ rejection and the development of opportunistic infections. Highly prevalent in humans, torque teno virus (TTV), which belongs to the family Anelloviridae, is a small, nonenveloped, single-stranded DNA virus which has not been linked with any specific human illness, but which constitutes a major component of the human virome. Host antiviral responses allow TTV levels to be controlled; however, viral persistence remains, explaining the high prevalence in human populations, including healthy individuals. Important confounders of TTV load include time since transplantation, age, gender, obesity, and smoking status. AIMS TTV-based guidance of immunosuppressive drug dosing could help with risk stratification, reducing the risk of infection, graft rejection and oncologic disease on an individual level, enabling long-term patient and graft survival. METHODS Original studies were accessed by a systematic search from electronic databases including PubMed, ScienceDirect and Wiley Online Library. RESULTS The presented data mainly derive from adult transplant recipients showing an association between TTV plasma levels and the immune status of the host: High-TTV load and high immunosuppression are associated with a risk of infection, and low-TTV load and low immunosuppression indicate a risk of rejection. However, there is minimal information on pediatric transplant recipients with further research required in this cohort. To date, it has been demonstrated that longer posttransplant times are significantly associated with lower TTV levels in children with renal transplant. Meanwhile, an association between lower TTV loads and increased risk of graft reject during the first year of transplantation was also reported. More recently, Eibensteiner et al. revealed a robust, independent association between TTV plasma load and the onset of Cytomegalovirus and BK virus infections. CONCLUSION Data from randomized controlled trials are still missing, even in adults, but a multicenter randomized controlled trial for TTV-guided immunosuppression in adult kidney recipients (TTVguideIT) began in 2022. There is, therefore, great promise for TTV levels to be used as a biomarker that could potentially improve both graft and patient survival in transplantation.
Collapse
Affiliation(s)
- Ellen Kelly
- National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - Atif Awan
- Children's Health Ireland, Dublin 1, Ireland
| | | | | | - Cillian De Gascun
- National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - Jaythoon Hassan
- National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
2
|
Szymanik KH, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606876. [PMID: 39211142 PMCID: PMC11361023 DOI: 10.1101/2024.08.06.606876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how artificially altered DUSP11 can impact immune activation, prompting further exploration into natural contexts of altered DUSP11. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of endogenous DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a virus-relevant context where DUSP11 activity has been co-opted to alter RNA metabolism and influence the outcome of infection.
Collapse
|
3
|
Reyes NS, Spezia PG, Jara R, Filippini F, Boccia N, García G, Hermida E, Poletta FA, Pistello M, Laham G, Maggi F, Echavarria M. Torque Teno Virus (TTV) in Renal Transplant Recipients: Species Diversity and Variability. Viruses 2024; 16:432. [PMID: 38543797 PMCID: PMC10974959 DOI: 10.3390/v16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Torque Teno Virus (TTV) is a nonpathogenic and ubiquitous ssDNA virus, a member of the Anelloviridae family. TTV has been postulated as a biomarker in transplant patients. This study aimed to determine the TTV species diversity and variability in renal transplant recipients and to associate species diversity with the corresponding TTV viral load. From 27 recipients, 30 plasma samples were selected. Viral load was determined using two real-time PCR assays, followed by RCA-NGS and ORF1 phylogenetic analysis. The TTV diversity was determined in all samples. Variability was determined in three patients with two sequential samples (pre- and post-transplantation). Most of the samples presented multiple TTV species, up to 15 different species were detected. In the pre-transplant samples (n = 12), the most prevalent species were TTV3 (75%) and TTV13 (75%), and the median number of species per sample was 5 (IQR: 4-7.5). TTV3 was also the most prevalent (56%) in the post-transplant samples (n = 18), and the median number of species was 2 (IQR: 1.8-5.5). No significant correlation between the number of species and viral load was found. The number and type of TTV species showed total variability over time. We report high TTV species diversity in Argentinian recipients, especially in pre-transplant period, with total intra-host variability. However, we found no significant correlation between this high diversity and TTV viral load.
Collapse
Affiliation(s)
- Noelia Soledad Reyes
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Raquel Jara
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Fabio Filippini
- Department of Translational Research, University of Pisa, 56127 Pisa, Italy; (F.F.); (M.P.)
| | - Natalia Boccia
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Gonzalo García
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Eliana Hermida
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Fernando Adrian Poletta
- Genetic Epidemiology Laboratory, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1631FWO, Argentina;
| | - Mauro Pistello
- Department of Translational Research, University of Pisa, 56127 Pisa, Italy; (F.F.); (M.P.)
| | - Gustavo Laham
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Marcela Echavarria
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| |
Collapse
|
4
|
Sabbaghian M, Gheitasi H, Shekarchi AA, Tavakoli A, Poortahmasebi V. The mysterious anelloviruses: investigating its role in human diseases. BMC Microbiol 2024; 24:40. [PMID: 38281930 PMCID: PMC10823751 DOI: 10.1186/s12866-024-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Marcozzi S, Bigossi G, Giuliani ME, Lai G, Giacconi R, Piacenza F, Malavolta M. Spreading Senescent Cells' Burden and Emerging Therapeutic Targets for Frailty. Cells 2023; 12:2287. [PMID: 37759509 PMCID: PMC10528263 DOI: 10.3390/cells12182287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The spreading of senescent cells' burden holds profound implications for frailty, prompting the exploration of novel therapeutic targets. In this perspective review, we delve into the intricate mechanisms underlying senescent cell spreading, its implications for frailty, and its therapeutic development. We have focused our attention on the emerging age-related biological factors, such as microbiome and virome alterations, elucidating their significant contribution to the loss of control over the accumulation rate of senescent cells, particularly affecting key frailty domains, the musculoskeletal system and cerebral functions. We believe that gaining an understanding of these mechanisms could not only aid in elucidating the involvement of cellular senescence in frailty but also offer diverse therapeutic possibilities, potentially advancing the future development of tailored interventions for these highly diverse patients.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| |
Collapse
|
6
|
Spandole-Dinu S, Cimponeriu D, Stoica I, Apircioaie O, Gogianu L, Berca LM, Nica S, Toma M, Nica R. Phylogenetic analysis of torque teno virus in Romania: possible evidence of distinct geographical distribution. Arch Virol 2022; 167:2311-2318. [PMID: 35962263 PMCID: PMC9374574 DOI: 10.1007/s00705-022-05559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Torque teno virus (TTV) is highly prevalent, but little is known about its circulation in humans. Here, we investigated the geographical distribution and phylogeny of TTV in Romania. A fragment of TTV untranslated region B was sequenced in samples from volunteers across the country. Additional sequences from dialyzed patients were also included in the study. Phylogenetic analysis showed that more than 80% of Romanian sequences clustered with isolates assigned to the species Torque teno virus 1 and Torque teno virus 3 (former genogroup 1), and this analysis discriminated between isolates from the North-East and West regions. Further studies assessing the pathogenic potential of TTV isolates should employ analysis based on genomic regions with phylogenetic resolution below the species level.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
- Earth, Environmental and Life Sciences Division, The Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Dănuţ Cimponeriu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania.
| | - Ileana Stoica
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Oana Apircioaie
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Larisa Gogianu
- Department of Genetics, University of Bucharest, Intrarea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Lavinia Mariana Berca
- Molecular Biology Laboratory, National R&D Institute for Food Bioresources, Bucharest, Romania
| | - Silvia Nica
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Emergency University Hospital, Bucharest, Romania
| | - Mihai Toma
- Emergency Department, Central Military Emergency Clinical Hospital, Bucharest, Romania
| | - Remus Nica
- Surgery Clinic II, Central Military Emergency Clinical Hospital, Bucharest, Romania
| |
Collapse
|
7
|
Eldar-Yedidia Y, Ben-Shalom E, Hillel M, Belostotsky R, Megged O, Freier-Dror Y, Frishberg Y, Schlesinger Y. Association of post-transplantation anellovirus viral load with kidney transplant rejection in children. Pediatr Nephrol 2022; 37:1905-1914. [PMID: 34999988 DOI: 10.1007/s00467-021-05336-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Post-transplantation immunosuppressive therapy reduces the risk of graft rejection but raises the risk of infection and malignancy. A biomarker of the level of immunosuppression can be helpful in monitoring immunosuppressive therapy. Inverse correlation between Torque teno virus (TTV) from the Anelloviridae (AV) family load and immune competence was described in previous studies. The aim of this study was to analyze the association between AV family viruses' kinetics and the risk for graft rejection in the first year after kidney transplantation in children. METHODS The titers of three genera (TTV, TTMDV, and TTMV) from the AV family were monitored by real-time PCR in consecutive samples from children before and after kidney transplantation. RESULTS Twenty-one children who underwent kidney transplantation were enrolled. Five out of 21 patients experienced acute graft rejection within a year from transplantation. We found that in patients who experienced graft rejection, the median titers of TTV and total AV titers at 5-6 months post-transplantation were lower than in those who did not. Using a threshold determined by ROC analysis, significant differences in TTV and total AV load were found between patients who had or did not have graft rejection (p = 0.002 and 0.004, respectively). No association was found between the dominance of any AV genus titer and the likelihood of rejection. CONCLUSION This pilot study suggests that children after kidney transplantation with low TTV and total AV titers 5-6 months post-transplantation are at increased risk for graft rejection within a year after transplantation. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Yifat Eldar-Yedidia
- Research Laboratory of Infectious Diseases, Shaare Zedek Medical Center, affiliated to the Hadassah - Hebrew University Medical School, 12 Beit Shmuel Street, 91031, Jerusalem, Israel.
