1
|
Zhang X, Yan LN, Liu BY, Zhou CM, Yu XJ. The hnRNP A2B1 is important for the replication of SFTSV and other RNA viruses. Microbiol Spectr 2024; 12:e0082924. [PMID: 39166862 PMCID: PMC11448443 DOI: 10.1128/spectrum.00829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024] Open
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP A2B1) is a key component of the hnRNP complex involving RNA modulation in eukaryotic cells and it has also been reported to be involved in the replication of the hepatitis E virus, influenza A virus, and hepatitis B virus. However, it is not clear whether the role of the hnRNP A2B1 in viral replication is conserved among RNA viruses and what is the mechanism of hnRNP A2B1 in RNA virus replication. In this study, we first used severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne RNA virus that causes a severe viral hemorrhagic fever as well as other RNA viruses including VSV-GFP, SeV, EV71, and ZIKV to demonstrate that knockout hnRNPA2B1 gene inhibited viral RNA replication and overexpression of hnRNP A2B1 could restore the RNA levels of all tested RNA viruses. These results suggest that hnRNPA2B1 upregulation of viral replication is conserved among RNA viruses. Next, we demonstrated that hnRNP A2B1 was translocated from the nucleus to the cytoplasm under RNA virus infection including SFTSV, VSV-GFP, SeV, EV71, and ZIKV, suggesting translocation of hnRNP A2B1 from the nucleus to the cytoplasm is crucial for RNA virus replication. We then used SFTSV as a model to demonstrate the mechanism of hnRNP A2B1 in the promotion of RNA virus replication. We found that overexpression of SFTSV nucleoprotein can also cause hnRNP A2B1 translocation from the nucleus to the cytoplasm and that the SFTSV NP interacted with the RNA recognition motif 1 domain of hnRNP A2B1. We further demonstrated that the hnRNP A2B1 interacted with the 5' UTR of SFTSV RNA. In conclusion, we revealed that the hnRNP A2B1 upregulation of viral RNA replication is conserved among RNA viruses; the mechanism of hnRNP A2B1 in promotion of SFTSV viral RNA replication is that SFTSV NP interacted with the hnRNPA2B1 to retain it in the cytoplasm where the hnRNP A2B1 interacted with the 5' UTR of SFTSV RNA to promote the viral RNA replication.IMPORTANCESevere fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus with a high mortality rate of up to 30%. In this study, we first used SFTSV as a model to demonstrate that the role of hnRNPA2B1 in viral replication is conserved in SFTSV. Then we used other RNA viruses, including VSV-GFP, SeV, EV71, and ZIKV, to repeat the experiment and demonstrated the same results as SFTSV in all tested RNA viruses. By knocking out the hnRNPA2B1 gene, SFTSV RNA replication was inhibited, and overexpression of hnRNPA2B1 restored RNA levels of SFTSV and other tested RNA viruses. We revealed a novel mechanism where the SFTSV nucleoprotein interacts with hnRNPA2B1, retaining it in the cytoplasm. This interaction promotes viral RNA replication by binding to the 5' UTR of SFTSV RNA. The findings suggest that targeting hnRNPA2B1 could be a potential strategy for developing broad-spectrum antiviral therapies, given its conserved role across different RNA viruses. This research provides significant insights into the replication mechanisms of RNA viruses and highlights potential targets for antiviral interventions.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Li-na Yan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Bin-yan Liu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Chuan-min Zhou
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Cousineau SE, Camargo C, Sagan SM. Poly(rC)-Binding Protein 2 Does Not Directly Participate in HCV Translation or Replication, but Rather Modulates Genome Packaging. Viruses 2024; 16:1220. [PMID: 39205194 PMCID: PMC11359930 DOI: 10.3390/v16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The hepatitis C virus (HCV) co-opts many cellular factors-including proteins and microRNAs-to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral life cycle remained unclear. Herein, using the HCV cell culture (HCVcc) system and assays that isolate each step of the viral life cycle, we found that PCBP2 does not have a direct role in viral entry, translation, genome stability, or HCV RNA replication. Rather, our data suggest that PCBP2 depletion only impacts viral RNAs that can undergo genome packaging. Taken together, our data suggest that endogenous PCBP2 modulates the early steps of genome packaging, and therefore only has an indirect effect on viral translation and RNA replication, likely by increasing the translating/replicating pool of viral RNAs to the detriment of virion assembly.
