1
|
Huang Q, Hu W, Meng X, Chen J, Pan G. Nosema bombycis: A remarkable unicellular parasite infecting insects. J Eukaryot Microbiol 2024:e13045. [PMID: 39095558 DOI: 10.1111/jeu.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Microsporidia are opportunistic fungal-like pathogens that cause microsporidiosis, which results in significant economic losses and threatens public health. Infection of domesticated silkworms by the microsporidium Nosema bombycis causes pébrine disease, for which this species of microsporidia has received much attention. Research has been conducted extensively on this microsporidium over the past few decades to better understand its infection, transmission, host-parasite interaction, and detection. Several tools exist to study this species including the complete genome sequence of N. bombycis. In addition to the understanding of N. bombycis being important for the silkworm industry, this species has become a model organism for studying microsporidia. Research on biology of N. bombycis will contribute to the development of knowledge regarding microsporidia and potential antimicrosporidia drugs. Furthermore, this will provide insight into the molecular evolution and functioning of other fungal pathogens.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wanying Hu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Tang L, Sabi MM, Fu M, Guan J, Wang Y, Xia T, Zheng K, Qu H, Han B. Host cell manipulation by microsporidia secreted effectors: Insights into intracellular pathogenesis. J Eukaryot Microbiol 2024:e13029. [PMID: 39030770 DOI: 10.1111/jeu.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 07/22/2024]
Abstract
Microsporidia are prolific producers of effector molecules, encompassing both proteins and nonproteinaceous effectors, such as toxins, small RNAs, and small peptides. These secreted effectors play a pivotal role in the pathogenicity of microsporidia, enabling them to subvert the host's innate immunity and co-opt metabolic pathways to fuel their own growth and proliferation. However, the genomes of microsporidia, despite falling within the size range of bacteria, exhibit significant reductions in both structural and physiological features, thereby affecting the repertoire of secretory effectors to varying extents. This review focuses on recent advances in understanding how microsporidia modulate host cells through the secretion of effectors, highlighting current challenges and proposed solutions in deciphering the complexities of microsporidial secretory effectors.
Collapse
Affiliation(s)
- Liyuan Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Musa Makongoro Sabi
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Ming Fu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Tian Xia
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Kai Zheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hongnan Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China
| | - Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
4
|
Senderskiy IV, Dolgikh VV, Ismatullaeva DA, Mirzakhodjaev BA, Nikitina AP, Pankratov DL. Treatment of Microsporidium Nosema bombycis Spores with the New Antiseptic M250 Helps to Avoid Bacterial and Fungal Contamination of Infected Cultures without Affecting Parasite Polar Tube Extrusion. Microorganisms 2024; 12:154. [PMID: 38257981 PMCID: PMC10819227 DOI: 10.3390/microorganisms12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Microsporidia are a group of widespread eukaryotic spore-forming intracellular parasites of great economic and scientific importance. Since microsporidia cannot be cultured outside of a host cell, the search for new antimicrosporidian drugs requires an effective antiseptic to sterilize microsporidian spores to infect cell lines. Here, we show that a new polyhexamethylene guanidine derivative M250, which is active against fungi and bacteria at a concentration of 0.5-1 mg/L, is more than 1000 times less effective against spores of the microsporidium Nosema bombycis, a highly virulent pathogen of the silkworm Bombyx mori (LC50 is 0.173%). Treatment of N. bombycis spores that were isolated non-sterilely from silkworm caterpillars with 0.1% M250 solution does not reduce the rate of spore polar tube extrusion. However, it completely prevents contamination of the Sf-900 III cell culture medium by microorganisms in the presence of antibiotics. The addition of untreated spores to the medium results in contamination, whether antibiotics are present or not. Since 0.1% M250 does not affect spore discharging, this compound may be promising for preventing bacterial and fungal contamination of microsporidia-infected cell cultures.
Collapse
Affiliation(s)
- Igor V. Senderskiy
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia;
| | - Viacheslav V. Dolgikh
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia;
| | - Diloram A. Ismatullaeva
- Scientific Research Institute of Sericulture, Ipakchi Str. 1, Tashkent 100069, Uzbekistan; (D.A.I.); (B.A.M.)
| | - Bakhtiyar A. Mirzakhodjaev
- Scientific Research Institute of Sericulture, Ipakchi Str. 1, Tashkent 100069, Uzbekistan; (D.A.I.); (B.A.M.)
| | - Anastasiia P. Nikitina
- Department of Microbiology and Virology, Pavlov First Saint-Petersburg State Medical University, L’vaTolstogo Str. 6-8, 197022 Saint-Petersburg, Russia; (A.P.N.); (D.L.P.)
| | - Danil L. Pankratov
- Department of Microbiology and Virology, Pavlov First Saint-Petersburg State Medical University, L’vaTolstogo Str. 6-8, 197022 Saint-Petersburg, Russia; (A.P.N.); (D.L.P.)
| |
Collapse
|
5
|
Zhang L, Zhang S, Qiao Y, Cao X, Cheng J, Meng Q, Shen H. Dynamic Interplay of Metabolic and Transcriptional Responses in Shrimp during Early and Late Infection Stages of Enterocytozoon hepatopenaei (EHP). Int J Mol Sci 2023; 24:16738. [PMID: 38069062 PMCID: PMC10706788 DOI: 10.3390/ijms242316738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects Litopenaeus vannamei, causing severe hepatopancreatic microsporidiosis (HPM) and resulting in significant economic losses. This study utilizes a combined analysis of transcriptomics and metabolomics to unveil the dynamic molecular interactions between EHP and its host, the Pacific white shrimp, during the early and late stages of infection. The results indicate distinct immunological, detoxification, and antioxidant responses in the early and late infection phases. During early EHP infection in shrimp, immune activation coincides with suppression of genes like Ftz-F1 and SEPs, potentially aiding parasitic evasion. In contrast, late infection shows a refined immune response with phagocytosis-enhancing down-regulation of Ftz-F1 and a resurgence in SEP expression. This phase is characterized by an up-regulated detoxification and antioxidant response, likely a defense against the accumulated effects of EHP, facilitating a stable host-pathogen relationship. In the later stages of infection, most immune responses return to baseline levels, while some immune genes remain active. The glutathione antioxidant system is suppressed early on but becomes activated in the later stages. This phenomenon could facilitate the early invasion of EHP while assisting the host in mitigating oxidative damage caused by late-stage infection. Notably, there are distinctive events in polyamine metabolism. Sustained up-regulation of spermidine synthase and concurrent reduction in spermine levels suggest a potential role of polyamines in EHP development. Throughout the infection process, significant differences in genes such as ATP synthase and hexokinase highlight the continuous influence on energy metabolism pathways. Additionally, growth-related pathways involving amino acids such as tryptophan, histidine, and taurine are disrupted early on, potentially contributing to the growth inhibition observed during the initial stages of infection. In summary, these findings elucidate the dynamic interplay between the host, Litopenaeus vannamei, and the parasite, EHP, during infection. Specific phase differences in immune responses, energy metabolism, and antioxidant processes underscore the intricate relationship between the host and the parasite. The disruption of polyamine metabolism offers a novel perspective in understanding the proliferation mechanisms of EHP. These discoveries significantly advance our comprehension of the pathogenic mechanisms of EHP and its interactions with the host.
Collapse
Affiliation(s)
- Leiting Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Sheng Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingguo Meng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Hui Shen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
Thepmanee O, Munkongwongsiri N, Prachumwat A, Saksmerprome V, Jitrakorn S, Sritunyalucksana K, Vanichviriyakit R, Chanarat S, Jaroenlak P, Itsathitphaisarn O. Molecular and cellular characterization of four putative nucleotide transporters from the shrimp microsporidian Enterocytozoon hepatopenaei (EHP). Sci Rep 2023; 13:20008. [PMID: 37974017 PMCID: PMC10654386 DOI: 10.1038/s41598-023-47114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Microsporidia are obligate intracellular parasites that lost several enzymes required in energy production. The expansion of transporter families in these organisms enables them to hijack ATP from hosts. In this study, nucleotide transporters of the microsporidian Enterocytozoon hepatopenaei (EHP), which causes slow growth in economically valuable Penaeus shrimp, were characterized. Analysis of the EHP genome suggested the presence of four putative nucleotide transporter genes, namely EhNTT1, EhNTT2, EhNTT3, and EhNTT4. Sequence alignment revealed four charged amino acids that are conserved in previously characterized nucleotide transporters. Phylogenetic analysis suggested that EhNTT1, 3, and 4 were derived from one horizontal gene transfer event, which was independent from that of EhNTT2. Localization of EhNTT1 and EhNTT2 using immunofluorescence analysis revealed positive signals within the envelope of developing plasmodia and on mature spores. Knockdown of EhNTT2 by double administration of sequence specific double-stranded RNA resulted in a significant reduction in EHP copy numbers, suggesting that EhNTT2 is crucial for EHP replication in shrimp. Taken together, the insight into the roles of NTTs in microsporidian proliferation can provide the biological basis for the development of alternative control strategies for microsporidian infection in shrimp.