| | - Efrat Ben-Shalom
- Pediatric Nephrology Institute, Shaare Zedek Medical Center, affiliated to the Hadassah - Hebrew University Medical School Jerusalem, Jerusalem, Israel.,Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Miriam Hillel
- Research Laboratory of Infectious Diseases, Shaare Zedek Medical Center, affiliated to the Hadassah - Hebrew University Medical School, 12 Beit Shmuel Street, 91031, Jerusalem, Israel
| | - Ruth Belostotsky
- Pediatric Nephrology Institute, Shaare Zedek Medical Center, affiliated to the Hadassah - Hebrew University Medical School Jerusalem, Jerusalem, Israel
| | - Orli Megged
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Yaacov Frishberg
- Pediatric Nephrology Institute, Shaare Zedek Medical Center, affiliated to the Hadassah - Hebrew University Medical School Jerusalem, Jerusalem, Israel.,Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yechiel Schlesinger
- Research Laboratory of Infectious Diseases, Shaare Zedek Medical Center, affiliated to the Hadassah - Hebrew University Medical School, 12 Beit Shmuel Street, 91031, Jerusalem, Israel.,Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Stincarelli MA, Baj A, Guidotti B, Spezia PG, Novazzi F, Lucenteforte E, Tillati S, Focosi D, Maggi F, Giannecchini S. Plasma Torquetenovirus (TTV) microRNAs and severity of COVID-19. Virol J 2022; 19:79. [PMID: 35562762 PMCID: PMC9099037 DOI: 10.1186/s12985-022-01812-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background Torquetenovirus (TTV), a widespread anellovirus recognized as the main component of the healthy human virome, displays viremia that is highly susceptible to variations in immune competence. TTV possesses microRNA (miRNA)-coding sequences that might be involved in viral immune evasion. Among TTV-encoded miRNAs, miRNA t1a, t3b, and tth8 have been found in biological fluids. Here, the presence of TTV DNA and TTV miRNAs in the plasma of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected subjects was investigated to monitor the possible association with coronavirus disease 2019 (COVID-19) severity. Methods Detection of TTV DNA and miRNA t1a, t3b, and tth8 was investigated in plasma samples of 56 SARS-CoV-2-infected subjects with a spectrum of different COVID-19 outcomes. TTV DNA and TTV miRNAs were assessed with a universal single step real-time TaqMan PCR assay and miRNA quantitative RT-PCR miRNA assay, respectively. Results The TTV DNA prevalence was 59%, whereas at least one TTV miRNA was found in 94% of the patients tested. miRNA tth8 was detected in 91% of subjects, followed by miRNAs t3b (64%) and miRNAt1a (30%). Remarkably, although TTV DNA was unrelated to COVID-19 severity, miRNA tth8 was significantly associated with the degree of disease (adjusted incidence rate ratio (IRR) 2.04, 95% CI 1.14–3.63, for the subjects in the high severity group compared to those in the low severity group). Conclusions Our findings encourage further investigation to understand the potential role of TTV miRNAs in the different outcomes of COVID-19 at early and late stages.
Collapse
Affiliation(s)
- Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134, Florence, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Bernardo Guidotti
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134, Florence, Italy
| | | | - Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56100, Pisa, Italy
| | - Silvia Tillati
- Department of Clinical and Experimental Medicine, University of Pisa, 56100, Pisa, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124, Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134, Florence, Italy.
| |
Collapse
|
9
|
Li L, Chen SN, Li N, Nie P. Molecular characterization and transcriptional conservation of N-myc-interactor, Nmi, by type I and type II IFNs in mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104354. [PMID: 35051525 DOI: 10.1016/j.dci.2022.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
N-myc-interactor (Nmi) belongs to interferon (IFN) stimulated genes (ISGs) and is involved in the regulation of physiological processes including viral infection, inflammatory response, apoptosis and tumorigenesis in mammals. However, the function of Nmi in teleost fish remains to be explored. In this study, an Nmi homologue was characterized from mandarin fish Siniperca chuatsi. The mandarin fish Nmi shares two conserved functional Nmi/IFP35 homology domains (NIDs) with mammalian Nmi protein in its C-terminal domain and a coiled coil region (CC) in its N-terminal domain, with its genomic DNA sequence consisting of nine exons and eight introns. Subcellular localization analysis shows that mandarin fish Nmi is a cytoplasmic protein and that its localization is dependent on the CC and NID1 regions. High and constitutive mRNA level of Nmi was observed in all examined tissues, with the highest level being observed in blood. In addition, the Nmi gene was significantly induced in various organs/tissues following the infection of infectious spleen and kidney necrosis virus (ISKNV), and its mRNA and protein level was also significantly induced in vitro after the treatment of IFNh, IFNc, as well as IFN-γ. The dual luciferase activity analysis indicated that the Nmi promoter was activated by the three type I IFNs through interferon-stimulated response element (ISRE) sites, and it can be also transcriptionally activated by IFN-γ via IRF1 which can activate the expression of Nmi through ISRE. Taken together, it is demonstrated in this study that the transcription of Nmi in mandarin fish can be regulated by type I and type II IFNs, thus confirming that Nmi in fish is also an ISG, and is involved in antiviral and IFN-induced innate immunity.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
10
|
Iravani Saadi M, Ramzi M, Hesami Z, kheradmand N, Owjfard M, Nabi Abdolyousefi E, Karimi Z. MiR-181a and -b expression in acute lymphoblastic leukemia and its correlation with acute graft-versus-host disease after hematopoietic stem cell transplantation, COVID-19 and torque teno viruses. Virusdisease 2021; 32:727-736. [PMID: 34722832 PMCID: PMC8543773 DOI: 10.1007/s13337-021-00743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL), a malignant transformation and proliferation of the lymphoid line of blood cells, is characterized by chromosomal abnormalities and genetic changes. The purpose of this research was the evaluation of expression level of miR-181a and -b in patients with ALL compared to the control group. Furthermore, we examined their expression level in hematopoietic stem-cell transplantation (HSCT) patients who developed acute graft-versus-host disease (aGVHD) in comparison with those without aGVHD and explore the relationship between their expression level and cytogenetic abnormalities. In this cross-sectional study, 76 newly diagnosed adult De novo ALL patients were enrolled who were admitted to our referral hospital. All patients received standard chemotherapy, consisting of daunorubicin. A total of 37 patients underwent HSCT from the related human leukocyte antigen-matched donors. ALL patients have been diagnosed with the coronavirus disease 2019 (COVID-19) and Torque teno viruses (TTVs). We assessed the expression levels of miR-181a and -b in the peripheral blood sample of ALL patients at the time of diagnosis prior to chemotherapy, and healthy matched individuals by RT–PCR. TTVs and COVID-19 load were also determined via RT–PCR. In conclusion, the expression level of miR-181a and -b were significantly higher in ALL patients than healthy controls and also increased in patients who developed aGVHD in comparison with those without aGVHD. MiR-181a and -b can be a useful biomarker in ALL and a useful indicator of aGVHD. The expression level of miR-181a in ALL patients with COVID-19 is significantly up-regulated, while it is reduced in these patients with TTV.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hesami
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiya kheradmand
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Nabi Abdolyousefi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahed Karimi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
The Relationship between Torque teno Virus and TLR2 rs5743708 Polymorphism with Breast Cancer. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Rakibuzzaman A, Ramamoorthy S. Comparative immunopathogenesis and biology of recently discovered porcine circoviruses. Transbound Emerg Dis 2021; 68:2957-2968. [PMID: 34288522 DOI: 10.1111/tbed.14244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Porcine circoviruses are important pathogens of production swine. Porcine circovirus type 1 (PCV1) is non-pathogenic, and discovered as a contaminant of a porcine kidney cell line, PK-15. The discovery of pathogenic variant, PCV2, occurred in the late 90s in association with post-weaning multi-systemic wasting disease syndrome (PMWS), which is characterized by wasting, respiratory signs and lymphadenopathy in weanling pigs. A new PCV type, designated as PCV3, was discovered in 2016, in pigs manifesting porcine dermatitis and nephropathy syndrome (PDNS), respiratory distress and reproductive failure. Pathological manifestations of PCV3 Infections include systemic inflammation, vasculitis and myocarditis. A fourth PCV type, PCV4, was identified in 2020 in pigs with PDNS, respiratory and enteric signs. All the pathogenic PCV types are detected in both healthy and morbid pigs. They cause chronic, systemic infections with various clinical manifestations. Dysregulation of the immune system homeostasis is a pivotal trigger for pathogenesis in porcine circoviral infections. While the study of PCV3 immunobiology is still in its infancy lessons learned from PCV2 and other circular replication-associated protein (Rep)-encoding single stranded (ss) (CRESS) DNA viruses can inform the field of exploration for PCV3. Viral interactions with the innate immune system, interference with dendritic cell function coupled with the direct loss of lymphocytes compromises both innate and adaptive immunity in PCV2 infections. Dysregulated immune responses leading to the establishment of a pro-inflammatory state, immune complex associated hypersensitivity, and the necrosis of lymphocytes and immune cells are key features of PCV3 immunopathogenesis. A critical overview of the comparative immunopathology of PCV2 and PCV3/4, and directions for future research in the field are presented in this review.