Collapse
Affiliation(s)
- Sophie E. Cousineau
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carolina Camargo
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| | - Selena M. Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Fernández-García L, Ahumada-Marchant C, Lobos-Ávila P, Brauer B, Bustos FJ, Arriagada G. The Mytilus chilensis Steamer-like Element-1 Retrotransposon Antisense mRNA Harbors an Internal Ribosome Entry Site That Is Modulated by hnRNPK. Viruses 2024; 16:403. [PMID: 38543768 PMCID: PMC10974842 DOI: 10.3390/v16030403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 05/23/2024] Open
Abstract
LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 83700071, Chile; (L.F.-G.); (C.A.-M.); (P.L.-Á.); (B.B.); (F.J.B.)
| |
Collapse
|
4
|
Lo R, Gonçalves-Carneiro D. Sensing nucleotide composition in virus RNA. Biosci Rep 2023; 43:BSR20230372. [PMID: 37606964 PMCID: PMC10500230 DOI: 10.1042/bsr20230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023] Open
Abstract
Nucleotide composition plays a crucial role in the structure, function and recognition of RNA molecules. During infection, virus RNA is exposed to multiple endogenous proteins that detect local or global compositional biases and interfere with virus replication. Recent advancements in RNA:protein mapping technologies have enabled the identification of general RNA-binding preferences in the human proteome at basal level and in the context of virus infection. In this review, we explore how cellular proteins recognise nucleotide composition in virus RNA and the impact these interactions have on virus replication. Protein-binding G-rich and C-rich sequences are common examples of how host factors detect and limit infection, and, in contrast, viruses may have evolved to purge their genomes from such motifs. We also give examples of how human RNA-binding proteins inhibit virus replication, not only by destabilising virus RNA, but also by interfering with viral protein translation and genome encapsidation. Understanding the interplay between cellular proteins and virus RNA composition can provide insights into host-virus interactions and uncover potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Raymon Lo
- Imperial College London, Department of Infectious Disease, Imperial College London, London, U.K
| | | |
Collapse
|
5
|
Panner Selvam MK, Kanagaraj V, Kathaperumal K, Nissly RH, Daly JM, Kuchipudi SV. Comparative transcriptome analysis of spleen of Newcastle Disease Virus (NDV) infected chicken and Japanese quail: a potential role of NF-κβ pathway activation in NDV resistance. Virusdisease 2023; 34:402-409. [PMID: 37780899 PMCID: PMC10533468 DOI: 10.1007/s13337-023-00833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023] Open
Abstract
Newcastle disease (ND) affects a few hundred avian species including chicken and several species of domestic and wild birds. The clinical outcome of Newcastle disease virus (NDV) infection ranges from mild to severe fatal disease depending on the NDV pathotype and the host species involved. Japanese quails serve as natural reservoirs of NDV and play important role in NDV epidemiology. While infection of chicken with velogenic NDV results in severe often fatal illness, the same infection in Japanese quails results in inapparent infection. The molecular basis of this contrasting clinical outcomes of NDV infection is not yet clearly known. We compared global gene expression in spleen of chicken and Japanese quails infected with lentogenic and velogenic NDVs. We found contrasting regulation of key genes associated with NF-κB pathway and T-cell activation between chicken and Japanese quails. Our data suggests association of NDV resistance in Japanese quails to activation of NF-κB pathway and T cell proliferation. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00833-y.
Collapse
Affiliation(s)
- Manesh Kumar Panner Selvam
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Vijayrani Kanagaraj
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kumanan Kathaperumal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, USA
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham, UK
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, USA
| |
Collapse
|
6
|
Rheault M, Cousineau SE, Fox DR, Abram QH, Sagan S. Elucidating the distinct contributions of miR-122 in the HCV life cycle reveals insights into virion assembly. Nucleic Acids Res 2023; 51:2447-2463. [PMID: 36807979 PMCID: PMC10018354 DOI: 10.1093/nar/gkad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Efficient hepatitis C virus (HCV) RNA accumulation is dependent upon interactions with the human liver-specific microRNA, miR-122. MiR-122 has at least three roles in the HCV life cycle: it acts as an RNA chaperone, or 'riboswitch', allowing formation of the viral internal ribosomal entry site; it provides genome stability; and promotes viral translation. However, the relative contribution of each role in HCV RNA accumulation remains unclear. Herein, we used point mutations, mutant miRNAs, and HCV luciferase reporter RNAs to isolate each of the roles and evaluate their contribution to the overall impact of miR-122 in the HCV life cycle. Our results suggest that the riboswitch has a minimal contribution in isolation, while genome stability and translational promotion have similar contributions in the establishment phase of infection. However, in the maintenance phase, translational promotion becomes the dominant role. Additionally, we found that an alternative conformation of the 5' untranslated region, termed SLIIalt, is important for efficient virion assembly. Taken together, we have clarified the overall importance of each of the established roles of miR-122 in the HCV life cycle and provided insight into the regulation of the balance between viral RNAs in the translating/replicating pool and those engaged in virion assembly.