Collapse
Affiliation(s)
- Orawan Thepmanee
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Natthinee Munkongwongsiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Anuphap Prachumwat
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Rd., Pathum Thani, Klong Neung, Klong Luang, 12120, Thailand
| | - Sarocha Jitrakorn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Rd., Pathum Thani, Klong Neung, Klong Luang, 12120, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Rama VI Rd. , Bangkok, 10400, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand.
| | - Ornchuma Itsathitphaisarn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand.
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
Treitli SC, Hanousková P, Beneš V, Brune A, Čepička I, Hampl V. Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti. THE ISME JOURNAL 2023; 17:1884-1894. [PMID: 37634049 PMCID: PMC10579272 DOI: 10.1038/s41396-023-01499-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Pelomyxa is a genus of anaerobic amoebae that live in consortia with multiple prokaryotic endosymbionts. Although the symbionts represent a large fraction of the cellular biomass, their metabolic roles have not been investigated. Using single-cell genomics and transcriptomics, we have characterized the prokaryotic community associated with P. schiedti, which is composed of two bacteria, Candidatus Syntrophus pelomyxae (class Deltaproteobacteria) and Candidatus Vesiculincola pelomyxae (class Clostridia), and a methanogen, Candidatus Methanoregula pelomyxae. Fluorescence in situ hybridization and electron microscopy showed that Ca. Vesiculincola pelomyxae is localized inside vesicles, whereas the other endosymbionts occur freely in the cytosol, with Ca. Methanoregula pelomyxae enriched around the nucleus. Genome and transcriptome-based reconstructions of the metabolism suggests that the cellulolytic activity of P. schiedti produces simple sugars that fuel its own metabolism and the metabolism of a Ca. Vesiculincola pelomyxae, while Ca. Syntrophus pelomyxae energy metabolism relies on degradation of butyrate and isovalerate from the environment. Both species of bacteria and the ameba use hydrogenases to transfer the electrons from reduced equivalents to hydrogen, a process that requires a low hydrogen partial pressure. This is achieved by the third endosymbiont, Ca. Methanoregula pelomyxae, which consumes H2 and formate for methanogenesis. While the bacterial symbionts can be successfully eliminated by vancomycin treatment without affecting the viability of the amoebae, treatment with 2-bromoethanesulfonate, a specific inhibitor of methanogenesis, killed the amoebae, indicating the essentiality of the methanogenesis for this consortium.
Collapse
Affiliation(s)
- Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42, Vestec, Czech Republic.
| | - Pavla Hanousková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Vladimír Beneš
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Brune
- RG Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42, Vestec, Czech Republic.
| |
Collapse
|
8
|
Wang Y, Chen J, Na Y, Li XC, Zhou JF, Fang WH, Tan HX. Ecytonucleospora hepatopenaei n. gen. et comb. (Microsporidia: Enterocytozoonidae): A redescription of the Enterocytozoon hepatopenaei (Tourtip et al., 2009), a microsporidian infecting the widely cultivated shrimp Penaeus vannamei. J Invertebr Pathol 2023; 201:107988. [PMID: 37657756 DOI: 10.1016/j.jip.2023.107988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The microsporidian Enterocytozoon hepatopenaei from Penaeus vannamei (EHPPv) was redescribed on the basis of spore morphology, life cycle, pathology, and molecular character. Compared with the Enterocytozoon hepatopenaei isolated from Penaeus monodon (EHPPm), described by Tourtip et al. in 2009, new features were found in EHPPv. Electron microscopy demonstrated that EHPPv was closely associated with the nucleus of host cell. The merogony and sporogony phages were in direct contact with the cytoplasm of host cells, whereas some of the sporoblasts and the spores were surrounded by the interfacial envelope. Mature spores of EHPPv were oval and monokaryotic, measuring 1.65 ± 0.15 μm × 0.92 ± 0.05 μm. Spores possessed many polyribosomes around a bipartite polaroplast and the polar filament with 4-5 coils in two rows. Phylogenetic analyses showed all Enterocytozoon hepatopenaei isolates shared a common ancestor. Based on the morphological and molecular analyses, we propose the establishment of a new genus Ecytonucleospora and transferring Enterocytozoon hepatopenaei to the genus Ecytonucleospora, retaining the specific epithet hepatopenaei that Tourtip et al. proposed in recognition of their first research, as the new combination Ecytonucleospora hepatopenaei n. comb. Furthermore, it was suggested Enterospora nucleophila, Enterocytozoon sp. isolate RA19015_21, and Enterocytozoon schreckii be assigned into this new genus.
Collapse
Affiliation(s)
- Yuan Wang
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China.
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Ying Na
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Jun-Fang Zhou
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Hong-Xin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
9
|
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. THE ISME JOURNAL 2023; 17:1895-1906. [PMID: 37653056 PMCID: PMC10579323 DOI: 10.1038/s41396-023-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.
Collapse
Affiliation(s)
- Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yutaro Horikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kazuki Izawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Daiki Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Tatsuya Inagaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
10
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
11
|
Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. ACS Synth Biol 2023; 12:922-946. [PMID: 37027340 PMCID: PMC10127287 DOI: 10.1021/acssynbio.3c00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/08/2023]
Abstract
Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Michele Partipilo
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jelmer Coenradij
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Douwe A. J. Grundel
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Dirk J. Slotboom
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Sun X, Yu B, Zhang R, Wei J, Pan G, Li C, Zhou Z. Generation of Resistance to Nosema bombycis (Dissociodihaplophasida: Nosematidae) by Degrading NbSWP12 Using the Ubiquitin-Proteasome Pathway in Sf9-III Cells. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:2068-2074. [PMID: 36226858 DOI: 10.1093/jee/toac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 06/16/2023]
Abstract
Nosema bombycis Naegeli (Dissociodihaplophasida: Nosematidae), an obligate intracellular parasite of the silkworm Bombyx mori, causes a devastating disease called pébrine. Every year pébrine will cause huge losses to the sericulture industry worldwide. Until now, there are no effective methods to inhibit the N. bombycis infection in silkworms. In this study, we first applied both the novel protein degradation Trim-Away technology and NSlmb (F-box domain-containing in the N-terminal part of supernumerary limbs from Drosophila melanogaster) to lepidopteran Sf9-III cells to check for specific degradation of a target protein in combination with a single-chain Fv fragment (scFv). Our results showed that the Trim-Away and NSlmb systems are both amenable to Sf9-III cells. We then created transgenic cell lines that overexpressed the protein degradation system and N. bombycis chimeric scFv targeting spore wall protein NbSWP12 and evaluated the effects of the insect transgenic cell lines on the proliferation of N. bombycis. Both methods could be applied to cell lines and both Trim-Away and NSlmb ubiquitin degradation systems effectively inhibited the proliferation of N. bombycis. Further, either of these degradation systems could be applied to individual silkworms through a transgenic platform, which would yield individual silkworms with high resistance to N. bombycis, thus greatly speeding up the process of acquiring resistant strains.
Collapse
Affiliation(s)
- Xi Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Bin Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Renze Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
13
|
Dolgikh VV, Senderskiy IV, Timofeev SA, Zhuravlyov VS, Dolgikh AV, Seliverstova EV, Ismatullaeva DA, Mirzakhodjaev BA. Construction of scFv Antibodies against the Outer Loops of the Microsporidium Nosema bombycis ATP/ADP-Transporters and Selection of the Fragment Efficiently Inhibiting Parasite Growth. Int J Mol Sci 2022; 23:ijms232315307. [PMID: 36499634 PMCID: PMC9738396 DOI: 10.3390/ijms232315307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Traditional sanitation practices remain the main strategy for controlling Bombyx mori infections caused by microsporidia Nosema bombycis. This actualizes the development of new approaches to increase the silkworm resistance to this parasite. Here, we constructed a mouse scFv library against the outer loops of N. bombycis ATP/ADP carriers and selected nine scFv fragments to the transporter, highly expressed in the early stages of the parasite intracellular growth. Expression of selected scFv genes in Sf9 cells, their infection with different ratios of microsporidia spores per insect cell, qPCR analysis of N. bombycis PTP2 and Spodoptera frugiperda COXI transcripts in 100 infected cultures made it possible to select the scFv fragment most effectively inhibiting the parasite growth. Western blot analysis of 42 infected cultures with Abs against the parasite β-tubulin confirmed its inhibitory efficiency. Since the VL part of this scFv fragment was identified as a human IgG domain retained from the pSEX81 phagemid during library construction, its VH sequence should be a key antigen-recognizing determinant. Along with the further selection of new recombinant Abs, this suggests the searching for its natural mouse VL domain or "camelization" of the VH fragment by introducing cysteine and hydrophilic residues, as well as the randomization of its CDRs.