Collapse
Affiliation(s)
- Agm Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
13
|
Dodi G, Attanasi M, Di Filippo P, Di Pillo S, Chiarelli F. Virome in the Lungs: The Role of Anelloviruses in Childhood Respiratory Diseases. Microorganisms 2021; 9:microorganisms9071357. [PMID: 34201449 PMCID: PMC8307813 DOI: 10.3390/microorganisms9071357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
More recently, increasing attention has been directed to exploring the function of the global virome in health and disease. Currently, by new molecular techniques, such as metagenomic DNA sequencing, the virome has been better unveiled. By investigating the human lung virome, we could provide novel insights into respiratory diseases. The virome, as a part of the microbiome, is characterized by a constant change in composition related to the type of diet, environment, and our genetic code, and other incalculable factors. The virome plays a substantial role in modulating human immune defenses and contributing to the inflammatory processes. Anelloviruses (AVs) are new components of the virome. AVs are already present during early life and reproduce without apparently causing harm to the host. The role of AVs is still unknown, but several reports have shown that AVs could activate the inflammasomes, intracellular multiprotein oligomers of the innate immune system, which show a crucial role in the host defense to several pathogens. In this narrative revision, we summarize the epidemiological data related to the possible link between microbial alterations and chronic respiratory diseases in children. Briefly, we also describe the characteristics of the most frequent viral family present in the lung virome, Anelloviridae. Furthermore, we discuss how AVs could modulate the immune system in children, affecting the development of chronic respiratory diseases, particularly asthma, the most common chronic inflammatory disease in childhood.
Collapse
|
14
|
Retraction: A Human Torque Teno Virus Encodes a MicroRNA That Inhibits Interferon Signaling. PLoS Pathog 2021; 17:e1009639. [PMID: 34061911 PMCID: PMC8168871 DOI: 10.1371/journal.ppat.1009639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Mwesigwa S, Williams L, Retshabile G, Katagirya E, Mboowa G, Mlotshwa B, Kyobe S, Kateete DP, Wampande EM, Wayengera M, Mpoloka SW, Mirembe AN, Kasvosve I, Morapedi K, Kisitu GP, Kekitiinwa AR, Anabwani G, Joloba ML, Matovu E, Mulindwa J, Noyes H, Botha G, Brown CW, Mardon G, Matshaba M, Hanchard NA. Unmapped exome reads implicate a role for Anelloviridae in childhood HIV-1 long-term non-progression. NPJ Genom Med 2021; 6:24. [PMID: 33741997 PMCID: PMC7979878 DOI: 10.1038/s41525-021-00185-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection remains a significant public health burden globally. The role of viral co-infection in the rate of progression of HIV infection has been suggested but not empirically tested, particularly among children. We extracted and classified 42 viral species from whole-exome sequencing (WES) data of 813 HIV-infected children in Botswana and Uganda categorised as either long-term non-progressors (LTNPs) or rapid progressors (RPs). The Ugandan participants had a higher viral community diversity index compared to Batswana (p = 4.6 × 10-13), and viral sequences were more frequently detected among LTNPs than RPs (24% vs 16%; p = 0.008; OR, 1.9; 95% CI, 1.6-2.3), with Anelloviridae showing strong association with LTNP status (p = 3 × 10-4; q = 0.004, OR, 3.99; 95% CI, 1.74-10.25). This trend was still evident when stratified by country, sex, and sequencing platform, and after a logistic regression analysis adjusting for age, sex, country, and the sequencing platform (p = 0.02; q = 0.03; OR, 7.3; 95% CI, 1.6-40.5). Torque teno virus (TTV), which made up 95% of the Anelloviridae reads, has been associated with reduced immune activation. We identify an association between viral co-infection and prolonged AIDs-free survival status that may have utility as a biomarker of LTNP and could provide mechanistic insights to HIV progression in children, demonstrating the added value of interrogating off-target WES reads in cohort studies.
Collapse
Affiliation(s)
| | | | | | - Eric Katagirya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Samuel Kyobe
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - David P Kateete
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Misaki Wayengera
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Angella N Mirembe
- Baylor College of Medicine Children's Foundation Uganda (Baylor Uganda), Kampala, Uganda
| | | | | | - Grace P Kisitu
- Baylor College of Medicine Children's Foundation Uganda (Baylor Uganda), Kampala, Uganda
| | - Adeodata R Kekitiinwa
- Baylor College of Medicine Children's Foundation Uganda (Baylor Uganda), Kampala, Uganda
| | - Gabriel Anabwani
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
| | - Moses L Joloba
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius Mulindwa
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gerrit Botha
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Chester W Brown
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Kaczorowska J, van der Hoek L. Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiol Rev 2021; 44:305-313. [PMID: 32188999 PMCID: PMC7326371 DOI: 10.1093/femsre/fuaa007] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Anelloviruses are small, single stranded circular DNA viruses. They are extremely diverse and have not been associated with any disease so far. Strikingly, these small entities infect most probably the complete human population, and there are no convincing examples demonstrating viral clearance from infected individuals. The main transmission could be via fecal-oral or airway route, as infections occur at an early age. However, due to the lack of an appropriate culture system, the virus–host interactions remain enigmatic. Anelloviruses are obviously mysterious viruses, and their impact on human life is not yet known, but, with no evidence of a disease association, a potential beneficial effect on human health should also be investigated.
Collapse
Affiliation(s)
- Joanna Kaczorowska
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Islam MS, Islam ABMMK. Viral miRNAs confer survival in host cells by targeting apoptosis related host genes. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2020.100501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
18
|
Neri L, Spezia PG, Suraci S, Macera L, Scribano S, Giusti B, Focosi D, Maggi F, Giannecchini S. Torque teno virus microRNA detection in cerebrospinal fluids of patients with neurological pathologies. J Clin Virol 2020; 133:104687. [PMID: 33176237 DOI: 10.1016/j.jcv.2020.104687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Torque teno virus (TTV) is a widespread anellovirus that establishes persistent infections in humans and represents the most abundant component of the human virome. TTV encodes microRNAs (miRNA) which are found both in viremic and not viremic subjects being potentially ideal tools for the virus to evade the immune system response and to maintain chronic infection in the host. OBJECTIVE To investigate TTV-DNA loads and TTV-miRNAs expression in cerebrospinal fluids (CSF) from subjects under analysis for the assessment of neurological diseases. STUDY DESIGN Detection of TTV-DNA and TTV-miRNAs (e. g. miRNA t1a, t3b, and tth8) were carried out from CSF samples of 93 subjects with neurological diseases by using universal real-time PCR, real-time RT-PCR, and next-generation sequencing (NGS) analyses. RESULTS TTV-DNA was detected in 11 of 93 (12 %) CSFs with a mean TTV load of 155 copies/mL. Conversely, 29 CSF samples (31 %) were positive for at least one TTV-miRNA, while 15 (16 %) CSFs contained all the TTV-miRNAs examined. Overall, TTV-miRNA tth8 was detected in 62 % of samples, followed by TTV miRNA t3b (56 %), and t1a (29 %). Interestingly, TTV-miRNAs were found in CSF samples that were negative for the presence of TTV-DNA. Next-generation sequencing analysis carried out from 4 TTV-DNA negative CSF samples detected reads mapped in TTV-miRNA sequences region. CONCLUSIONS These results shed novel light on the relationship between TTV and the central nervous system and make compelling furthered studies for investigating the potential role of TTV-miRNAs in neurological disorders.
Collapse
Affiliation(s)
- Lorenzo Neri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Samuele Suraci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lisa Macera
- Department of Translational Research, University of Pisa, Italy
| | - Stefano Scribano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, and Laboratory of Clinical Microbiology, ASST dei Sette Laghi, Varese, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
19
|
Ahmad I, Valverde A, Siddiqui H, Schaller S, Naqvi AR. Viral MicroRNAs: Interfering the Interferon Signaling. Curr Pharm Des 2020; 26:446-454. [PMID: 31924149 DOI: 10.2174/1381612826666200109181238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/22/2019] [Indexed: 12/23/2022]
Abstract
Interferons are secreted cytokines with potent antiviral, antitumor and immunomodulatory functions. As the first line of defense against viruses, this pathway restricts virus infection and spread. On the contrary, viruses have evolved ingenious strategies to evade host immune responses including the interferon pathway. Multiple families of viruses, in particular, DNA viruses, encode microRNA (miR) that are small, non-protein coding, regulatory RNAs. Virus-derived miRNAs (v-miR) function by targeting host and virus-encoded transcripts and are critical in shaping host-pathogen interaction. The role of v-miRs in viral pathogenesis is emerging as demonstrated by their function in subverting host defense mechanisms and regulating fundamental biological processes such as cell survival, proliferation, modulation of viral life-cycle phase. In this review, we will discuss the role of v-miRs in the suppression of host genes involved in the viral nucleic acid detection, JAK-STAT pathway, and cytokine-mediated antiviral gene activation to favor viral replication and persistence. This information has yielded new insights into our understanding of how v-miRs promote viral evasion of host immunity and likely provide novel antiviral therapeutic targets.
Collapse
Affiliation(s)
- Imran Ahmad
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Hasan Siddiqui
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| |
Collapse
|
20
|
New Insights on the Mobility of Viral and Host Non-Coding RNAs Reveal Extracellular Vesicles as Intriguing Candidate Antiviral Targets. Pathogens 2020; 9:pathogens9110876. [PMID: 33114356 PMCID: PMC7690884 DOI: 10.3390/pathogens9110876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Intercellular communication occurring by cell-to-cell contacts and via secreted messengers trafficked through extracellular vehicles is critical for regulating biological functions of multicellular organisms. Recent research has revealed that non-coding RNAs can be found in extracellular vesicles consistent with a functional importance of these molecular vehicles in virus propagation and suggesting that these essential membrane-bound bodies can be highjacked by viruses to promote disease pathogenesis. Newly emerging evidence that coronaviruses generate non-coding RNAs and use extracellular vesicles to facilitate viral pathogenicity may have important implications for the development of effective strategies to combat COVID-19, a disease caused by infection with the novel coronavirus, SARS-CoV-2. This article provides a short overview of our current understanding of the interactions between non-coding RNAs and extracellular vesicles and highlights recent research which supports these interactions as potential therapeutic targets in the development of novel antiviral therapies.