Collapse
Affiliation(s)
- Marylin Rheault
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
| | - Sophie E Cousineau
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
| | - Danielle R Fox
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- Department of Physiology, McGill University, Montréal, Canada
| | - Quinn H Abram
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| |
Collapse
|
7
|
Zhao T, Zhu G, Dubey HV, Flaherty P. Identification of significant gene expression changes in multiple perturbation experiments using knockoffs. Brief Bioinform 2023; 24:bbad084. [PMID: 36892174 PMCID: PMC10025447 DOI: 10.1093/bib/bbad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Large-scale multiple perturbation experiments have the potential to reveal a more detailed understanding of the molecular pathways that respond to genetic and environmental changes. A key question in these studies is which gene expression changes are important for the response to the perturbation. This problem is challenging because (i) the functional form of the nonlinear relationship between gene expression and the perturbation is unknown and (ii) identification of the most important genes is a high-dimensional variable selection problem. To deal with these challenges, we present here a method based on the model-X knockoffs framework and Deep Neural Networks to identify significant gene expression changes in multiple perturbation experiments. This approach makes no assumptions on the functional form of the dependence between the responses and the perturbations and it enjoys finite sample false discovery rate control for the selected set of important gene expression responses. We apply this approach to the Library of Integrated Network-Based Cellular Signature data sets which is a National Institutes of Health Common Fund program that catalogs how human cells globally respond to chemical, genetic and disease perturbations. We identified important genes whose expression is directly modulated in response to perturbation with anthracycline, vorinostat, trichostatin-a, geldanamycin and sirolimus. We compare the set of important genes that respond to these small molecules to identify co-responsive pathways. Identification of which genes respond to specific perturbation stressors can provide better understanding of the underlying mechanisms of disease and advance the identification of new drug targets.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Information Systems and Analytics, College of Business, Bryant University, Smithfield, 02917, RI, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, 02917, RI, USA
| | - Guangyu Zhu
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, 02881, RI, USA
| | - Harsh Vardhan Dubey
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| | - Patrick Flaherty
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| |
Collapse
|
8
|
Bhattarai K, Holcik M. Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1044652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the host-virus interactions helps to decipher the viral replication strategies and pathogenesis. Viruses have limited genetic content and rely significantly on their host cell to establish a successful infection. Viruses depend on the host for a broad spectrum of cellular RNA-binding proteins (RBPs) throughout their life cycle. One of the major RBP families is the heterogeneous nuclear ribonucleoproteins (hnRNPs) family. hnRNPs are typically localized in the nucleus, where they are forming complexes with pre-mRNAs and contribute to many aspects of nucleic acid metabolism. hnRNPs contain RNA binding motifs and frequently function as RNA chaperones involved in pre-mRNA processing, RNA splicing, and export. Many hnRNPs shuttle between the nucleus and the cytoplasm and influence cytoplasmic processes such as mRNA stability, localization, and translation. The interactions between the hnRNPs and viral components are well-known. They are critical for processing viral nucleic acids and proteins and, therefore, impact the success of the viral infection. This review discusses the molecular mechanisms by which hnRNPs interact with and regulate each stage of the viral life cycle, such as replication, splicing, translation, and assembly of virus progeny. In addition, we expand on the role of hnRNPs in the antiviral response and as potential targets for antiviral drug research and development.
Collapse
|
9
|
Characterization of a multipurpose NS3 surface patch coordinating HCV replicase assembly and virion morphogenesis. PLoS Pathog 2022; 18:e1010895. [PMID: 36215335 PMCID: PMC9616216 DOI: 10.1371/journal.ppat.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.
Collapse
|
10
|
Wang J, Sun D, Wang M, Cheng A, Zhu Y, Mao S, Ou X, Zhao X, Huang J, Gao Q, Zhang S, Yang Q, Wu Y, Zhu D, Jia R, Chen S, Liu M. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front Immunol 2022; 13:989298. [PMID: 36119073 PMCID: PMC9478383 DOI: 10.3389/fimmu.2022.989298] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Anchun Cheng,
| | - Yukun Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
11
|
Poly(rC)-Binding Protein 1 Limits Hepatitis C Virus Virion Assembly and Secretion. Viruses 2022; 14:v14020291. [PMID: 35215884 PMCID: PMC8877974 DOI: 10.3390/v14020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) co-opts numerous cellular elements, including proteins, lipids, and microRNAs, to complete its viral life cycle. The cellular RNA-binding protein, poly(rC)-binding protein 1 (PCBP1), was previously reported to bind to the 5′ untranslated region (UTR) of the HCV genome; however, its importance in the viral life cycle has remained unclear. Herein, we sought to clarify the role of PCBP1 in the HCV life cycle. Using the HCV cell culture (HCVcc) system, we found that knockdown of endogenous PCBP1 resulted in an overall decrease in viral RNA accumulation, yet resulted in an increase in extracellular viral titers. To dissect PCBP1’s specific role in the HCV life cycle, we carried out assays for viral entry, translation, genome stability, RNA replication, as well as virion assembly and secretion. We found that PCBP1 knockdown did not directly affect viral entry, translation, RNA stability, or RNA replication, but resulted in an overall increase in infectious particle secretion. This increase in virion secretion was evident even when viral RNA synthesis was inhibited, and blocking virus secretion could partially restore the viral RNA accumulation decreased by PCBP1 knockdown. We therefore propose a model where endogenous PCBP1 normally limits virion assembly and secretion, which increases viral RNA accumulation in infected cells by preventing the departure of viral genomes packaged into virions. Overall, our findings improve our understanding of how cellular RNA-binding proteins influence viral genomic RNA utilization during the HCV life cycle.