Collapse
Affiliation(s)
- Viacheslav V. Dolgikh
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-921-351-6383
| | - Igor V. Senderskiy
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Sergej A. Timofeev
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Vladimir S. Zhuravlyov
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Alexandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Elena V. Seliverstova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Thorez 44, 194223 Saint-Petersburg, Russia
| | | | | |
Collapse
|
14
|
Sendra KM, Watson AK, Kozhevnikova E, Moore AL, Embley TM, Hirt RP. Inhibition of mitosomal alternative oxidase causes lifecycle arrest of early-stage Trachipleistophora hominis meronts during intracellular infection of mammalian cells. PLoS Pathog 2022; 18:e1011024. [PMID: 36538568 PMCID: PMC9767352 DOI: 10.1371/journal.ppat.1011024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mitosomes are highly reduced forms of mitochondria which have lost two of the 'defining' features of the canonical organelle, the mitochondrial genome, and the capacity to generate energy in the form of ATP. Mitosomes are found in anaerobic protists and obligate parasites and, in most of the studied organisms, have a conserved function in the biosynthesis of iron-sulfur clusters (ISC) that are indispensable cofactors of many essential proteins. The genomes of some mitosome-bearing human pathogenic Microsporidia encode homologues of an alternative oxidase (AOX). This mitochondrial terminal respiratory oxidase is absent from the human host, and hence is a potential target for the development of new antimicrobial agents. Here we present experimental evidence for the mitosomal localization of AOX in the microsporidian Trachipleistophora hominis and demonstrate that it has an important role during the parasite's life cycle progression. Using a recently published methodology for synchronising T. hominis infection of mammalian cell lines, we demonstrated specific inhibition of T. hominis early meront growth and replication by an AOX inhibitor colletochlorin B. Treatment of T. hominis-infected host cells with the drug also inhibited re-infection by newly formed dispersive spores. Addition of the drug during the later stages of the parasite life cycle, when our methods suggest that AOX is not actively produced and T. hominis mitosomes are mainly active in Fe/S cluster biosynthesis, had no inhibitory effects on the parasites. Control experiments with the AOX-deficient microsporidian species Encephalitozoon cuniculi, further demonstrated the specificity of inhibition by the drug. Using the same methodology, we demonstrate effects of two clinically used anti-microsporidian drugs albendazole and fumagillin on the cell biology and life cycle progression of T. hominis infecting mammalian host cells. In summary, our results reveal that T. hominis mitosomes have an active role to play in the progression of the parasite life cycle as well as an important role in the biosynthesis of essential Fe/S clusters. Our work also demonstrates that T. hominis is a useful model for testing the efficacy of therapeutic agents and for studying the physiology and cell biology of microsporidian parasites growing inside infected mammalian cells.
Collapse
Affiliation(s)
- Kacper M. Sendra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew K. Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - T. Martin Embley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Li YH, Chang ZT, Yen MR, Huang YF, Chen TH, Chang JC, Wu MC, Yang YL, Chen YW, Nai YS. Transcriptome of Nosema ceranae and Upregulated Microsporidia Genes during Its Infection of Western Honey Bee ( Apis mellifera). INSECTS 2022; 13:716. [PMID: 36005340 PMCID: PMC9409478 DOI: 10.3390/insects13080716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Nosema ceranae is one of the fungal parasites of Apis mellifera. It causes physical and behavioral effects in honey bees. However, only a few studies have reported on gene expression profiling during A. mellifera infection. In this study, the transcriptome profile of mature spores at each time point of infection (5, 10, and 20 days post-infection, d.p.i.) were investigated. Based on the transcriptome and expression profile analysis, a total of 878, 952, and 981 differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified in N. ceranae spores (NcSp) at 5 d.p.i., 10 d.p.i., and 20 d.p.i., respectively. Moreover, 70 upregulated genes and 340 downregulated genes among common DEGs (so-called common DEGs) and 166 stage-specific genes at each stage of infection were identified. The Gene Ontology (GO) analysis indicated that the DEGs and corresponding common DEGs are involved in the functions of cytosol (GO:0005829), cytoplasm (GO:0005737), and ATP binding (GO:0005524). Furthermore, the pathway analysis found that the DEGs and common DEGs are involved in metabolism, environmental information processing, and organismal systems. Four upregulated common DEGs with higher fold-change values, highly associated with spore proteins and transcription factors, were selected for validation. In addition, the stage-specific genes are highly involved in the mechanism of pre-mRNA splicing according to GO enrichment analysis; thus, three of them showed high expression at each d.p.i. and were also subjected to validation. The relative gene expression levels showed a similar tendency as the transcriptome predictions at different d.p.i., revealing that the gene expression of N. ceranae during infection may be related to the mechanism of gene transcription, protein synthesis, and structural proteins. Our data suggest that the gene expression profiling of N. ceranae at the transcriptomic level could be a reference for the monitoring of nosemosis at the genetic level.
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Zih-Ting Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yi-Lan City 26047, Taiwan
| | - Ming-Ren Yen
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Computer Science and Engineering, Yuan-Ze University, Tao-Yuan City 32003, Taiwan
| | - Tzu-Han Chen
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ming-Cheng Wu
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 11529, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yi-Lan City 26047, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| |
Collapse
|
16
|
Zhang R, Zheng S, Huang H, Sun X, Huang Y, Wei J, Pan G, Li C, Zhou Z. Expression of anti-NbHK single-chain antibody in fusion with NSlmb enhances the resistance to Nosema bombycis in Sf9-III cells. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:502-508. [PMID: 35382911 DOI: 10.1017/s0007485321001036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nosema bombycis is a destructive and specific intracellular parasite of silkworm, which is extremely harmful to the silkworm industry. N. bombycis is considered as a quarantine pathogen of sericulture because of its long incubation period and horizontal and vertical transmission. Herein, two single-chain antibodies targeting N. bombycis hexokinase (NbHK) were cloned and expressed in fusion with the N-terminal of Slmb (a Drosophila melanogaster FBP), which contains the F-box domain. Western blotting demonstrated that Sf9-III cells expressed NSlmb-scFv-7A and NSlmb-scFv-6H, which recognized native NbHK. Subsequently, the NbHK was degraded by host ubiquitination system. When challenged with N. bombycis, the transfected Sf9-III cells exhibited better resistance relative to the controls, demonstrating that NbHK is a prospective target for parasite controls and this approach represents a potential solution for constructing N. bombycis-resistant Bombyx mori.
Collapse
Affiliation(s)
- Renze Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Shiyi Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Affiliated Jinhua Hospital, Zhejiang University of Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, China
| | - Hongyun Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xi Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yukang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
17
|
Heterologous Expressed NbSWP12 from Microsporidia Nosema bombycis Can Bind with Phosphatidylinositol 3-phosphate and Affect Vesicle Genesis. J Fungi (Basel) 2022; 8:jof8080764. [PMID: 35893133 PMCID: PMC9332396 DOI: 10.3390/jof8080764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Microsporidia are a big group of single-celled obligate intracellular organisms infecting most animals and some protozoans. These minimalist eukaryotes lack numerous genes in metabolism and vesicle trafficking. Here, we demonstrated that the spore wall protein NbSWP12 of microsporidium Nosema bombycis belongs to Bin/Amphiphysin/Rvs (BAR) protein family and can specifically bind with phosphatidylinositol 3-phosphate [Ptdlns(3)P]. Since Ptdlns(3)P is involved in endosomal vesicle biogenesis and trafficking, we heterologous expressed NbSWP12 in yeast Saccharomyces cerevisiae and proved that NbSWP12 can target the cell membrane and endocytic vesicles. Nbswp12 transformed into Gvp36 (a BAR protein of S. cerevisiae) deletion mutant rescued the defect phenotype of vesicular traffic. This study identified a BAR protein function in vesicle genesis and sorting and provided clues for further understanding of how microsporidia internalize nutrients and metabolites during proliferation.
Collapse
|
18
|
Chen Y, Wei E, Chen Y, He P, Wang R, Wang Q, Tang X, Zhang Y, Zhu F, Shen Z. Identification and subcellular localization analysis of membrane protein Ycf 1 in the microsporidian Nosema bombycis. PeerJ 2022; 10:e13530. [PMID: 35833014 PMCID: PMC9272817 DOI: 10.7717/peerj.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 01/22/2023] Open
Abstract
Microsporidia are obligate intracellular parasites that can infect a wide range of vertebrates and invertebrates including humans and insects, such as silkworm and bees. The microsporidium Nosema bombycis can cause pebrine in Bombyx mori, which is the most destructive disease in the sericulture industry. Although membrane proteins are involved in a wide range of cellular functions and part of many important metabolic pathways, there are rare reports about the membrane proteins of microsporidia up to now. We screened a putative membrane protein Ycf 1 from the midgut transcriptome of the N. bombycis-infected silkworm. Gene cloning and bioinformatics analysis showed that the Ycf 1 gene contains a complete open reading frame (ORF) of 969 bp in length encoding a 322 amino acid polypeptide that has one signal peptide and one transmembrane domain. Indirect immunofluorescence results showed that Ycf 1 protein is distributed on the plasma membrane. Expression pattern analysis showed that the Ycf 1 gene expressed in all developmental stages of N. bombycis. Knockdown of the Ycf 1 gene by RNAi effectively inhibited the proliferation of N. bombycis. These results indicated that Ycf 1 is a membrane protein and plays an important role in the life cycle of N. bombycis.