Collapse
|
21
|
Constant companion: clinical and developmental aspects of torque teno virus infections. Arch Virol 2020; 165:2749-2757. [PMID: 33040309 DOI: 10.1007/s00705-020-04841-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
Torque teno virus (TTV) is a commensal human virus observed as a circular single-negative-strand DNA molecule in various tissues and biological samples, notably in blood serum and lymphocytes. TTV has no apparent clinical significance, although it might be very useful as a prospective tool for gene delivery or as an epidemiological marker. Human populations are ubiquitously infected with TTV; the prevalence may reach 100%. The majority of babies become spontaneously infected with TTV, so that by the end of the first year of life, the prevalence reaches 'adult' values. TTV positivity in healthy early infancy and the presence of TTV in umbilical cord blood samples have been reported. The mechanism of infection and the dynamics of TTV prevalence in infants with age remain understudied. Meanwhile, the potential diagnostic and prognostic value of TTV as a marker deserves special attention and study, along with the possibility, causes and consequences of placental transmission of TTV under normal or pathological conditions.
Collapse
|
22
|
Maev IV, Karlovich TI, Burmistrov AI, Chekmazov IA, Andreev DN, Reshetnyak VI. Current Views of Torque Teno Virus (TTV) in Liver Diseases. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2020; 30:7-22. [DOI: 10.22416/1382-4376-2020-30-4-7-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
- I. V. Maev
- Moscow State University of Medicine and Dentistry
| | - T. I. Karlovich
- Central Clinical Hospital with Outpatient Care of the Russian President Administration
| | | | - I. A. Chekmazov
- Central Clinical Hospital with Outpatient Care of the Russian President Administration
| | | | | |
Collapse
|
23
|
Webb B, Rakibuzzaman A, Ramamoorthy S. Torque teno viruses in health and disease. Virus Res 2020; 285:198013. [PMID: 32404273 DOI: 10.1016/j.virusres.2020.198013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Torque teno viruses (TTVs) are small, ubiquitous, viruses with a highly diverse, single-stranded, negative sense DNA genome and wide host range. They are detected at high rates in both healthy and diseased individuals and are considered a significant part of the mammalian virome. Similar to human TTVs, swine TTVs (TTSuVs) are epidemiologically linked to several coinfections including porcine circovirus types 2 and 3 and the porcine reproductive and respiratory disease syndrome virus. Experimental infection of gnotobiotic pigs with TTSuVs resulted in lesions in multiple organs and exacerbation of coinfections, making TTSuVs the only members of the Anelloviridae family with experimental evidence for pathogenicity. However, due to the lack of reliable cell culture and animal models, mechanistic studies on viral immunity and pathogenesis are limited. The objective of this review is to summarize the current status of knowledge regarding the biology, detection, pathogenesis and public health significance of TTSuVs, while identifying gaps in knowledge which limit the field.
Collapse
Affiliation(s)
- Brett Webb
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, United States
| | - Agm Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
24
|
Mortazkar P, Karbalaie Niya MH, Javanmard D, Esghaei M, Keyvani H. Molecular Epidemiology of Anellovirus Infection in Children's Urine: A Cross-sectional Study. Adv Biomed Res 2020; 9:16. [PMID: 32775309 PMCID: PMC7282691 DOI: 10.4103/abr.abr_169_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/31/2019] [Accepted: 01/22/2020] [Indexed: 11/04/2022] Open
Abstract
Background Anelloviridae is a viral family which is considered as a constant component of human virome. Given the ubiquitous nature of the virus infection and the long-standing relationship between the virus and the host, in the present study, we aimed at investigating the presence of Anelloviruses in the urine samples of children in a cross-sectional study. Materials and Methods The urine samples of 50 children who were referred to Hazrat Ali Asghar Children's Hospital, affiliated to Iran University of Medical Sciences, Tehran, Iran, were obtained. Three TaqMan real-time polymerase chain reactions (PCRs) were carried out for Anellovirus detection. A phylogenetic tree was drawn for positive products after PCR amplification, purification, and nucleotide sequencing. SPSS, version 20, was used for statistical analyses. Results Children's mean age ± standard deviation was 4.30 ± 1.47 years and 56% (28/50) were female. Real-time PCR revealed that Anellovirus was positive in 12% (6/50). Furthermore, PCR-sequencing results showed that torque teno virus was detected in 83.3% (5/6) and SEN virus in 16.6% (1/6) of the Anellovirus positive samples. In addition, 86% (5/6) of the children with positive samples were female. No significant difference was detected between any of the demographic characteristics and Anellovirus positivity (P > 0.05). Conclusion According to our preliminary study, the presence of Anelloviruses in the urine samples of asymptomatic children in Iran is striking, although limited sample size and age range limitations might have affected the comprehensive results of our study.
Collapse
Affiliation(s)
- Poupak Mortazkar
- Department of Virology, Faculty of Medicine, International Campus (IUMS-IC), Iran University of Medical Sciences, Tehran, Iran
| | | | - Davod Javanmard
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Infectious Disease Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Reshetnyak VI, Maev IV, Burmistrov AI, Chekmazov IA, Karlovich TI. Torque teno virus in liver diseases: On the way towards unity of view. World J Gastroenterol 2020; 26:1691-1707. [PMID: 32351287 PMCID: PMC7183866 DOI: 10.3748/wjg.v26.i15.1691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The review presents the data accumulated for more than 20 years of research of torque teno virus (TTV). Its molecular genetic structure, immunobiology, epidemiology, diagnostic methods, possible replication sites, and pathogenicity factors are described. TTV is a virus that is frequently detectable in patients with different viral hepatitides, in cases of hepatitis without an obvious viral agent, as well as in a healthy population. There is evidence suggesting that biochemical and histological changes occur in liver tissue and bile duct epithelium in TTV monoinfection. There are sufficient histological signs of liver damage, which confirm that the virus can undergo a replicative cycle in hepatocytes. Along with this, cytological hybridization in TTV-infected cells has shown no substantial cytopathic (cell-damaging) effects that are characteristic of pathogenic hepatotropic viruses. Studying TTV has led to the evolution of views on its role in the development of human pathology. The first ideas about the hepatotropism of the virus were gradually reformed as new data became available on the prevalence of the virus and its co-infection with other viruses, including the viruses of the known types of hepatitides. The high prevalence of TTV in the human population indicates its persistence in the body as a virome and a non-pathogenic virus. It has recently been proposed that the level of TTV DNA in the blood of patients undergoing organ transplantation should be used as an endogenous marker of the body’s immune status. The available data show the polytropism of the virus and deny the fact that TTV can be assigned exclusively to hepatitis viruses. Fortunately, the rare detection of the damaging effect of TTV on hepatic and bile duct epithelial cells may be indirect evidence of its conditionally pathogenic properties. The ubiquity of the virus and the variability of its existence in humans cannot put an end to its study.
Collapse
Affiliation(s)
- Vasiliy I Reshetnyak
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor V Maev
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Alexandr I Burmistrov
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor A Chekmazov
- Central Clinical Hospital with Polyclinic, Presidential Administration of the Russian Federation, Moscow 121359, Russia
| | - Tatiana I Karlovich
- Central Clinical Hospital with Polyclinic, Presidential Administration of the Russian Federation, Moscow 121359, Russia
| |
Collapse
|
26
|
Águeda-Pinto A, Kraberger S, Lund MC, Gortázar C, McFadden G, Varsani A, Esteves PJ. Coinfections of Novel Polyomavirus, Anelloviruses and a Recombinant Strain of Myxoma Virus-MYXV-Tol Identified in Iberian Hares. Viruses 2020; 12:E340. [PMID: 32244962 PMCID: PMC7150814 DOI: 10.3390/v12030340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Viruses are ubiquitous in nature; however, very few have been identified in the Leporid species. In the fall of 2018, an outbreak of myxomatosis in Iberian hares (Lepus granatensis) was reported in Spain and a novel recombinant myxoma virus strain (MYXV-Tol) was identified. To investigate variability within the recombinant region of the MYXV-Tol and identify any potential viral coinfections, samples (ear, eyelid or vaginal) of Iberian hares were collected from Spain and analyzed. The presence of the recombinant region of the MYXV-Tol was confirmed in six out of eleven samples analyzed. Additionally, a polyomavirus (family Polyomaviridae), representing a putative new species, and anelloviruses (family Anelloviridae) belonging to two putative species were identified, some as coinfection with the recombinant MYXV-Tol. The two polyomavirus genomes were identified in two hares and share >99% genome-wide identity. Based on the analysis of their large T-antigen, the new polyomavirus clusters in a distant clade from other mammals sharing <64% amino acid identity. A total of 14 anelloviruses were identified, which share 63-99% genome-wide identity. Overall, our results show a coinfection of different DNA viruses in the studied samples and raise awareness regarding the extensive unsampled diversity of viruses in hares.
Collapse
Affiliation(s)
- Ana Águeda-Pinto
- CIBIO/InBio—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (G.M.)
| | - Simona Kraberger
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (G.M.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo, 28005 Ciudad Real, Spain;
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.K.); (G.M.)
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life sciences, Arizona State University, Tempe, AZ 85287, USA;
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Pedro J. Esteves
- CIBIO/InBio—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- CITS—Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, 4585-116 Gandra, Portugal
| |
Collapse
|
27
|
Anellovirus Dynamics Are Associated With Primary Graft Dysfunction in Lung Transplantation. Transplant Direct 2020; 6:e521. [PMID: 32095507 PMCID: PMC7004632 DOI: 10.1097/txd.0000000000000969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 11/25/2022] Open
Abstract
Primary graft dysfunction (PGD) is the leading cause of early death in lung transplant. Anelloviruses are small circular DNA viruses that have been noted to be present at elevated levels in immunosuppressed patients. They have been associated with both short- and long-term outcomes in lung transplant, and we hypothesized that anellovirus dynamics might be associated with the development of PGD.