Collapse
|
12
|
Tabata K, Prasad V, Paul D, Lee JY, Pham MT, Twu WI, Neufeldt CJ, Cortese M, Cerikan B, Stahl Y, Joecks S, Tran CS, Lüchtenborg C, V'kovski P, Hörmann K, Müller AC, Zitzmann C, Haselmann U, Beneke J, Kaderali L, Erfle H, Thiel V, Lohmann V, Superti-Furga G, Brügger B, Bartenschlager R. Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nat Commun 2021; 12:7276. [PMID: 34907161 PMCID: PMC8671429 DOI: 10.1038/s41467-021-27511-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yannick Stahl
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Joecks
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- LI-COR Biosciences GmbH, Siemensstrasse 25A, Bad Homburg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | - Philip V'kovski
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Carolin Zitzmann
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM, USA
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Jürgen Beneke
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Volker Thiel
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Britta Brügger
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany.
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
13
|
Twu WI, Lee JY, Kim H, Prasad V, Cerikan B, Haselmann U, Tabata K, Bartenschlager R. Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation. Cell Rep 2021; 37:110049. [PMID: 34788596 PMCID: PMC8577994 DOI: 10.1016/j.celrep.2021.110049] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 11/02/2021] [Indexed: 02/09/2023] Open
Abstract
Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.
Collapse
Affiliation(s)
- Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Qi HX, Shen QD, Zhao HY, Qi GZ, Gao L. Network-based analysis revealed significant interactions between risk genes of severe COVID-19 and host genes interacted with SARS-CoV-2 proteins. Brief Bioinform 2021; 23:6372084. [PMID: 34535795 DOI: 10.1093/bib/bbab372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Whether risk genes of severe coronavirus disease 2019 (COVID-19) from genome-wide association study could play their regulatory roles by interacting with host genes that were interacted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins was worthy of exploration. In this study, we implemented a network-based approach by developing a user-friendly software Network Calculator (https://github.com/Haoxiang-Qi/Network-Calculator.git). By using Network Calculator, we identified a network composed of 13 risk genes and 28 SARS-CoV-2 interacted host genes that had the highest network proximity with each other, with a hub gene HNRNPK identified. Among these genes, 14 of them were identified to be differentially expressed in RNA-seq data from severe COVID-19 cases. Besides, by expression enrichment analysis in single-cell RNA-seq data, compared with mild COVID-19, these genes were significantly enriched in macrophage, T cell and epithelial cell for severe COVID-19. Meanwhile, 74 pathways were significantly enriched. Our analysis provided insights for the underlying genetic etiology of severe COVID-19 from the perspective of network biology.
Collapse
Affiliation(s)
- Hao-Xiang Qi
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Qi-Dong Shen
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Hong-Yi Zhao
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Guo-Zhen Qi
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| | - Lei Gao
- Department of Bioinformatics, School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271099, Shandong, China
| |
Collapse
|
15
|
Arginine Methylation of hnRNPK Inhibits the DDX3-hnRNPK Interaction to Play an Anti-Apoptosis Role in Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms22189764. [PMID: 34575922 PMCID: PMC8469703 DOI: 10.3390/ijms22189764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.
Collapse
|
16
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
17
|
Tong L, Chu Z, Gao X, Yang M, Adam FEA, Theodore DWP, Liu H, Wang X, Xiao S, Yang Z. Newcastle disease virus V protein interacts with hnRNP H1 to promote viral replication. Vet Microbiol 2021; 260:109093. [PMID: 34265512 DOI: 10.1016/j.vetmic.2021.109093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
The interactions between host cellular proteins and viral proteins are important for successful infection by viruses. Previous studies from our group have identified various host cellular proteins that can interact with the Newcastle disease virus V protein (Chu et al., 2018a), but their function in NDV replication has not been fully determined. The present study reports that heterogenous nuclear ribonucleoprotein H1 (hnRNP H1) can interact with NDV V protein in yeast. The immunofluorescence results showed that hnRNP H1 and V protein could colocalize in the cytoplasm of a chicken embryo fibroblast cell line (DF-1 cells). Co-immunoprecipitation assays further verified the interaction of these two proteins. The effects of overexpression and knockdown of hnRNP H1 on NDV replication were evaluated in DF-1 cells through real time quantitative PCR (RT-qPCR) and plaque assays. The regulation of V protein on hnRNP H1 expression was also examined. The results indicated that overexpression of hnRNP H1 facilitated NDV replication, while knockdown of hnRNP H1 decreased NDV replication. It was also shown that V protein could regulate hnRNP H1 expression at the protein level instead of the transcription level. The effect of V protein and hnRNP H1 on the DF-1 cell cycle was also tested and the results revealed that V protein may regulate cell proliferation by controlling the expression of hnRNP H1. Taken together, these results suggest that NDV V protein could promote viral replication by interacting with hnRNP H1.