Collapse
Affiliation(s)
- Yong Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Erjun Wei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ying Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ping He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Runpeng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Xudong Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Yiling Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Feng Zhu
- Zaozhuang University, Zaozhuang, Shangdong, China
| | - Zhongyuan Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| |
Collapse
|
19
|
Zhang X, Feng H, He J, Liang X, Zhang N, Shao Y, Zhang F, Lu X. The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori. PEST MANAGEMENT SCIENCE 2022; 78:2215-2227. [PMID: 35192238 PMCID: PMC9314687 DOI: 10.1002/ps.6846] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Microsporidia, a group of obligate intracellular fungal-related parasites, have been used as efficient biocontrol agents for agriculture and forestry pests due to their host specificity and transovarial transmission. They mainly infect insect pests through the intestinal tract, but the interactions between microsporidia and the gut microbiota of the host have not been well demonstrated. RESULTS Based on the microsporidia-Bombyx mori model, we report that the susceptibility of silkworms to exposure to the microsporidium Nosema bombycis was both dose and time dependent. Comparative analyses of the silkworm gut microbiome revealed substantially increased abundance of Enterococcus belonging to Firmicutes after N. bombycis infection. Furthermore, a bacterial strain (LX10) was obtained from the gut of B. mori and identified as Enterococcus faecalis based on 16S rRNA sequence analysis. E. faecalis LX10 reduced the N. bombycis spore germination rate and the infection efficiency in vitro and in vivo, as confirmed by bioassay tests and histopathological analyses. In addition, after simultaneous oral feeding with E. faecalis LX10 and N. bombycis, gene (Akirin, Cecropin A, Mesh, Ssk, DUOX and NOS) expression, hydrogen peroxide and nitric oxide levels, and glutathione S-transferase (GST) activity showed different degrees of recovery and correction compared with those under N. bombycis infection alone. Finally, the enterococcin LX protein was identified from sterile LX10 fermentation liquid based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. CONCLUSION Altogether, the results revealed that E. faecalis LX10 with anti-N. bombycis activity might play an important role in protecting silkworms from microsporidia. Removal of these specific commensal bacteria with antibiotics and utilization of transgenic symbiotic systems may effectively improve the biocontrol value of microsporidia. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Huihui Feng
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Jintao He
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Nan Zhang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life ScienceShandong Normal UniversityJinanChina
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
20
|
Bessette E, Williams B. Protists in the Insect Rearing Industry: Benign Passengers or Potential Risk? INSECTS 2022; 13:482. [PMID: 35621816 PMCID: PMC9144225 DOI: 10.3390/insects13050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
As the insects for food and feed industry grows, a new understanding of the industrially reared insect microbiome is needed to better comprehend the role that it plays in both maintaining insect health and generating disease. While many microbiome projects focus on bacteria, fungi or viruses, protists (including microsporidia) can also make up an important part of these assemblages. Past experiences with intensive invertebrate rearing indicate that these parasites, whilst often benign, can rapidly sweep through populations, causing extensive damage. Here, we review the diversity of microsporidia and protist species that are found in reared insect hosts and describe the current understanding of their host spectra, life cycles and the nature of their interactions with hosts. Major entomopathogenic parasite groups with the potential to infect insects currently being reared for food and feed include the Amoebozoa, Apicomplexa, Ciliates, Chlorophyta, Euglenozoa, Ichtyosporea and Microsporidia. However, key gaps exist in the understanding of how many of these entomopathogens affect host biology. In addition, for many of them, there are very limited or even no molecular data, preventing the implementation of molecular detection methods. There is now a pressing need to develop and use novel molecular tools, coupled with standard molecular diagnostic methods, to help unlock their biology and predict the effects of these poorly studied protist parasites in intensive insect rearing systems.
Collapse
Affiliation(s)
- Edouard Bessette
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Bryony Williams
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
21
|
Woyda-Ploszczyca AM, Rybak AS. How can the commercial potential of microalgae from the Dunaliella genus be improved? The importance of nucleotide metabolism with a focus on nucleoside diphosphate kinase (NDPK). ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Romesberg FE. Creation, Optimization, and Use of Semi-Synthetic Organisms that Store and Retrieve Increased Genetic Information. J Mol Biol 2021; 434:167331. [PMID: 34710400 DOI: 10.1016/j.jmb.2021.167331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
With few exceptions, natural proteins are built from only 20 canonical (proteogenic) amino acids which limits the functionality and accordingly the properties they can possess. Genetic code expansion, i.e. the creation of codons and the machinery needed to assign them to non-canonical amino acids (ncAAs), promises to enable the discovery of proteins with novel properties that are otherwise difficult or impossible to obtain. One approach to expanding the genetic code is to expand the genetic alphabet via the development of unnatural nucleotides that pair to form an unnatural base pair (UBP). Semi-synthetic organisms (SSOs), i.e. organisms that stably maintain the UBP, transcribe its component nucleotides into RNA, and use it to translate proteins, would have available to them new codons and the anticodons needed to assign them to ncAAs. This review summarizes the development of a family of UBPs, their use to create SSOs, and the optimization and application of the SSOs to produce candidate therapeutic proteins with improved properties that are now undergoing evaluation in clinical trials.
Collapse
|
23
|
Huang Q, Wu ZH, Li WF, Guo R, Xu JS, Dang XQ, Ma ZG, Chen YP, Evans JD. Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees. Front Microbiol 2021; 12:645353. [PMID: 34149635 PMCID: PMC8206274 DOI: 10.3389/fmicb.2021.645353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Microsporidia comprise a phylum of single cell, intracellular parasites and represent the earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory, suppressed host immune responses and colony collapse under certain circumstances. As the genome of N. ceranae is challenging to assembly due to very high genetic diversity and repetitive region, the genome was re-sequenced using long reads. We present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a high number of genes involved in transporting nutrients and energy, as well as drug resistance when compared with sister species Nosema apis. We also describe the loss of the critical protein Dicer in approximately half of the microsporidian species, giving new insights into the availability of RNA interference pathway in this group. Our results provided new insights into the pathogenesis of N. ceranae and a blueprint for treatment strategies that target this parasite without harming honey bees. The unique infectious apparatus polar filament and transportation pathway members can help to identify treatments to control this parasite.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Zhi Hao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Wen Feng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Shan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiao Qun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zheng Gang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yan Ping Chen
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Jay D Evans
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
24
|
Kim JC, Lee MR, Kim S, Park SE, Lee SJ, Shin TY, Kim WJ, Kim J. Transcriptome Analysis of the Japanese Pine Sawyer Beetle, Monochamus alternatus, Infected with the Entomopathogenic Fungus Metarhizium anisopliae JEF-197. J Fungi (Basel) 2021; 7:jof7050373. [PMID: 34068801 PMCID: PMC8151162 DOI: 10.3390/jof7050373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae), damages pine trees and transmits the pine wilt nematode, Bursaphelenchus xylophilus Nickle. Chemical agents have been used to control JPS beetle, but due to various issues, efforts are being made to replace these chemical agents with entomopathogenic fungi. We investigated the expression of immune-related genes in JPS beetle in response to infection with JEF-197, a Metarhizium anisopliae isolate, using RNA-seq. RNA samples were obtained from JEF-197, JPS adults treated with JEF-197, and non-treated JPS adults on the 8th day after fungal treatment, and RNA-seq was performed using Illumina sequencing. JPS beetle transcriptome was assembled de novo and differentially expressed gene (DEG) analysis was performed. There were 719 and 1953 up- and downregulated unigenes upon JEF-197 infection, respectively. Upregulated contigs included genes involved in RNA transport, ribosome biogenesis in eukaryotes, spliceosome-related genes, and genes involved in immune-related signaling pathways such as the Toll and Imd pathways. Forty-two fungal DEGs related to energy and protein metabolism were upregulated, and genes involved in the stress response were also upregulated in the infected JPS beetles. Together, our results indicate that infection of JPS beetles by JEF-197 induces the expression of immune-related genes.