Collapse
|
28
|
Jaksch P, Kundi M, Görzer I, Muraközy G, Lambers C, Benazzo A, Hoetzenecker K, Klepetko W, Puchhammer-Stöckl E. Torque Teno Virus as a Novel Biomarker Targeting the Efficacy of Immunosuppression After Lung Transplantation. J Infect Dis 2019; 218:1922-1928. [PMID: 30053048 DOI: 10.1093/infdis/jiy452] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
Torque teno viruses (TTV) are small DNA-viruses, of the genus Alphatorquevirus, whose replication is linked to immune status. TTV load may be an indicator for efficacy of IS in lung transplant recipients (LTRs). In a prospective single-center-study 143 LTRs were followed up and tested by quantitative TTV-DNA PCR. Using multivariate Cox-regression contribution of TTV-load to the occurrence of severe infections, chronic lung allograft dysfunction (CLAD), acute cellular rejection (ACR), and death was assessed. During follow-up 28 (20%) patients developed infections with a rate of 7.7 per 100 patient-years (PY). The hazard-ratio (HR) associated with a one-log10 increase of TTV-load before the event was 5.05. CLAD occurred with a rate of 6.0%-PY. HR for a 1 log10 increase of the lowest TTV level before the event was 0.71 (CI: 0.54-0.93). TTV-load predicts clinical events and may be useful to optimize IS during the first years of follow-up of LTRs.
Collapse
Affiliation(s)
- Peter Jaksch
- Division of Thoracic Surgery, Department of Surgery
| | | | - Irene Görzer
- Department of Virology, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
29
|
Freer G, Maggi F, Pistello M. Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Curr Med Chem 2019; 26:1027-1044. [PMID: 28982318 DOI: 10.2174/0929867324666171005112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens. OBJECTIVE This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence. METHOD We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome. RESULTS A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism. CONCLUSION The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
30
|
Islam MS, Khan MAAK, Murad MW, Karim M, Islam ABMMK. In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J Med Virol 2019; 91:1584-1594. [PMID: 31095749 DOI: 10.1002/jmv.25505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The concurrent Zika Virus (ZIKV) outbreaks in the United States and Northeast Brazil have evoked global surveillance. Zika infection has been correlated with severe clinical symptoms, such as microcephaly, Guillain-Barré syndrome, and other congenital brain abnormalities. Recent data suggest that ZIKV predominantly targets neural progenitor cells leading to neurological impairment. Despite the clinical evidence, detailed experimental mechanism of ZIKV neurotropic pathogenesis has not been fully understood yet. Here we hypothesized that ZIKV produces miRNAs, which target essential host genes involved in various cellular pathways facilitating their survival through immune evasion and progression of disease during brain development. METHODS From genome sequence information using several bioinformatic tools, we predicted pri-miRNAs, pre-miRNAs, and finally the mature miRNAs produced by ZIKV. We also identified their target genes and performed functional enrichment analysis to identify the biological processes associated with these genes. Finally, we analyzed a publicly available RNA-seq data set to determine the altered expression level of the targeted genes. RESULTS From ZIKV genome sequence, we identified and validated 47 putative novel miRNAs. Functional enrichment of the targeted genes demonstrates the involvement of various biological pathways regulating cellular signaling, neurological functions, cancer, and fetal development. The expression analysis of these genes showed that ZIKV-produced miRNAs downregulate the key genes involved in these pathways, which in turn may lead to impaired brain development. CONCLUSIONS Our finding proposes novel ZIKV miRNAs and their targets, which upon experimental validation could help developing new therapeutics to combat ZIKV infection and minimize ZIKV-mediated pathologies.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Wahid Murad
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Marwah Karim
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
31
|
Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D, Aikawa M, Sullivan CS, Perlman S, Fehr AR. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog 2019; 15:e1007756. [PMID: 31095648 PMCID: PMC6521996 DOI: 10.1371/journal.ppat.1007756] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
ADP-ribosylation is a ubiquitous post-translational addition of either monomers or polymers of ADP-ribose to target proteins by ADP-ribosyltransferases, usually by interferon-inducible diphtheria toxin-like enzymes known as PARPs. While several PARPs have known antiviral activities, these activities are mostly independent of ADP-ribosylation. Consequently, less is known about the antiviral effects of ADP-ribosylation. Several viral families, including Coronaviridae, Togaviridae, and Hepeviridae, encode for macrodomain proteins that bind to and hydrolyze ADP-ribose from proteins and are critical for optimal replication and virulence. These results suggest that macrodomains counter cellular ADP-ribosylation, but whether PARPs or, alternatively, other ADP-ribosyltransferases cause this modification is not clear. Here we show that pan-PARP inhibition enhanced replication and inhibited interferon production in primary macrophages infected with macrodomain-mutant but not wild-type coronavirus. Specifically, knockdown of two abundantly expressed PARPs, PARP12 and PARP14, led to increased replication of mutant but did not significantly affect wild-type virus. PARP14 was also important for the induction of interferon in mouse and human cells, indicating a critical role for this PARP in the regulation of innate immunity. In summary, these data demonstrate that the macrodomain is required to prevent PARP-mediated inhibition of coronavirus replication and enhancement of interferon production. ADP-ribosylation, an understudied post-translational modification, facilitates the host response to virus infection. Several viruses, including all members of the coronavirus family, encode a macrodomain to reverse ADP-ribosylation and combat this immune response. As such, viruses with mutations in the macrodomain are highly attenuated and cause minimal disease in vivo. Here, using primary macrophages and mice infected with a pathogenic murine coronavirus, we identify PARPs, specifically PARP12 and PARP14, as host cell ADP-ribosylating enzymes important for the attenuation of these mutant viruses and confirm their importance using inhibitors and siRNAs. These data demonstrate a broad strategy of virus-host interactions and indicate that the macrodomain may be a useful target for antiviral therapy.
Collapse
Affiliation(s)
- Matthew E. Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Yating Chen
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
| | - Chad Kuny
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
| | - Takashi Maejima
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Robert Lease
- McDaniel College, Westminster, MD, United States of America
| | - Dana Ferraris
- McDaniel College, Westminster, MD, United States of America
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Christopher S. Sullivan
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- * E-mail: (SP); (ARF)
| | - Anthony R. Fehr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
- * E-mail: (SP); (ARF)
| |
Collapse
|
32
|
Rezahosseini O, Drabe CH, Sørensen SS, Rasmussen A, Perch M, Ostrowski SR, Nielsen SD. Torque-Teno virus viral load as a potential endogenous marker of immune function in solid organ transplantation. Transplant Rev (Orlando) 2019; 33:137-144. [PMID: 30981537 DOI: 10.1016/j.trre.2019.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/27/2022]
Abstract
Solid organ transplantation (SOT) recipients receive immunosuppressive therapy to avoid rejection of the transplanted organ. Immunosuppressive therapy increases the risk of infections. However, no existing marker reliably reveals the status of the immune function in SOT recipients. Torque-Teno virus or Transfusion-transmitted virus (TTV) has gained attention as a possible endogenous marker of the immune function. TTV is a non-enveloped, circular single strand DNA virus, and it may be considered a part of the human virome. In a bidirectional relationship, the immune system detects TTV and TTV may also modulate the activity of immune system. These characteristics have made the virus a possible candidate indicator of immune function. In this systematic review, we describe the role and potential function of TTV viral load as an endogenous marker of the immune function and consequently the level of immune suppression in SOT recipients.
Collapse
Affiliation(s)
- Omid Rezahosseini
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Heldbjerg Drabe
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Rasmussen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Pou C, Barrientos-Somarribas M, Marin-Juan S, Bogdanovic G, Bjerkner A, Allander T, Gustafsson B, Andersson B. Virome definition in cerebrospinal fluid of patients with neurological complications after hematopoietic stem cell transplantation. J Clin Virol 2018; 108:112-120. [DOI: 10.1016/j.jcv.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023]
|
34
|
Martelli F, Macera L, Spezia PG, Medici C, Pistello M, Guasti D, Romagnoli P, Maggi F, Giannecchini S. Torquetenovirus detection in exosomes enriched vesicles circulating in human plasma samples. Virol J 2018; 15:145. [PMID: 30236130 PMCID: PMC6149034 DOI: 10.1186/s12985-018-1055-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Torquetenovirus (TTV) belongs to Anelloviridae family, infects nearly all people indefinitely without causing overt disease establishing a fine and successful interaction with the host. Increasing evidence have shown some human viruses exploit extracellular vesicles thereby helping viral persistence in the host. Here, the presence of TTV in extracellular vesicles circulating in human plasma was investigated. METHODS TTV DNA was quantified in plasma-derived exosomes from 122 samples collected from 97 diseased patients and 25 healthy donors. Exosomes enriched vesicles (EEVs) were extracted from plasma and characterized by Nanoparticle tracking analysis, by western blot for presence of tetraspanin CD63, CD81 and annexin II protein and, finally, by electron microscopy (EM). Presence and quantitation of TTV DNA were assessed with an universal single step real-time TaqMan PCR assay. RESULTS Preliminary investigation showed that the human plasma extracted extracellular vesicles exhibited a main size of 70 nm, had concentration of 2.5 × 109/ml, and scored positive for tetraspanin CD63, CD81 and annexin II, typical characteristic of the exosomes vesicles. EEVs extracted from pooled plasma with TTV DNA viremia of 9.7 × 104 copies/ml showed to contain 6.3 × 102 TTV copies/ml, corresponding to 0.65% of total viral load. Important, TTV yield changed significantly following freezing/thawing, detergents and DNAse treatment of plasma before EEVs extraction. EEVs purified by sucrose-density gradient centrifugation and analysis of gradient fraction positive for exosomes marker CD63 harbored 102 TTV copies/ml. Moreover, EM evidenced the presence of TTV-like particles in EEVs. Successive investigation of plasma EEVs from 122 subjects (37 HIV-positive, 20 HCV infected, 20 HBV infected, 20 kidney transplant recipients, and 25 healthy) reported TTV DNA detection in 42 (34%) of the viremic samples (37 were from diseased patients and 5 from healthy people) at a mean level of 4.8 × 103 copies/ml. The examination of EEVs selected samples reported the presence of TTV genogroup 1, 3, 4 and 5, with genogroup 3 highly observed. CONCLUSIONS Collectively, although these observations should be confirmed by further studies, circulation of TTV particles in EEVs opens new avenues and mechanistic insights on the molecular strategies adopted by anelloviruses to persist in the host.