Collapse
Affiliation(s)
- Lina Tong
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China; College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810000, China
| | - Zhili Chu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaolong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810000, China
| | - Mengqing Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fathalrhman Eisa A Adam
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | | | - Haijin Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
18
|
Ma Y, Huang Y, Zhao S, Yao Y, Zhang Y, Qu J, Wu N, Su J. Integrative genomics analysis reveals a 21q22.11 locus contributing risk to COVID-19. Hum Mol Genet 2021; 30:1247-1258. [PMID: 33949668 PMCID: PMC8136003 DOI: 10.1093/hmg/ddab125] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
The systematic identification of host genetic risk factors is essential for the understanding and treatment of coronavirus disease 2019 (COVID-19). By performing a meta-analysis of two independent genome-wide association summary datasets (N = 680 128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2-IL10RB, odds ratio = 1.16, 95% confidence interval = 1.09-1.23, P = 2.57 × 10-6). The rs9976829 represents a strong splicing quantitative trait locus for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8 × 10-24). Integrative genomics analysis of combining genome-wide association study with expression quantitative trait locus data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.
Collapse
Affiliation(s)
- Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Yaru Zhang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| |
Collapse
|
19
|
Simanjuntak Y, Schamoni-Kast K, Grün A, Uetrecht C, Scaturro P. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Viruses 2021; 13:668. [PMID: 33924391 PMCID: PMC8070632 DOI: 10.3390/v13040668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
RNA viruses cause a wide range of human diseases that are associated with high mortality and morbidity. In the past decades, the rise of genetic-based screening methods and high-throughput sequencing approaches allowed the uncovering of unique and elusive aspects of RNA virus replication and pathogenesis at an unprecedented scale. However, viruses often hijack critical host functions or trigger pathological dysfunctions, perturbing cellular proteostasis, macromolecular complex organization or stoichiometry, and post-translational modifications. Such effects require the monitoring of proteins and proteoforms both on a global scale and at the structural level. Mass spectrometry (MS) has recently emerged as an important component of the RNA virus biology toolbox, with its potential to shed light on critical aspects of virus-host perturbations and streamline the identification of antiviral targets. Moreover, multiple novel MS tools are available to study the structure of large protein complexes, providing detailed information on the exact stoichiometry of cellular and viral protein complexes and critical mechanistic insights into their functions. Here, we review top-down and bottom-up mass spectrometry-based approaches in RNA virus biology with a special focus on the most recent developments in characterizing host responses, and their translational implications to identify novel tractable antiviral targets.
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Kira Schamoni-Kast
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Alice Grün
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Pietro Scaturro
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| |
Collapse
|
20
|
Nieto-Torres JL, Leidal AM, Debnath J, Hansen M. Beyond Autophagy: The Expanding Roles of ATG8 Proteins. Trends Biochem Sci 2021; 46:673-686. [PMID: 33558127 DOI: 10.1016/j.tibs.2021.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The ATG8 family proteins are critical players in autophagy, a cytoprotective process that mediates degradation of cytosolic cargo. During autophagy, ATG8s conjugate to autophagosome membranes to facilitate cargo recruitment, autophagosome biogenesis, transport, and fusion with lysosomes, for cargo degradation. In addition to these canonical functions, recent reports demonstrate that ATG8s are also delivered to single-membrane organelles, which leads to highly divergent degradative or secretory fates, vesicle maturation, and cargo specification. The association of ATG8s with different vesicles involves complex regulatory mechanisms still to be fully elucidated. Whether individual ATG8 family members play unique canonical or non-canonical roles, also remains unclear. This review summarizes the many open molecular questions regarding ATG8s that are only beginning to be unraveled.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA, USA
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA, USA.
| |
Collapse
|
21
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
22
|
Liu D, Ndongwe TP, Puray-Chavez M, Casey MC, Izumi T, Pathak VK, Tedbury PR, Sarafianos SG. Effect of P-body component Mov10 on HCV virus production and infectivity. FASEB J 2020; 34:9433-9449. [PMID: 32496609 DOI: 10.1096/fj.201800641r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mov10 is a processing body (P-body) protein and an interferon-stimulated gene that can affect replication of retroviruses, hepatitis B virus, and hepatitis C virus (HCV). The mechanism of HCV inhibition by Mov10 is unknown. Here, we investigate the effect of Mov10 on HCV infection and determine the virus life cycle steps affected by changes in Mov10 overexpression. Mov10 overexpression suppresses HCV RNA in both infectious virus and subgenomic replicon systems. Additionally, Mov10 overexpression decreases the infectivity of released virus, unlike control P-body protein DCP1a that has no effect on HCV RNA production or infectivity of progeny virus. Confocal imaging of uninfected cells shows endogenous Mov10 localized at P-bodies. However, in HCV-infected cells, Mov10 localizes in circular structures surrounding cytoplasmic lipid droplets with NS5A and core protein. Mutagenesis experiments show that the RNA binding activity of Mov10 is required for HCV inhibition, while its P-body localization, helicase, and ATP-binding functions are not required. Unexpectedly, endogenous Mov10 promotes HCV replication, as CRISPR-Cas9-based Mov10 depletion decreases HCV replication and infection levels. Our data reveal an important and complex role for Mov10 in HCV replication, which can be perturbed by excess or insufficient Mov10.