Collapse
Affiliation(s)
- Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Mi-Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Sihyeon Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - So-Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Se-Jin Lee
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea;
| | - Tae-Young Shin
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Woo-Jin Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| | - Jaesu Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Korea
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| |
Collapse
|
25
|
Luo J, He Q, Xu JZ, Xu C, Han YZ, Gao HL, Meng XZ, Pan GQ, Li T, Zhou ZY. Microsporidia infection upregulates host energy metabolism but maintains ATP homeostasis. J Invertebr Pathol 2021; 186:107596. [PMID: 33910037 DOI: 10.1016/j.jip.2021.107596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022]
Abstract
Microsporidia are a group of obligate intracellular parasites which lack mitochondria and have highly reduced genomes. Therefore, they are unable to produce ATP via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Instead, they have evolved strategies to obtain and manipulate host metabolism to acquire nutrients. However, little is known about how microsporidia modulate host energy metabolisms. Here, we present the first targeted metabolomics study to investigate changes in host energy metabolism as a result of infection by a microsporidian. Metabolites of silkworm embryo cell (BmE) were measured 48 h post infection by Nosema bombycis. Thirty metabolites were detected, nine of which were upregulated and mainly involved in glycolysis (glucose 6-phosphate, fructose 1,6-bisphosphate) and the TCA cycle (succinate, α-ketoglutarate, cis-aconitate, isocitrate, citrate, fumarate). Pathway enrichment analysis suggested that the upregulated metabolites could promote the synthesization of nucleotides, fatty acids, and amino acids by the host. ATP concentration in host cells, however, was not significantly changed by the infection. This ATP homeostasis was also found in Encephalitozoon hellem infected mouse macrophage RAW264.7, human monocytic leukemia THP-1, human embryonic kidney 293, and human foreskin fibroblast cells. These findings suggest that microsporidia have evolved strategies to maintain levels of ATP in the host while stimulating metabolic pathways to provide additional nutrients for the parasite.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jin-Zhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yin-Ze Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Hai-Long Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xian-Zhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guo-Qing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Science, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
26
|
Park E, Poulin R. Revisiting the phylogeny of microsporidia. Int J Parasitol 2021; 51:855-864. [PMID: 33891934 DOI: 10.1016/j.ijpara.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
Canonical microsporidians are a group of obligate intracellular parasites of a wide range of hosts comprising ~1,300 species of >220 genera. Microsporidians are related to fungi, and many characterised and uncharacterized groups closely related to them have been discovered recently, filling the knowledge gaps between them. These groups assigned to the superphylum Opisthosporidia have provided several important insights into the evolution of diverse intracellular parasitic lineages within the tree of eukaryotes. The most studied among opisthosporidians, canonical microsporidians, were known to science more than 160 years ago, however, the classification of canonical Microsporidia has been challenging due to common morphological homoplasy, and accelerated evolutionary rates. Instead of morphological characters, ssrRNA sequences have been used as the primary data for the classification of canonical microsporidians. Previous studies have produced a useful backbone of the microsporidian phylogeny, but provided only some nodal support, causing some confusion. Here, we reconstructed phylogenetic trees of canonical microsporidians using Bayesian and Maximum Likelihood inferences. We included rRNA sequences of 126 described/named genera, by far the broadest taxon coverage to date. Overall, our trees show similar topology and recovered four of the five main clades demonstrated in previous studies (Clades 1, 3, 4 and 5). Family level clades were well resolved within each major clade, but many were discordant with the recently revised classification. Therefore, revision and some reshuffling, especially within and between Clades 1 and 3 are required. We also reconstructed phylogenetic trees of Opisthosporidia to better integrate the evolutionary history of canonical microsporidians in a broader context. We discuss several traits shared only by canonical microsporidians that may have contributed to their striking ecological success in diverse metazoans. More targeted studies on the neglected host groups will be of value for a better understanding of the evolutionary history of these interesting intracellular parasites.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
27
|
Ca 2+-regulated mitochondrial carriers of ATP-Mg 2+/Pi: Evolutionary insights in protozoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119038. [PMID: 33839167 DOI: 10.1016/j.bbamcr.2021.119038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022]
Abstract
In addition to its uptake across the Ca2+ uniporter, intracellular calcium signals can stimulate mitochondrial metabolism activating metabolite exchangers of the inner mitochondrial membrane belonging to the mitochondrial carrier family (SLC25). One of these Ca2+-regulated mitochondrial carriers (CaMCs) are the reversible ATP-Mg2+/Pi transporters, or SCaMCs, required for maintaining optimal adenine nucleotide (AdN) levels in the mitochondrial matrix representing an alternative transporter to the ADP/ATP translocases (AAC). This CaMC has a distinctive Calmodulin-like (CaM-like) domain fused to the carrier domain that makes its transport activity strictly dependent on cytosolic Ca2+ signals. Here we investigate about its origin analysing its distribution and features in unicellular eukaryotes. Unexpectedly, we find two types of ATP-Mg2+/Pi carriers, the canonical ones and shortened variants lacking the CaM-like domain. Phylogenetic analysis shows that both SCaMC variants have a common origin, unrelated to AACs, suggesting in turn that recurrent losses of the regulatory module have occurred in the different phyla. They are excluding variants that show a more limited distribution and less conservation than AACs. Interestingly, these truncated variants of SCaMC are found almost exclusively in parasitic protists, such as apicomplexans, kinetoplastides or animal-patogenic oomycetes, and in green algae, suggesting that its lost could be related to certain life-styles. In addition, we find an intricate structural diversity in these variants that may be associated with their pathogenicity. The consequences on SCaMC functions of these new SCaMC-b variants are discussed.
Collapse
|
28
|
Tecle E, Chhan CB, Franklin L, Underwood RS, Hanna-Rose W, Troemel ER. The purine nucleoside phosphorylase pnp-1 regulates epithelial cell resistance to infection in C. elegans. PLoS Pathog 2021; 17:e1009350. [PMID: 33878133 PMCID: PMC8087013 DOI: 10.1371/journal.ppat.1009350] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Intestinal epithelial cells are subject to attack by a diverse array of microbes, including intracellular as well as extracellular pathogens. While defense in epithelial cells can be triggered by pattern recognition receptor-mediated detection of microbe-associated molecular patterns, there is much to be learned about how they sense infection via perturbations of host physiology, which often occur during infection. A recently described host defense response in the nematode C. elegans called the Intracellular Pathogen Response (IPR) can be triggered by infection with diverse natural intracellular pathogens, as well as by perturbations to protein homeostasis. From a forward genetic screen, we identified the C. elegans ortholog of purine nucleoside phosphorylase pnp-1 as a negative regulator of IPR gene expression, as well as a negative regulator of genes induced by extracellular pathogens. Accordingly, pnp-1 mutants have resistance to both intracellular and extracellular pathogens. Metabolomics analysis indicates that C. elegans pnp-1 likely has enzymatic activity similar to its human ortholog, serving to convert purine nucleosides into free bases. Classic genetic studies have shown how mutations in human purine nucleoside phosphorylase cause immunodeficiency due to T-cell dysfunction. Here we show that C. elegans pnp-1 acts in intestinal epithelial cells to regulate defense. Altogether, these results indicate that perturbations in purine metabolism are likely monitored as a cue to promote defense against epithelial infection in the nematode C. elegans.
Collapse
Affiliation(s)
- Eillen Tecle
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Crystal B. Chhan
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Latisha Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ryan S. Underwood
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
29
|
Zheng S, Huang Y, Huang H, Yu B, Zhou N, Wei J, Pan G, Li C, Zhou Z. The role of NbTMP1, a surface protein of sporoplasm, in Nosema bombycis infection. Parasit Vectors 2021; 14:81. [PMID: 33494800 PMCID: PMC7836179 DOI: 10.1186/s13071-021-04595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nosema bombycis is a unicellular eukaryotic pathogen of the silkworm, Bombyx mori, and is an economic and occupational hazard in the silkworm industry. Because of its long incubation period and horizontal and vertical transmission, it is subject to quarantine measures in sericulture production. The microsporidian life-cycle includes a dormant extracellular phase and intracellular proliferation phase, with the proliferation period being the most active period. This latter period lacks spore wall protection and may be the most susceptible stage for control. Methods In order to find suitable target for the selective breeding of N. bombycis-resistant silkworm strains, we screen highly expressed membrane proteins from the transcriptome data of N. bombycis. The subcellular localization of the candidate protein was verified by Indirect immunofluorescence analysis (IFA) and immunoelectron microscopy (IEM), and its role in N. bombycis proliferation was verified by RNAi. Results The N. bombycis protein (NBO_76g0014) was identified as a transmembrane protein and named NbTMP1. It is homologous with hypothetical proteins NGRA_1734 from Nosema granulosis. NbTMP1 has a transmembrane region of 23 amino acids at the N-terminus. Indirect immunofluorescence analysis (IFA) results suggest that NbTMP1 is secreted on the plasma membrane as the spores develop. Western blot and qRT-PCR analysis showed that NbTMP1 was expressed in all developmental stages of N. bombycis in infected cells and in the silkworm midgut. Downregulation of NbTMP1 expression resulted in significant inhibition of N. bombycis proliferation. Conclusions We confirmed that NbTMP1 is a membrane protein of N. bombycis. Reduction of the transcription level of NbTMP1 significantly inhibited N. bombycis proliferation, and this protein may be a target for the selective breeding of N. bombycis-resistant silkworm strains.