Collapse
Affiliation(s)
- Francesco Martelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy
| | - Lisa Macera
- Virology Unit, Pisa University Hospital, Pisa, Italy.,Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Pietro Giorgio Spezia
- Virology Unit, Pisa University Hospital, Pisa, Italy.,Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Chiara Medici
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | - Mauro Pistello
- Virology Unit, Pisa University Hospital, Pisa, Italy.,Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy
| | - Paolo Romagnoli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy
| | | | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134, Florence, Italy.
| |
Collapse
|
35
|
Giacconi R, Maggi F, Macera L, Pistello M, Provinciali M, Giannecchini S, Martelli F, Spezia PG, Mariani E, Galeazzi R, Costarelli L, Iovino L, Galimberti S, Nisi L, Piacenza F, Malavolta M. Torquetenovirus (TTV) load is associated with mortality in Italian elderly subjects. Exp Gerontol 2018; 112:103-111. [PMID: 30223047 DOI: 10.1016/j.exger.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/09/2018] [Indexed: 12/20/2022]
Abstract
An age-related dysregulation of immune response, known as immunosenescence, contributes to increased susceptibility to infections, frailty and high risk of mortality in the elderly. Torquetenovirus (TTV), a circular, single-stranded DNA virus, is highly prevalent in the general population and it may persist in the organism, also in association with other viruses such as cytomegalovirus (CMV), causing chronic viremia. The relationship that TTV establishes with the immune system of infected hosts is not clear. It is known that TTV encodes microRNAs (miRNAs) that might contribute to immune evasion and that the highest viral loads are found in peripheral blood cells. Moreover, it is suspected that TTV infection lead to increased production of inflammatory mediators, thus playing a role in immunosenescence. We investigated the association of TTV load and miRNAs expression with inflammatory and immune markers and the influence of TTV load on mortality within a cohort of 379 elderly subjects who were followed up for 3 years. TTV DNA load in polymorphonuclear leukocytes was slightly positively correlated with age and negatively associated with serum albumin levels and NK cell activity. A marginal positive correlation between TTV DNA load, monocytes and IL-8 plasma levels was found in females and males respectively. TTV DNA copies ≥4.0 log represented a strong predictor of mortality (Hazard ratio = 4.78, 95% CI: 1.70-13.44, after adjusting for age, sex and the main predictors of mortality rate) and this association remained significant even after the CMV IgG antibody titer was included in the model (HR = 9.83; 95% CI: 2.48-38.97; N = 343 subjects). Moreover, multiple linear regression model showed that TTV miRNA-t3b of genogroup 3 was inversely associated with triglycerides, monocytes and C-reactive protein, and directly associated with IL6. Overall these findings suggest a role of TTV in immunesenescence and in the prediction of all-cause mortality risk in Italian elderly subjects. Further studies are needed to fully understand the pathogenic mechanisms of TTV infection during aging.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy.
| | - Fabrizio Maggi
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Lisa Macera
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Martelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Giorgio Spezia
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Roberta Galeazzi
- Clinical Laboratory & Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - Laura Costarelli
- Clinical Laboratory & Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - Lorenzo Iovino
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Nisi
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
36
|
Identification of virus-encoded microRNAs in divergent Papillomaviruses. PLoS Pathog 2018; 14:e1007156. [PMID: 30048533 PMCID: PMC6062147 DOI: 10.1371/journal.ppat.1007156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miRNAs have been described. The incomplete understanding of PV-encoded miRNAs is due in part to lack of tractable laboratory models for most PV types. To overcome this, we have developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench approach to miRNA identification that screens numerous pathogen genomes in parallel. Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs. Our results show that most PVs are unlikely to code for miRNAs and we conclusively demonstrate a lack of PV miRNA expression in cancers associated with infections of several high risk HPVs. However, we identified five different high-confidence or highly probable miRNAs encoded by four different PVs (Human PVs 17, 37, 41 and a Fringilla coelebs PV (FcPV1)). Extensive in vitro assays confirm the validity of these miRNAs in cell culture and two FcPV1 miRNAs are further confirmed to be expressed in vivo in a natural host. We show that miRNAs from two PVs (HPV41 & FcPV1) are able to regulate viral transcripts corresponding to the early region of the PV genome. Combined, these findings identify the first canonical PV miRNAs and support that miRNAs of either host or viral origin are important regulators of the PV life cycle.
Collapse
|
37
|
Spandole-Dinu S, Cimponeriu DG, Crăciun AM, Radu I, Nica S, Toma M, Alexiu OA, Iorga CS, Berca LM, Nica R. Prevalence of human anelloviruses in Romanian healthy subjects and patients with common pathologies. BMC Infect Dis 2018; 18:334. [PMID: 30016934 PMCID: PMC6050727 DOI: 10.1186/s12879-018-3248-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 07/10/2018] [Indexed: 01/03/2023] Open
Abstract
Background Human anelloviruses (TTV, TTMDV and TTMV) are at high prevalence all across the globe, having also a controversial disease-inducing potential. This study aimed to estimate the prevalence of anelloviral DNA in the Romanian human population and to investigate the association of infections with common pathologies in Romanian population. Methods After informed consent, blood samples were collected from 2000 subjects represented by: clinically healthy individuals (n = 701) and a group of patients with pathologies linked to low grade inflammation or alteration of carbohydrate metabolism (n = 1299). All samples were analysed for the presence of TTV, TTMDV and TTMV DNA by hemi-nested PCR. Results The prevalence of TTV, TTMDV and TTMV in the studied population was 68.2, 54.4%, respectively 40.1%, lower than the recent reports from other geographic regions. The three viral species were significantly more frequent in the group of patients compared to the healthy subjects and were associated with type 2 diabetes mellitus. The presence of anelloviral DNA was also associated with medical procedures (e.g. haemodialysis/transfusions, surgical procedures) and previous hepatitis A virus infection. Lifestyle choices related to alcohol consumption, smoking, physical activity and living environment were not associated with differences in distribution of the three viruses. Conclusion Further evidence is needed to establish a correlation between infection with human anelloviruses and a pathology or group of pathologies.
Collapse
Affiliation(s)
| | | | - Anne-Marie Crăciun
- Nutrition and Metabolic Diseases Dr. N. Paulescu, National Institute of Diabetes, Bucharest, Romania
| | - Irina Radu
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Silvia Nica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mihai Toma
- Department of Genetics, University of Bucharest, Bucharest, Romania.,Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | | | - Corneliu Sorin Iorga
- National Institute of Research and Development for Food Bioresources, 6 Dinu Vintila, 021102, Bucharest, Romania
| | - Lavinia-Mariana Berca
- National Institute of Research and Development for Food Bioresources, 6 Dinu Vintila, 021102, Bucharest, Romania.