Collapse
Affiliation(s)
- Dandan Liu
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Tanyaradzwa P Ndongwe
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Maritza Puray-Chavez
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Mary C Casey
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
On the Host Side of the Hepatitis E Virus Life Cycle. Cells 2020; 9:cells9051294. [PMID: 32456000 PMCID: PMC7291229 DOI: 10.3390/cells9051294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the most common causes of acute hepatitis in the world. HEV is an enterically transmitted positive-strand RNA virus found as a non-enveloped particle in bile as well as stool and as a quasi-enveloped particle in blood. Current understanding of the molecular mechanisms and host factors involved in productive HEV infection is incomplete, but recently developed model systems have facilitated rapid progress in this area. Here, we provide an overview of the HEV life cycle with a focus on the host factors required for viral entry, RNA replication, assembly and release. Further developments of HEV model systems and novel technologies should yield a broader picture in the future.
Collapse
|
24
|
Pingale KD, Kanade GD, Karpe YA. Heterogeneous Nuclear Ribonucleoproteins Participate in Hepatitis E Virus Replication. J Mol Biol 2020; 432:2369-2387. [PMID: 32119874 DOI: 10.1016/j.jmb.2020.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Coordinated assembly of viral and host factors is essential for the successful propagation of viruses as well as the generation of host antiviral response. Previous studies from our group, as well as from other groups, have identified host proteins interacting with various components of the hepatitis E virus (HEV). However, the functional relevance of host protein interactions in HEV replication context has been notably overlooked. The present study reports that heterogeneous nuclear ribonucleoproteins (hnRNPs), namely hnRNPK, hnRNPA2B1, hnRNPH, PCBP1 and PCBP2, interact with HEV RNA promoter and RNA-dependent RNA polymerase to regulate HEV replication. We found that hnRNPK and hnRNPA2B1 are the virus-supportive factors interacting with HEV RNA at promoter regions along with HEV polymerase protein, which are essential for HEV replication in the cells. Contrarily, hnRNPH, PCBP1 and PCBP2 are the antiviral factors that interact exclusively with HEV genomic promoter and inhibit HEV replication in Huh7 S10-3 cells. In vitro RNA-binding assays revealed that the antiviral hnRNP proteins hamper the binding of virus-supportive hnRNP proteins at HEV genomic promoter. In the binding reaction, the binding of HEV polymerase protein to the genomic promoter is slightly affected by the presence of antiviral hnRNPH. In an effort of visualizing the subcellular localization of hnRNP proteins in the HEV replication scenario in the Huh7 cells, we showed that hnRNPK, hnRNPA2B1, hnRNPH, PCBP1 and PCBP2 redistribute from nucleus to cytoplasm. In conclusion, our study highlights the importance of hnRNP proteins in HEV replication regulation.
Collapse
Affiliation(s)
- Kunal D Pingale
- Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Gayatri D Kanade
- Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Yogesh A Karpe
- Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
25
|
Dirmeier S, Dächert C, van Hemert M, Tas A, Ogando NS, van Kuppeveld F, Bartenschlager R, Kaderali L, Binder M, Beerenwinkel N. Host factor prioritization for pan-viral genetic perturbation screens using random intercept models and network propagation. PLoS Comput Biol 2020; 16:e1007587. [PMID: 32040506 PMCID: PMC7034926 DOI: 10.1371/journal.pcbi.1007587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/21/2020] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Genetic perturbation screens using RNA interference (RNAi) have been conducted successfully to identify host factors that are essential for the life cycle of bacteria or viruses. So far, most published studies identified host factors primarily for single pathogens. Furthermore, often only a small subset of genes, e.g., genes encoding kinases, have been targeted. Identification of host factors on a pan-pathogen level, i.e., genes that are crucial for the replication of a diverse group of pathogens has received relatively little attention, despite the fact that such common host factors would be highly relevant, for instance, for devising broad-spectrum anti-pathogenic drugs. Here, we present a novel two-stage procedure for the identification of host factors involved in the replication of different viruses using a combination of random effects models and Markov random walks on a functional interaction network. We first infer candidate genes by jointly analyzing multiple perturbations screens while at the same time adjusting for high variance inherent in these screens. Subsequently the inferred estimates are spread across a network of functional interactions thereby allowing for the analysis of missing genes in the biological studies, smoothing the effect sizes of previously found host factors, and considering a priori pathway information defined over edges of the network. We applied the procedure to RNAi screening data of four different positive-sense single-stranded RNA viruses, Hepatitis C virus, Chikungunya virus, Dengue virus and Severe acute respiratory syndrome coronavirus, and detected novel host factors, including UBC, PLCG1, and DYRK1B, which are predicted to significantly impact the replication cycles of these viruses. We validated the detected host factors experimentally using pharmacological inhibition and an additional siRNA screen and found that some of the predicted host factors indeed influence the replication of these pathogens.