![]()
Collapse
Affiliation(s)
- Shiyi Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.,Affiliated Jinhua Hospital, Zhejiang University of Medicine-Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Yukang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Hongyun Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Bin Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Ni Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China. .,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.,College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
30
|
Tamim El Jarkass H, Reinke AW. The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 2020; 22:e13247. [PMID: 32748538 DOI: 10.1111/cmi.13247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Microsporidia are a large group of fungal-related obligate intracellular parasites. They are responsible for infections in humans as well as in agriculturally and environmentally important animals. Although microsporidia are abundant in nature, many of the molecular mechanisms employed during infection have remained enigmatic. In this review, we highlight recent work showing how microsporidia invade, proliferate and exit from host cells. During invasion, microsporidia use spore wall and polar tube proteins to interact with host receptors and adhere to the host cell surface. In turn, the host has multiple defence mechanisms to prevent and eliminate these infections. Microsporidia encode numerous transporters and steal host nutrients to facilitate proliferation within host cells. They also encode many secreted proteins which may modulate host metabolism and inhibit host cell defence mechanisms. Spores exit the host in a non-lytic manner that is dependent on host actin and endocytic recycling proteins. Together, this work provides a fuller picture of the mechanisms that these fascinating organisms use to infect their hosts.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Zhang Z, Yao M, Zhu G, Chen Y, Chen Y, Sun F, Zhang Y, Wang Q, Shen Z. Identification and subcellular localization of splicing factor arginine/serine-rich 10 in the microsporidian Nosema bombycis. J Invertebr Pathol 2020; 174:107441. [PMID: 32659232 DOI: 10.1016/j.jip.2020.107441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
Splicing factors are important components of RNA editing in eukaryotic organisms and can produce many functional and coding genes, which is an indispensable step for the correct expression of corresponding proteins. In this study, we identified splicing factor arginine/serine-rich 10 protein in the microsporidian Nosema bombycis and named it NbSRSF10. The NbSRSF10 gene contains a complete ORF of 1449 bp in length that encodes a 482-amino acid polypeptide. The isoelectric point (pI) of the protein encoded by NbSRSF10 gene was 4.94. NbSRSF10 has a molecular weight of 54.6 kD and has no signal peptide. NbSRSF10 is comprised of arginine (11.41%), glutamic acid (11.41%) and serine (9.54%) among the total amino acids, and 7 α-helix, 7 β-sheet and 15 random coils in secondary structure, and contains 71 phosphorylation sites, 22 N-glycosylation sites and 20 O-glycosylation sites. The three-dimensional structure of NbSRSF10 is similar to that of transformer-2 beta of Homo sapiens (hTra2-β). Indirect immunofluorescence showed that the NbSRSF10 is localized in the cytoplasm of the dormant microsporidian spore and is transferred to the nuclei when N. bombycis develops into the proliferative and sporogonic phase. qPCR revealed that the relative expression of NbSRSF10 increased in the meronts stage and was found at a relatively low level in the sporogonic phase of development of N. bombycis, and was up-regulated again during infection in the host cell and early proliferative phase of second life cycle. These results suggested that the NbSRSF10 may participate in the whole life cycle and play an important role in transcription regulation of N. bombycis.
Collapse
Affiliation(s)
- Zhilin Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Mingshuai Yao
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Guanyu Zhu
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Yong Chen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Ying Chen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Fuzhen Sun
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China.
| |
Collapse
|
32
|
Timofeev S, Tokarev Y, Dolgikh V. Energy metabolism and its evolution in Microsporidia and allied taxa. Parasitol Res 2020; 119:1433-1441. [DOI: 10.1007/s00436-020-06657-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
33
|
Han B, Takvorian PM, Weiss LM. Invasion of Host Cells by Microsporidia. Front Microbiol 2020; 11:172. [PMID: 32132983 PMCID: PMC7040029 DOI: 10.3389/fmicb.2020.00172] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Microsporidia are found worldwide and both vertebrates and invertebrates can serve as hosts for these organisms. While microsporidiosis in humans can occur in both immune competent and immune compromised hosts, it has most often been seen in the immune suppressed population, e.g., patients with advanced HIV infection, patients who have had organ transplantation, those undergoing chemotherapy, or patients using other immune suppressive agents. Infection can be associated with either focal infection in a specific organ (e.g., keratoconjunctivitis, cerebritis, or hepatitis) or with disseminated disease. The most common presentation of microsporidiosis being gastrointestinal infection with chronic diarrhea and wasting syndrome. In the setting of advanced HIV infection or other cases of profound immune deficiency microsporidiosis can be extremely debilitating and carries a significant mortality risk. Microsporidia are transmitted as spores which invade host cells by a specialized invasion apparatus the polar tube (PT). This review summarizes recent studies that have provided information on the composition of the spore wall and PT, as well as insights into the mechanism of invasion and interaction of the PT and spore wall with host cells during infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Peter M. Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
34
|
Morphology and Transcriptome Analysis of Nosema bombycis Sporoplasm and Insights into the Initial Infection of Microsporidia. mSphere 2020; 5:5/1/e00958-19. [PMID: 32051240 PMCID: PMC7021473 DOI: 10.1128/msphere.00958-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Once awoken from dormancy, the cellular matter of microsporidia is delivered directly into the host cell cytoplasm through the polar tube. This means that the microsporidia are difficult to study biologically in their active state without a contaminating signal from the host cell. Sporoplasm is a cell type of microsporidia in vitro, but relatively little attention has been paid to the sporoplasm in the past 150 years due to a lack of an effective separation method. Nosema bombycis, the first reported microsporidium, is a type of obligate intracellular parasite that infects silkworms and can be induced to germinate in alkaline solution in vitro. We successfully separated the N. bombycis sporoplasm in vitro, and the morphological and structural characteristics were investigated. These results provide important insight into the biology and pathogenesis of microsporidia and potentially provide a possible strategy for genetic manipulation of microsporidia targeting the sporoplasm. Microsporidia are obligate intracellular parasites that infect a wide variety of host organisms, including humans. The sporoplasm is the initial stage of microsporidian infection and proliferation, but its morphological and molecular characteristics are poorly understood. In this study, the sporoplasm of Nosema bombycis was successfully isolated and characterized after the induction of spore germination in vitro. The sporoplasm was spherical, 3.64 ± 0.41 μm in diameter, had the typical two nuclei, and was nonrefractive. Scanning and transmission electron microscopy analyses revealed that the sporoplasm was surrounded by a single membrane, and the cytoplasm was usually filled with relatively homogeneous granules, possibly ribosomes, and contained a vesicular structure comprising a concentric ring and coiled tubules. Propidium iodide staining revealed that the sporoplasm membrane showed stronger membrane permeability than did the cell plasma membrane. Transmission electron microscopy (TEM) revealed that the sporoplasm can gain entry to the host cell by phagocytosis. Transcriptome analysis of mature spores and sporoplasms showed that 541 significantly differentially expressed genes were screened (adjusted P value [Padj] < 0.05), of which 302 genes were upregulated and 239 genes were downregulated in the sporoplasm. The majority of the genes involved in trehalose synthesis metabolism, glycolysis, and the pentose phosphate pathway were downregulated, whereas 10 transporter genes were upregulated, suggesting that the sporoplasm may inhibit its own carbon metabolic activity and obtain the substances required for proliferation through transporter proteins. This study represents the first comprehensive and in-depth investigation of the sporoplasm at the morphological and molecular levels and provides novel insights into the biology of microsporidia and their infection mechanism. IMPORTANCE Once awoken from dormancy, the cellular matter of microsporidia is delivered directly into the host cell cytoplasm through the polar tube. This means that the microsporidia are difficult to study biologically in their active state without a contaminating signal from the host cell. Sporoplasm is a cell type of microsporidia in vitro, but relatively little attention has been paid to the sporoplasm in the past 150 years due to a lack of an effective separation method. Nosema bombycis, the first reported microsporidium, is a type of obligate intracellular parasite that infects silkworms and can be induced to germinate in alkaline solution in vitro. We successfully separated the N. bombycis sporoplasm in vitro, and the morphological and structural characteristics were investigated. These results provide important insight into the biology and pathogenesis of microsporidia and potentially provide a possible strategy for genetic manipulation of microsporidia targeting the sporoplasm.
Collapse
|
35
|
Dolgikh VV, Timofeev SA, Zhuravlyov VS, Senderskiy IV. Construction and heterologous overexpression of two chimeric proteins carrying outer hydrophilic loops of Vairimorpha ceranae and Nosema bombycis ATP/ADP carriers. J Invertebr Pathol 2020; 171:107337. [PMID: 32035083 DOI: 10.1016/j.jip.2020.107337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
Microsporidia Nosema bombycis and Vairimorpha ceranae cause destructive epizootics of honey bees and silkworms. Insufficient efficiency of the antibiotic fumagillin against V. ceranae, its toxicity and the absence of effective methods of N. bombycis treatment demand the discovery of novel strategies to suppress infections of domesticated insects. RNA interference is one such novel treatment strategy. Another one implies that the intracellular development of microsporidia may be suppressed by single-chain antibodies (scFv fragments) against functionally important parasite proteins. Important components of microsporidian metabolism are non-mitochondrial, plastidic-bacterial ATP/ADP carriers. These membrane transporters import host-derived ATP and provide the capacity to pathogens for energy parasitism. Here, we analyzed membrane topology of four V. ceranae and three N. bombycis ATP/ADP transporters to construct two fusion proteins carrying their outer hydrophilic loops contacting with infected host cell cytoplasm. Interestingly, full-size genes of N. bombycis transporters may be derived from the Asian swallowtail Papilio xuthus genome sequencing project. Synthesis of the artificial genes was followed by overexpression of recombinant proteins in E. coli as insoluble inclusion bodies. The gene fragments encoding the loops of individual transporters were also effectively expressed in bacteria. The chimeric antigens may be used to construct immune libraries or select microsporidia-suppressing scFv fragments from synthetic, semisynthetic, naïve and immune antibody libraries. A further expression of such antibodies in insect cells may increase their resistance to microsporidial infections.