| | - Remus Nica
- Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
38
|
Xu T, Chu Q, Cui J. Rhabdovirus-Inducible MicroRNA-210 Modulates Antiviral Innate Immune Response via Targeting STING/MITA in Fish. THE JOURNAL OF IMMUNOLOGY 2018; 201:982-994. [DOI: 10.4049/jimmunol.1800377] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
|
39
|
Wu X, Jia R, Zhou J, Wang M, Chen S, Liu M, Zhu D, Zhao X, Sun K, Yang Q, Wu Y, Yin Z, Chen X, Wang J, Cheng A. Virulent duck enteritis virus infected DEF cells generate a unique pattern of viral microRNAs and a novel set of host microRNAs. BMC Vet Res 2018; 14:144. [PMID: 29704894 PMCID: PMC5923184 DOI: 10.1186/s12917-018-1468-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Duck enteritis virus (DEV) belongs to the family Herpesviridae and is an important epornitic agent that causes economic losses in the waterfowl industry. The Chinese virulent (CHv) and attenuate vaccines (VAC) are two different pathogenic DEV strains. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression in viral infection. Nonetheless, there is little information on virulent duck enteritis virus (DEV)-encoded miRNAs. Results Using high-throughput sequencing, we identified 39 mature viral miRNAs from CHv-infected duck embryo fibroblasts cells. Compared with the reported 33 VAC-encoded miRNAs, only 13 miRNA sequences and 22 “seed sequences” of miRNA were identical, and 8 novel viral miRNAs were detected and confirmed by stem-loop RT-qPCR in this study. Using RNAhybrid and PITA software, 38 CHv-encoded miRNAs were predicted to target 41 viral genes and formed a complex regulatory network. Dual luciferase reporter assay (DLRA) confirmed that viral dev-miR-D8-3p can directly target the 3’-UTR of CHv US1 gene (p < 0.05). Gene Ontology analysis on host target genes of viral miRNAs were mainly involved in biological regulation, cellular and metabolic processes. In addition, 598 novel duck-encoded miRNAs were detected in this study. Thirty-eight host miRNAs showed significant differential expression after CHv infection: 13 miRNAs were up-regulated, and 25 miRNAs were down-regulated, which may affect viral replication in the host cell. Conclusions These data suggested that CHv encoded a different set of microRNAs and formed a unique regulatory network compared with VAC. This is the first report of DEF miRNAs expression profile and an analysis of these miRNAs regulatory mechanisms during DEV infection. These data provide a basis for further exploring miRNA regulatory roles in the pathogenesis of DEV infection and contribute to the understanding of the CHv-host interaction at the miRNA level. Electronic supplementary material The online version of this article (10.1186/s12917-018-1468-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianglong Wu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Kunfeng Sun
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Jue Wang
- BGI Genomics Co,shenzhen Ltd, Shenzhen, 518083, Guangdong Province, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
40
|
Freer G, Maggi F, Pifferi M, Di Cicco ME, Peroni DG, Pistello M. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood. Front Microbiol 2018; 9:686. [PMID: 29692764 PMCID: PMC5902699 DOI: 10.3389/fmicb.2018.00686] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
The microbiome, a thriving and complex microbial community colonizing the human body, has a broad impact on human health. Colonization is a continuous process that starts very early in life and occurs thanks to shrewd strategies microbes have evolved to tackle a convoluted array of anatomical, physiological, and functional barriers of the human body. Cumulative evidence shows that viruses are part of the microbiome. This part, called virome, has a dynamic composition that reflects what we eat, how and where we live, what we do, our genetic background, and other unpredictable variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many acute and chronic disorders. A compelling example can be found in the respiratory apparatus, where early-life viral infections are major determinants for the development of allergic diseases, like asthma, and other non-transmissible diseases. In this review, we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus family. Anelloviruses are major components of the virome, present in most, if not all, human beings, where they are acquired early in life and replicate persistently without causing apparent disease. We will discuss how modulation of innate and adaptive immune systems by Anelloviruses can influence the development of respiratory diseases in childhood and provide evidence for the use of Anelloviruses as useful and practical molecular markers to monitor inflammatory processes and immune system competence.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Massimo Pifferi
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Maria E Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Blatter JA, Sweet SC, Conrad C, Danziger-Isakov LA, Faro A, Goldfarb SB, Hayes D, Melicoff E, Schecter M, Storch G, Visner GA, Williams NM, Wang D. Anellovirus loads are associated with outcomes in pediatric lung transplantation. Pediatr Transplant 2018; 22:10.1111/petr.13069. [PMID: 29082660 PMCID: PMC5811341 DOI: 10.1111/petr.13069] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 12/17/2022]
Abstract
Anelloviruses are DNA viruses ubiquitously present in human blood. Due to their elevated levels in immunosuppressed patients, anellovirus levels have been proposed as a marker of immune status. We hypothesized that low anellovirus levels, reflecting relative immunocompetence, would be associated with adverse outcomes in pediatric lung transplantation. We assayed blood samples from 57 patients in a multicenter study for alpha- and betatorquevirus, two anellovirus genera. The primary short-term outcome of interest was acute rejection, and longer-term outcomes were analyzed individually and as "composite" (death, chronic rejection, or retransplant within 2 years). Patients with low alphatorquevirus levels at 2 weeks post-transplantation were more likely to develop acute rejection within 3 months after transplant (P = .013). Low betatorquevirus levels at 6 weeks and 6 months after transplant were associated with death (P = .047) and the composite outcome (P = .017), respectively. There was an association between low anellovirus levels and adverse outcomes in pediatric lung transplantation. Alphatorquevirus levels were associated with short-term outcomes (ie, acute rejection), while betatorquevirus levels were associated with longer-term outcomes (ie, death, or composite outcome within 2 years). These observations suggest that anelloviruses may serve as useful biomarkers of immune status and predictors of adverse outcomes.
Collapse
Affiliation(s)
- Joshua A. Blatter
- Department of Pediatrics, Washington University School of Medicine, St. Louis MO,Correspondence and reprint requests to: Joshua A. Blatter, MD, MPH, Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, Saint Louis, MO 63110, Phone: 314-454-2694, Fax: 314-454-2515,
| | - Stuart C. Sweet
- Department of Pediatrics, Washington University School of Medicine, St. Louis MO
| | - Carol Conrad
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Lara A. Danziger-Isakov
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | | | - Don Hayes
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | | | - Marc Schecter
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Gregory Storch
- Department of Pediatrics, Washington University School of Medicine, St. Louis MO
| | - Gary A. Visner
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | | | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis MO,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis MO
| |
Collapse
|
42
|
Feng L, Sheng J, Vu GP, Liu Y, Foo C, Wu S, Trang P, Paliza-Carre M, Ran Y, Yang X, Sun X, Deng Z, Zhou T, Lu S, Li H, Liu F. Human cytomegalovirus UL23 inhibits transcription of interferon-γ stimulated genes and blocks antiviral interferon-γ responses by interacting with human N-myc interactor protein. PLoS Pathog 2018; 14:e1006867. [PMID: 29377960 PMCID: PMC5805366 DOI: 10.1371/journal.ppat.1006867] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Interferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi. This interaction was identified through a yeast two-hybrid screen and co-immunoprecipitation in human cells. We observed that Nmi, when bound to UL23, was not associated with STAT1, suggesting that UL23 binding of Nmi disrupts the interaction of Nmi with STAT1. In cells overexpressing UL23, we observed (a) significantly reduced levels of Nmi and STAT1 in the nuclei, the sites where these proteins act to induce transcription of IFN-γ stimulated genes, and (b) decreased levels of the induction of the transcription of IFN-γ stimulated genes. UL23-deficient HCMV mutants induced higher transcription of IFN-γ stimulated genes and exhibited lower titers than parental and control revertant viruses expressing functional UL23 in IFN-γ treated cells. Thus, UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ induced responses and an increase of viral resistance to IFN-γ. Our results further highlight the roles of UL23-Nmi interactions in facilitating viral immune escape from IFN-γ responses and enhancing viral resistance to IFN antiviral effects. Interferon-γ (IFN-γ) responses are vital for a host to combat infections of many human viruses including human herpesviruses. Upon treatment of IFN-γ, transcription of many genes responsible for IFN-γ immune responses is activated primarily by the signal transducer and activator of transcription (STAT) proteins such as STAT1 protein. Human N-myc interactor (Nmi) protein has been shown to interact with STAT proteins including STAT1 and activate IFN-γ induced STAT-dependent transcription. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi protein. UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ responses and an increase of viral resistance to IFN-γ. Blocking UL23 expression led to higher transcription of IFN-γ stimulated genes and significant inhibition of viral growth in infected cells. These results suggest that interfering with Nmi function may represent an effective mechanism for a herpesvirus to block Nmi-mediated IFN-γ responses and increase viral resistance to IFN-γ. This also provides a potentially new therapeutic strategy to treat HCMV infection by modulating Nmi activity with blocking the expression of a viral protein.
Collapse
Affiliation(s)
- Linyuan Feng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Yujun Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chingman Foo
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Songbin Wu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Marco Paliza-Carre
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Yanhong Ran
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoping Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xu Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zemin Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Tianhong Zhou
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- * E-mail: (FL); (HL)
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (FL); (HL)
| |
Collapse
|
43
|
Inducible MicroRNA-3570 Feedback Inhibits the RIG-I-Dependent Innate Immune Response to Rhabdovirus in Teleost Fish by Targeting MAVS/IPS-1. J Virol 2018; 92:JVI.01594-17. [PMID: 29093090 DOI: 10.1128/jvi.01594-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/23/2017] [Indexed: 01/14/2023] Open
Abstract
Effectively recognizing invading viruses and subsequently inducing innate antiviral immunity are essential for host antiviral defense. Although these processes are closely regulated by the host to maintain immune balance, viruses have evolved the ability to downregulate or upregulate these processes for their survival. MicroRNAs (miRNAs) are a family of small noncoding RNAs that play vital roles in modulating host immune response. Accumulating evidence demonstrates that host miRNAs as mediators are involved in regulating viral replication and host antiviral immunity in mammals. However, the underlying regulatory mechanisms in fish species are still poorly understood. Here, we found that rhabdovirus infection significantly upregulated host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulated RNA virus-triggered type I interferon (IFN) and antiviral gene production, thus facilitating viral replication. Furthermore, miR-3570 was found to target and posttranscriptionally downregulate mitochondrial antiviral signaling protein (MAVS), which functions as a platform for innate antiviral signal transduction. Moreover, we demonstrated that miR-3570 suppressed the expression of MAVS, thereby inhibiting MAVS-mediated NF-κB and IRF3 signaling. The collective results demonstrated a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miRNA.IMPORTANCE RNA viral infection could upregulate host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulates RNA virus-triggered type I IFN and antiviral gene production, thus facilitating viral replication. Remarkably, miR-3570 could target and inhibit MAVS expression, which thus modulates MAVS-mediated NF-κB and IRF3 signaling. The collective results of this study suggest a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miR-3570. Thus, a novel mechanism for virus evasion in fish is proposed.