Collapse
Affiliation(s)
- Simon Dirmeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response” (division F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Martijn van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Natacha S. Ogando
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics, Greifswald, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response” (division F170), German Cancer Research Center, Heidelberg, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Herzog K, Bandiera S, Pernot S, Fauvelle C, Jühling F, Weiss A, Bull A, Durand SC, Chane-Woon-Ming B, Pfeffer S, Mercey M, Lerat H, Meunier JC, Raffelsberger W, Brino L, Baumert TF, Zeisel MB. Functional microRNA screen uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus morphogenesis and infectivity. Gut 2020; 69:380-392. [PMID: 31076402 PMCID: PMC7613422 DOI: 10.1136/gutjnl-2018-317423] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Infection of human hepatocytes by the hepatitis C virus (HCV) is a multistep process involving both viral and host factors. microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Given that miRNAs were indicated to regulate between 30% and 75% of all human genes, we aimed to investigate the functional and regulatory role of miRNAs for the HCV life cycle. DESIGN To systematically reveal human miRNAs affecting the HCV life cycle, we performed a two-step functional high-throughput miRNA mimic screen in Huh7.5.1 cells infected with recombinant cell culture-derived HCV. miRNA targeting was then assessed using a combination of computational and functional approaches. RESULTS We uncovered miR-501-3p and miR-619-3p as novel modulators of HCV assembly/release. We discovered that these miRNAs regulate O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) protein expression and identified OGT and O-GlcNAcylation as regulators of HCV morphogenesis and infectivity. Furthermore, increased OGT expression in patient-derived liver tissue was associated with HCV-induced liver disease and cancer. CONCLUSION miR-501-3p and miR-619-3p and their target OGT are previously undiscovered regulatory host factors for HCV assembly and infectivity. In addition to its effect on HCV morphogenesis, OGT may play a role in HCV-induced liver disease and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Katharina Herzog
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Sophie Pernot
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Frank Jühling
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Amélie Weiss
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Anne Bull
- Inserm U1259, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Sarah C. Durand
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, Strasbourg, France,Architecture et Réactivité de l’ARN – UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Strasbourg, France,Architecture et Réactivité de l’ARN – UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Marion Mercey
- Institute for Applied Biosciences, Centre de Recherche UGA - Inserm U1209 - CNRS 5309, Grenoble, France
| | - Hervé Lerat
- Institute for Applied Biosciences, Centre de Recherche UGA - Inserm U1209 - CNRS 5309, Grenoble, France
| | - Jean-Christophe Meunier
- Inserm U1259, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Wolfgang Raffelsberger
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Laurent Brino
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France,Corresponding authors. Dr. Mirjam B. Zeisel, Inserm U1052 – CRCL, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France, Phone: +33472681970, Fax: +33472681971, and Prof. Thomas F. Baumert, Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 rue Koeberlé, 67000 Strasbourg, France, Phone: +33368853703, Fax: +33368853724,
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Inserm, U1052, CNRS UMR 5286, Centre Léon Bérard (CLB), Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France,Corresponding authors. Dr. Mirjam B. Zeisel, Inserm U1052 – CRCL, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France, Phone: +33472681970, Fax: +33472681971, and Prof. Thomas F. Baumert, Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 rue Koeberlé, 67000 Strasbourg, France, Phone: +33368853703, Fax: +33368853724,
| |
Collapse
|
27
|
Jiang H, Hou P, He H, Wang H. Cell apoptosis regulated by interaction between viral gene alpha 3 and host heterogeneous nuclear ribonucleoprotein K facilitates bovine ephemeral fever virus replication. Vet Microbiol 2020; 240:108510. [DOI: 10.1016/j.vetmic.2019.108510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
|
28
|
Dächert C, Gladilin E, Binder M. Gene Expression Profiling of Different Huh7 Variants Reveals Novel Hepatitis C Virus Host Factors. Viruses 2019; 12:v12010036. [PMID: 31905685 PMCID: PMC7019296 DOI: 10.3390/v12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic Hepatitis C virus (HCV) infection still constitutes a major global health problem with almost half a million deaths per year. To date, the human hepatoma cell line Huh7 and its derivatives is the only cell line that robustly replicates HCV. However, even different subclones and passages of this single cell line exhibit tremendous differences in HCV replication efficiency. By comparative gene expression profiling using a multi-pronged correlation analysis across eight different Huh7 variants, we identified 34 candidate host factors possibly affecting HCV permissiveness. For seven of the candidates, we could show by knock-down studies their implication in HCV replication. Notably, for at least four of them, we furthermore found that overexpression boosted HCV replication in lowly permissive Huh7 cells, most prominently for the histone-binding transcriptional repressor THAP7 and the nuclear receptor NR0B2. For NR0B2, our results suggest a finely balanced expression optimum reached in highly permissive Huh7 cells, with even higher levels leading to a nearly complete breakdown of HCV replication, likely due to a dysregulation of bile acid and cholesterol metabolism. Our unbiased expression-profiling approach, hence, led to the identification of four host cellular genes that contribute to HCV permissiveness in Huh7 cells. These findings add to an improved understanding of the molecular underpinnings of the strict host cell tropism of HCV.