Collapse
Affiliation(s)
- Viacheslav V Dolgikh
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia.
| | - Sergey A Timofeev
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| | - Vladimir S Zhuravlyov
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| | - Igor V Senderskiy
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| |
Collapse
|
36
|
Song Y, Tang Y, Yang Q, Li T, He Z, Wu Y, He Q, Li T, Li C, Long M, Chen J, Wei J, Bao J, Shen Z, Meng X, Pan G, Zhou Z. Proliferation characteristics of the intracellular microsporidian pathogen Nosema bombycis in congenitally infected embryos. J Invertebr Pathol 2019; 169:107310. [PMID: 31862268 DOI: 10.1016/j.jip.2019.107310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/14/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Nosema bombycis is an obligate intracellular pathogen that can be transmitted vertically from infected females to eggs, resulting in congenital infections in embryos. Here we investigated the proliferation characteristics of N. bombycis in silkworm embryos using a histopathological approach and deep RNA sequencing. We found that N. bombycis proliferated mainly around yolk granules at the early stage of the embryonic development, 1-2 days post oviposition (dpo). At 4-6 dpo, a portion of N. bombycis in different stages adjacent to the embryo were packaged into the newly formed intestinal lumen, while the remaining parasites continued to proliferate around yolk granules. In the newly hatched larvae (9 dpo), the newly formed spores accumulated in the gut lumen and immediately were released into the environment via the faeces. Transcriptional profiling of N. bombycis further confirmed multiplication of N. bombycis throughout every stage of embryonic development. Additionally, the increased transcriptional level of spore wall proteins and polar tube proteins from 4 dpo indicated an active formation of mature spores. Taken together, our results have provided a characterization of the proliferation of this intracellular microsporidian pathogen in congenitally infected embryos leading to vertical transmission.
Collapse
Affiliation(s)
- Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Yunlin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Qiong Yang
- Sericulture and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tangxin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Zhangshuai He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Yujiao Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Zigang Shen
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
37
|
Gruber A, Haferkamp I. Nucleotide Transport and Metabolism in Diatoms. Biomolecules 2019; 9:E761. [PMID: 31766535 PMCID: PMC6995639 DOI: 10.3390/biom9120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Collapse
Affiliation(s)
- Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
38
|
Han B, Ma Y, Tu V, Tomita T, Mayoral J, Williams T, Horta A, Huang H, Weiss LM. Microsporidia Interact with Host Cell Mitochondria via Voltage-Dependent Anion Channels Using Sporoplasm Surface Protein 1. mBio 2019; 10:e01944-19. [PMID: 31431557 PMCID: PMC6703431 DOI: 10.1128/mbio.01944-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Microsporidia are opportunistic intracellular pathogens that can infect a wide variety of hosts ranging from invertebrates to vertebrates. During invasion, the microsporidian polar tube pushes into the host cell, creating a protective microenvironment, the invasion synapse, into which the sporoplasm extrudes. Within the synapse, the sporoplasm then invades the host cell, forming a parasitophorous vacuole (PV). Using a proteomic approach, we identified Encephalitozoon hellem sporoplasm surface protein 1 (EhSSP1), which localized to the surface of extruded sporoplasms. EhSSP1 was also found to interact with polar tube protein 4 (PTP4). Recombinant EhSSP1 (rEhSSP1) bound to human foreskin fibroblasts, and both anti-EhSSP1 and rEhSSP1 caused decreased levels of host cell invasion, suggesting that interaction of SSP1 with the host cell was involved in invasion. Coimmunoprecipitation (Co-IP) followed by proteomic analysis identified host cell voltage-dependent anion channels (VDACs) as EhSSP1 interacting proteins. Yeast two-hybrid assays demonstrated that EhSSP1 was able to interact with VDAC1, VDAC2, and VDAC3. rEhSSP1 colocalized with the host mitochondria which were associated with microsporidian PVs in infected cells. Transmission electron microscopy revealed that the outer mitochondrial membrane interacted with meronts and the PV membrane, mitochondria clustered around meronts, and the VDACs were concentrated at the interface of mitochondria and parasite. Knockdown of VDAC1, VDAC2, and VDAC3 in host cells resulted in significant decreases in the number and size of the PVs and a decrease in mitochondrial PV association. The interaction of EhSSP1 with VDAC probably plays an important part in energy acquisition by microsporidia via its role in the association of mitochondria with the PV.IMPORTANCE Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Tere Williams
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Aline Horta
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
39
|
Major P, Sendra KM, Dean P, Williams TA, Watson AK, Thwaites DT, Embley TM, Hirt RP. A new family of cell surface located purine transporters in Microsporidia and related fungal endoparasites. eLife 2019; 8:e47037. [PMID: 31355745 PMCID: PMC6699826 DOI: 10.7554/elife.47037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasma membrane-located transport proteins are key adaptations for obligate intracellular Microsporidia parasites, because they can use them to steal host metabolites the parasites need to grow and replicate. However, despite their importance, the functions and substrate specificities of most Microsporidia transporters are unknown. Here, we provide functional data for a family of transporters conserved in all microsporidian genomes and also in the genomes of related endoparasites. The universal retention among otherwise highly reduced genomes indicates an important role for these transporters for intracellular parasites. Using Trachipleistophora hominis, a Microsporidia isolated from an HIV/AIDS patient, as our experimental model, we show that the proteins are ATP and GTP transporters located on the surface of parasites during their intracellular growth and replication. Our work identifies a new route for the acquisition of essential energy and nucleotides for a major group of intracellular parasites that infect most animal species including humans.
Collapse
Affiliation(s)
- Peter Major
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Kacper M Sendra
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Paul Dean
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Tom A Williams
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Andrew K Watson
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - David T Thwaites
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, the Medical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
40
|
Li W, Xiao L. Multilocus Sequence Typing and Population Genetic Analysis of Enterocytozoon bieneusi: Host Specificity and Its Impacts on Public Health. Front Genet 2019; 10:307. [PMID: 31001333 PMCID: PMC6454070 DOI: 10.3389/fgene.2019.00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/20/2019] [Indexed: 01/13/2023] Open
Abstract
Microsporidia comprise a large class of unicellular eukaryotic pathogens that are medically and agriculturally important, but poorly understood. There have been nearly 1,500 microsporidian species described thus far, which are variable in biology, genetics, genomics, and host specificity. Among those, Enterocytozoon bieneusi is the well-known species responsible for the most recorded cases of human microsporidian affections. The pathogen can colonize a broad range of mammals and birds and most of the animals surveyed share some genotypes with humans, posing a threat to public health. Based on DNA sequence analysis of the ribosomal internal transcribed spacer (ITS) and phylogenetic analysis, several hundreds of E. bieneusi genotypes have been defined and clustered into different genetic groups with varied levels of host specificity. However, single locus-based typing using ITS might have insufficient resolution to discriminate among E. bieneusi isolates with complex genetic or hereditary characteristics and to assess the elusive reproduction or transmission modes of the organism, highlighting the need for exploration and application of multilocus sequence typing (MLST) and population genetic tools. The present review begins with a primer on microsporidia and major microsporidian species, briefly introduces the recent advances on E. bieneusi ITS genotyping and phylogeny, summarizes recent MLST and population genetic data, analyzes the inter- and intragroup host specificity at the MLST level, and interprets the public health implications of host specificity in zoonotic or cross-species transmission of this ubiquitous fungus.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Dolgikh VV, Tsarev AA, Timofeev SA, Zhuravlyov VS. Heterologous overexpression of active hexokinases from microsporidia Nosema bombycis and Nosema ceranae confirms their ability to phosphorylate host glucose. Parasitol Res 2019; 118:1511-1518. [DOI: 10.1007/s00436-019-06279-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 01/10/2023]
|
42
|
He Q, Vossbrinck CR, Yang Q, Meng XZ, Luo J, Pan GQ, Zhou ZY, Li T. Evolutionary and functional studies on microsporidian ATP-binding cassettes: Insights into the adaptation of microsporidia to obligated intracellular parasitism. INFECTION GENETICS AND EVOLUTION 2019; 68:136-144. [DOI: 10.1016/j.meegid.2018.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
|
43
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
44
|
Encephalitozoon cuniculi and Vittaforma corneae (Phylum Microsporidia) inhibit staurosporine-induced apoptosis in human THP-1 macrophages in vitro. Parasitology 2018; 146:569-579. [PMID: 30486909 DOI: 10.1017/s0031182018001968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Obligately intracellular microsporidia regulate their host cell life cycles, including apoptosis, but this has not been evaluated in phagocytic host cells such as macrophages that can facilitate infection but also can be activated to kill microsporidia. We examined two biologically dissimilar human-infecting microsporidia species, Encephalitozoon cuniculi and Vittaforma corneae, for their effects on staurosporine-induced apoptosis in the human macrophage-differentiated cell line, THP1. Apoptosis was measured after exposure of THP-1 cells to live and dead mature organisms via direct fluorometric measurement of Caspase 3, colorimetric and fluorometric TUNEL assays, and mRNA gene expression profiles using Apoptosis RT2 Profiler PCR Array. Both species of microsporidia modulated the intrinsic apoptosis pathway. In particular, live E. cuniculi spores inhibited staurosporine-induced apoptosis as well as suppressed pro-apoptosis genes and upregulated anti-apoptosis genes more broadly than V. corneae. Exposure to dead spores induced an opposite effect. Vittaforma corneae, however, also induced inflammasome activation via Caspases 1 and 4. Of the 84 apoptosis-related genes assayed, 42 (i.e. 23 pro-apoptosis, nine anti-apoptosis, and 10 regulatory) genes were more affected including those encoding members of the Bcl2 family, caspases and their regulators, and members of the tumour necrosis factor (TNF)/TNF receptor R superfamily.