Collapse
|
44
|
Ng TFF, Dill JA, Camus AC, Delwart E, Van Meir EG. Two new species of betatorqueviruses identified in a human melanoma that metastasized to the brain. Oncotarget 2017; 8:105800-105808. [PMID: 29285293 PMCID: PMC5739680 DOI: 10.18632/oncotarget.22400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
The role of viral infections in the etiology of brain cancer remains uncertain. Prior studies mostly focused on transcriptome or viral DNA integrated in tumor cells. To investigate for the presence of viral particles, we performed metagenomics sequencing on viral capsid-protected nucleic acids from 12 primary and 8 metastatic human brain tumors. One brain tumor metastasized from a skin melanoma harbored two new human anellovirus species, Torque teno mini virus Emory1 (TTMV Emory1) and Emory2 (TTMV Emory2), while the remaining 19 samples did not reveal any exogenous viral sequences. Their genomes share 63-67% identity with other TTMVs, and phylogenetic clustering supports their classification within the Betatorquevirus genus. This is the first identification of betatorqueviruses in brain tumors. The viral DNA was in its expected non-integrated circular form, and it is unclear if the viruses contributed to tumor formation. Whether the viruses originated from blood, or the primary skin tumor could not be ascertained. Overall, our results demonstrate the usefulness of viral metagenomics to detect previously unknown exogenous virus in human brain tumors. They further suggest that active viral infections are rare events in brain tumors, but support a follow-up larger scale study to quantify their frequency in different brain tumor subtypes.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA.,Department of Pathology, University of Georgia, Athens, Georgia, USA.,Current/Present address: DVD, NCIRD, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer A Dill
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Alvin C Camus
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Erwin G Van Meir
- Departments of Neurosurgery and Hematology & Medical Oncology, Winship Cancer Institute and School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Abstract
Circular single-stranded DNA viruses infect archaea, bacteria, and eukaryotic organisms. The relatively recent emergence of single-stranded DNA viruses, such as chicken anemia virus (CAV) and porcine circovirus 2 (PCV2), as serious pathogens of eukaryotes is due more to growing awareness than to the appearance of new pathogens or alteration of existing pathogens. In the case of the ubiquitous human circular single-stranded DNA virus family Anelloviridae, there is still no convincing direct causal relation to any specific disease. However, infections may play a role in autoimmunity by changing the homeostatic balance of proinflammatory cytokines and the human immune system, indirectly affecting the severity of diseases caused by other pathogens. Infections with CAV (family Anelloviridae, genus Gyrovirus) and PCV2 (family Circoviridae, genus Circovirus) are presented here because they are immunosuppressive and affect health in domesticated animals. CAV shares genomic organization, genomic orientation, and common features of major proteins with human anelloviruses, and PCV2 DNA may be present in human food and vaccines.
Collapse
Affiliation(s)
- L M Shulman
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel; .,Laboratory of Environmental Virology, Central Virology Laboratory, Sheba Medical Center Public Health Services, Israel Ministry of Health, Tel Hashomer, 52621, Israel
| | - I Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, 50250, Israel;
| |
Collapse
|
46
|
Burke JM, Kincaid RP, Nottingham RM, Lambowitz AM, Sullivan CS. DUSP11 activity on triphosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs and regulates steady-state levels of cellular noncoding RNAs. Genes Dev 2017; 30:2076-2092. [PMID: 27798849 PMCID: PMC5066614 DOI: 10.1101/gad.282616.116] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Here, Burke et al. delineate a new pathway for mammalian small RNAs to enter the RNAi gene silencing machinery. They show that DUSP11 directly dephosphorylates viral triphosphate ncRNA transcripts and that this is required for efficient silencing by RISC, suggesting that mammalian viral pathogens can use DUSP11 to generate atypical microRNAs. RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear. Since mammals lack an analogous siRNA biogenesis pathway, an RNA silencing role for the mammalian PIR-1 homolog (dual specificity phosphatase 11 [DUSP11]) was unexpected. Here, we show that the RNA triphosphatase activity of DUSP11 promotes the RNA silencing activity of viral microRNAs (miRNAs) derived from RNA polymerase III (RNAP III) transcribed precursors. Our results demonstrate that DUSP11 converts the 5′ triphosphate of miRNA precursors to a 5′ monophosphate, promoting loading of derivative 5p miRNAs into Argonaute proteins via a Dicer-coupled 5′ monophosphate-dependent strand selection mechanism. This mechanistic insight supports a likely shared function for PIR-1 in C. elegans. Furthermore, we show that DUSP11 modulates the 5′ end phosphate group and/or steady-state level of several host RNAP III transcripts, including vault RNAs and Alu transcripts. This study shows that steady-state levels of select noncoding RNAs are regulated by DUSP11 and defines a previously unknown portal for small RNA-mediated silencing in mammals, revealing that DUSP11-dependent RNA silencing activities are shared among diverse metazoans.
Collapse
Affiliation(s)
- James M Burke
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rodney P Kincaid
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Christopher S Sullivan
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
47
|
Hepatitis B Virus-Encoded MicroRNA Controls Viral Replication. J Virol 2017; 91:JVI.01919-16. [PMID: 28148795 DOI: 10.1128/jvi.01919-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, single-stranded, noncoding, functional RNAs. Hepatitis B virus (HBV) is an enveloped DNA virus with virions and subviral forms of particles that lack a core. It was not known whether HBV encodes miRNAs. Here, we identified an HBV-encoded miRNA (called HBV-miR-3) by deep sequencing and Northern blotting. HBV-miR-3 is located at nucleotides (nt) 373 to 393 of the HBV genome and was generated from 3.5-kb, 2.4-kb, and 2.1-kb HBV in a classic miRNA biogenesis (Drosha-Dicer-dependent) manner. HBV-miR-3 was highly expressed in hepatoma cell lines with an integrated HBV genome and HBV+ hepatoma tumors. In patients with HBV infection, HBV-miR-3 was released into the circulation by exosomes and HBV virions, and HBV-miR-3 expression had a positive correlation with HBV titers in the sera of patients in the acute phase of HBV infection. More interestingly, we found that HBV-miR-3 represses HBsAg, HBeAg, and replication of HBV. HBV-miR-3 targets the unique site of the HBV 3.5-kb transcript to specifically reduce HBc protein expression, levels of pregenomic RNA (pgRNA), and HBV replication intermediate (HBV-RI) generation but does not affect the HBV DNA polymerase level, thus suppressing HBV virion production (replication). This may explain the low levels of HBV virion generation with abundant subviral particles lacking core during HBV replication, which may contribute to the development of persistent infection in patients. Taken together, our findings shed light on novel mechanisms by which HBV-encoded miRNA controls the process of self-replication by regulating HBV transcript during infection.IMPORTANCE Hepatitis B is a liver infection caused by the hepatitis B virus (HBV) that can become a long-term, chronic infection and lead to cirrhosis or liver cancer. HBV is a small DNA virus that belongs to the hepadnavirus family, with virions and subviral forms of particles that lack a core. MicroRNA (miRNA), a small (∼22-nt) noncoding RNA, was recently found to be an important regulator of gene expression. We found that HBV encodes miRNA (HBV-miR-3). More importantly, we revealed that HBV-miR-3 targets its transcripts to attenuate HBV replication. This may contribute to explaining how HBV infection leads to mild damage in liver cells and the subsequent establishment/maintenance of persistent infection. Our findings highlight a mechanism by which HBV-encoded miRNA controls the process of self-replication by regulating the virus itself during infection and might provide new biomarkers for diagnosis and treatment of hepatitis B.
Collapse
|
48
|
Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ, van Leenen D, Groot Koerkamp MJA, Holstege FCP, Ressing ME, Wiertz EJHJ, Lebbink RJ. EBV MicroRNA BART16 Suppresses Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2017; 198:4062-4073. [PMID: 28416598 DOI: 10.4049/jimmunol.1501605] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Type I IFNs play critical roles in orchestrating the antiviral defense by inducing direct antiviral activities and shaping the adaptive immune response. Viruses have evolved numerous strategies to specifically interfere with IFN production or its downstream mediators, thereby allowing successful infection of the host to occur. The prototypic human gammaherpesvirus EBV, which is associated with infectious mononucleosis and malignant tumors, harbors many immune-evasion proteins that manipulate the adaptive and innate immune systems. In addition to proteins, the virus encodes >40 mature microRNAs for which the functions remain largely unknown. In this article, we identify EBV-encoded miR-BART16 as a novel viral immune-evasion factor that interferes with the type I IFN signaling pathway. miR-BART16 directly targets CREB-binding protein, a key transcriptional coactivator in IFN signaling, thereby inducing CREB-binding protein downregulation in EBV-transformed B cells and gastric carcinoma cells. miR-BART16 abrogates the production of IFN-stimulated genes in response to IFN-α stimulation and it inhibits the antiproliferative effect of IFN-α on latently infected BL cells. By obstructing the type I IFN-induced antiviral response, miR-BART16 provides a means to facilitate the establishment of latent EBV infection and enhance viral replication.
Collapse
Affiliation(s)
- Marjolein J G Hooykaas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jasper A Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Dik van Leenen
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and
| | | | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, 3584 EA Utrecht, the Netherlands
| | - Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
49
|
Viral microRNAs Target a Gene Network, Inhibit STAT Activation, and Suppress Interferon Responses. Sci Rep 2017; 7:40813. [PMID: 28102325 PMCID: PMC5244407 DOI: 10.1038/srep40813] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs during latency that are processed to yield ~25 mature microRNAs (miRNAs). We were interested in identifying cellular networks that were targeted by KSHV-miRNAs and employed network building strategies using validated KSHV miRNA targets. Here, we report the identification of a gene network centering on the transcription factor- signal transducer and activator of transcription 3 (STAT3) that is targeted by KSHV miRNAs. KSHV miRNAs suppressed STAT3 and STAT5 activation and inhibited STAT3-dependent reporter activation upon IL6-treatment. KSHV miRNAs also repressed the induction of antiviral interferon-stimulated genes upon IFNα- treatment. Finally, we observed increased lytic reactivation of KSHV from latently infected cells upon STAT3 repression with siRNAs or a small molecule inhibitor. Our data suggest that treatment of infected cells with a STAT3 inhibitor and a viral replication inhibitor, ganciclovir, represents a possible strategy to eliminate latently infected cells without increasing virion production. Together, we show that KSHV miRNAs suppress a network of targets associated with STAT3, deregulate cytokine-mediated gene activation, suppress an interferon response, and influence the transition into the lytic phase of viral replication.
Collapse
|
50
|
Hettmann A, Demcsák A, Bach Á, Decsi G, Dencs Á, Pálinkó D, Rovó L, Nagy K, Minarovits J, Takács M. Detection and Phylogenetic Analysis of Torque Teno Virus in Salivary and Tumor Biopsy Samples from Head and Neck Carcinoma Patients. Intervirology 2016; 59:123-129. [DOI: 10.1159/000452974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
|