Collapse
|
45
|
Zilio G, Moesch L, Bovet N, Sarr A, Koella JC. The effect of parasite infection on the recombination rate of the mosquito Aedes aegypti. PLoS One 2018; 13:e0203481. [PMID: 30300349 PMCID: PMC6177114 DOI: 10.1371/journal.pone.0203481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
Sexual reproduction and meiotic recombination generate new genetic combinations and may thereby help an individual infected by a parasite to protect its offspring from being infected. While this idea is often used to understand the evolutionary forces underlying the maintenance of sex and recombination, it also suggests that infected individuals should increase plastically their rate of recombination. We tested the latter idea with the mosquito Aedes aegypti and asked whether females infected by the microsporidian Vavraia culicis were more likely to have recombinant offspring than uninfected females. To measure the rate of recombination over a chromosome we analysed combinations of microsatellites on chromosome 3 in infected and uninfected females, in the (uninfected) males they copulated with and in their offspring. As predicted, the infected females were more likely to have recombinant offspring than the uninfected ones. These results show the ability of a female to diversify her offspring in response to parasitic infection by plastically increasing her recombination rate.
Collapse
Affiliation(s)
- Giacomo Zilio
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lea Moesch
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Environmental Systems Science, ETHZ, Zurich, Switzerland
| | - Nathalie Bovet
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jacob C. Koella
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
46
|
Taylor-Brown A, Pillonel T, Greub G, Vaughan L, Nowak B, Polkinghorne A. Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genome Biol Evol 2018; 10:2587-2595. [PMID: 30202970 PMCID: PMC6171736 DOI: 10.1093/gbe/evy195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are an example of obligate intracellular bacteria that possess highly reduced, compact genomes (1.0-3.5 Mbp), reflective of their abilities to sequester many essential nutrients from the host that they no longer need to synthesize themselves. The Chlamydiae is a phylum with a very wide host range spanning mammals, birds, fish, invertebrates, and unicellular protists. This ecological and phylogenetic diversity offers ongoing opportunities to study intracellular survival and metabolic pathways and adaptations. Of particular evolutionary significance are Chlamydiae from the recently proposed Ca. Parilichlamydiaceae, the earliest diverging clade in this phylum, species of which are found only in aquatic vertebrates. Gill extracts from three Chlamydiales-positive Australian aquaculture species (Yellowtail kingfish, Striped trumpeter, and Barramundi) were subject to DNA preparation to deplete host DNA and enrich microbial DNA, prior to metagenome sequencing. We assembled chlamydial genomes corresponding to three Ca. Parilichlamydiaceae species from gill metagenomes, and conducted functional genomics comparisons with diverse members of the phylum. This revealed highly reduced genomes more similar in size to the terrestrial Chlamydiaceae, standing in contrast to members of the Chlamydiae with a demonstrated cosmopolitan host range. We describe a reduction in genes encoding synthesis of nucleotides and amino acids, among other nutrients, and an enrichment of predicted transport proteins. Ca. Parilichlamydiaceae share 342 orthologs with other chlamydial families. We hypothesize that the genome reduction exhibited by Ca. Parilichlamydiaceae and Chlamydiaceae is an example of within-phylum convergent evolution. The factors driving these events remain to be elucidated.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Switzerland.,Pathovet AG, Tagelswangen, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, Australia
| | - Adam Polkinghorne
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
47
|
Huang Y, Zheng S, Mei X, Yu B, Sun B, Li B, Wei J, Chen J, Li T, Pan G, Zhou Z, Li C. A secretory hexokinase plays an active role in the proliferation of Nosema bombycis. PeerJ 2018; 6:e5658. [PMID: 30258733 PMCID: PMC6152459 DOI: 10.7717/peerj.5658] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023] Open
Abstract
The microsporidian Nosema bombycis is an obligate intracellular parasite of Bombyx mori, that lost its intact tricarboxylic acid cycle and mitochondria during evolution but retained its intact glycolysis pathway. N. bombycis hexokinase (NbHK) is not only a rate-limiting enzyme of glycolysis but also a secretory protein. Indirect immunofluorescence assays and recombinant HK overexpressed in BmN cells showed that NbHK localized in the nucleus and cytoplasm of host cell during the meront stage. When N. bombycis matured, NbHK tended to concentrate at the nuclei of host cells. Furthermore, the transcriptional profile of NbHK implied it functioned during N. bombycis’ proliferation stages. A knock-down of NbHK effectively suppressed the proliferation of N. bombycis indicating that NbHK is an important protein for parasite to control its host.
Collapse
Affiliation(s)
- Yukang Huang
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Shiyi Zheng
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Xionge Mei
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Bin Yu
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Bin Sun
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Boning Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Junhong Wei
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Jie Chen
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Tian Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China.,Chongqing Normal University, College of Life Sciences, Chongqing, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| |
Collapse
|
48
|
Azzouz-Olden F, Hunt A, DeGrandi-Hoffman G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics 2018; 19:628. [PMID: 30134827 PMCID: PMC6106827 DOI: 10.1186/s12864-018-5007-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Results Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. Conclusions These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-5007-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arthur Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | | |
Collapse
|
49
|
Ferguson S, Lucocq J. The invasive cell coat at the microsporidian Trachipleistophora hominis-host cell interface contains secreted hexokinases. Microbiologyopen 2018; 8:e00696. [PMID: 30051624 PMCID: PMC6460350 DOI: 10.1002/mbo3.696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/04/2023] Open
Abstract
Microsporidia are obligate intracellular parasites causing significant disease in humans and economically important animals. In parallel to their extreme genetic reduction, Microsporidia have evolved novel mechanisms for exploiting host metabolism. A number of microsporidians confer secretion of otherwise cytosolic proteins by coding for signal peptides that direct entry into the endoplasmic reticulum. The human pathogen Trachipleistophora hominis encodes for four hexokinases, three of which have signal peptides at the N‐terminus. Here, we localized hexokinase 2 and hexokinase 3 through developmental stages of T. hominis using light and electron microscopy. Both proteins were concentrated in an extracellular coat previously termed the plaque matrix (PQM). The PQM (containing hexokinases) was morphologically dynamic, infiltrating the host cytoplasm predominantly during replicative stages. Throughout development the PQM interacted closely with endoplasmic reticulum that was demonstrated to be active in membrane protein biosynthesis and export. The impact of hexokinase on the host metabolism was probed using the fluorescent analog of glucose, 2‐NBDG, which displayed spatially restricted increases in signal intensity at the parasite/vacuole surface, coincident with hexokinase/PQM distribution. Gross metabolic aberrations, measured using metabolic profiling with the Seahorse XF Analyzer, were not detectable in mixed stage cocultures. Overall, these results highlight a role for the extended cell coat of T. hominis in host–parasite interactions, within which secreted hexokinases may work as part of a metabolic machine to increase glycolytic capacity or ATP generation close to the parasite surface.
Collapse
Affiliation(s)
- Sophie Ferguson
- Structural Cell Biology Group, School of Medicine, University of St Andrews, St Andrews, UK
| | - John Lucocq
- Structural Cell Biology Group, School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
50
|
Lukeš J, Husník F. Microsporidia: A Single Horizontal Gene Transfer Drives a Great Leap Forward. Curr Biol 2018; 28:R712-R715. [DOI: 10.1016/j.cub.2018.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|