Collapse
Affiliation(s)
- Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Evgeny Gladilin
- Division Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-622-142-4974
| |
Collapse
|
29
|
Kanade GD, Pingale KD, Karpe YA. Protein Interactions Network of Hepatitis E Virus RNA and Polymerase With Host Proteins. Front Microbiol 2019; 10:2501. [PMID: 31736926 PMCID: PMC6838024 DOI: 10.3389/fmicb.2019.02501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022] Open
Abstract
Host-pathogen interactions are crucial for the successful propagation of pathogens inside the host cell. Knowledge of interactions between host proteins and viral proteins or viral RNA may provide clues for developing novel antiviral strategies. Hepatitis E virus (HEV), a water-borne pathogen that causes acute hepatitis in humans, is responsible for epidemics in developing countries. HEV pathology and molecular biology have been poorly explored due to the lack of efficient culture systems. A contemporary approach, to better understand the viral infection cycle at the molecular level, is the use of system biology tools depicting virus-host interactions. To determine the host proteins which participate in the regulation of HEV replication, we indentified liver cell proteins interacting with HEV RNA at its putative promoter region and those interacting with HEV polymerase (RdRp) protein. We employed affinity chromatography followed by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) to identify the interacting host proteins. Protein-protein interaction networks (PPI) were plotted and analyzed using web-based tools. Topological analysis of the network revealed that the constructed network is potentially significant and relevant for viral replication. Gene ontology and pathway enrichment analysis revealed that HEV RNA promoter- and polymerase-interacting host proteins belong to different cellular pathways such as RNA splicing, RNA metabolism, protein processing in endoplasmic reticulum, unfolded protein response, innate immune pathways, secretory vesicle pathway, and glucose metabolism. We showed that hnRNPK and hnRNPA2B1 interact with both HEV putative promoters and HEV RdRp, which suggest that they may have crucial roles in HEV replication. We demonstrated in vitro binding of hnRNPK and hnRNPA2B1 proteins with the HEV targets in the study, assuring the authenticity of the interactions obtained through mass spectrometry. Thus, our study highlights the ability of viruses, such as HEV, to maneuver host systems to create favorable cellular environments for virus propagation. Studying the host-virus interactions can facilitate the identification of antiviral therapeutic strategies and novel targets.
Collapse
Affiliation(s)
- Gayatri D Kanade
- Nanobioscience Group, Agharkar Research Institute, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Kunal D Pingale
- Nanobioscience Group, Agharkar Research Institute, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Yogesh A Karpe
- Nanobioscience Group, Agharkar Research Institute, Pune, India.,Savitribai Phule Pune University, Pune, India
| |
Collapse
|
30
|
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 2019; 16:125-142. [PMID: 29430005 PMCID: PMC7097628 DOI: 10.1038/nrmicro.2017.170] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Eliana G Acosta
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Sharma G, Tripathi SK, Das S. lncRNA HULC facilitates efficient loading of HCV-core protein onto lipid droplets and subsequent virus-particle release. Cell Microbiol 2019; 21:e13086. [PMID: 31290220 DOI: 10.1111/cmi.13086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/29/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022]
Abstract
The cellular lipid pool plays a central role in hepatitis C virus (HCV) life cycle, from establishing infection to virus propagation. Here, we show that a liver abundant long noncoding RNA, highly upregulated in liver carcinoma (HULC), is upregulated during HCV infection and manipulates the lipid pool to favour virus life cycle. Interestingly, HULC was found to be crucial for the increase in number of lipid droplets in infected cells. This effect was attributed to the role of HULC in lipid biogenesis. Further, we demonstrated that HULC knockdown decreases the association of HCV-core protein with lipid droplets. This exhibited a direct consequence on the release of HCV particles. The role of HULC in HCV-particle release was further substantiated by additional knockdown and mutation experiments. Additionally, we found that increased level of HULC in HCV-infected cells was a result of Retinoid X Receptor Alpha (RXRA)-mediated transcription, which seemed to be aided by HCV-core protein. Taken together, the results identify a distinct role of long noncoding RNA HULC in lipid dynamics during HCV infection, which provides new insights into the complex process of HCV propagation and pathogenesis.
Collapse
Affiliation(s)
- Geetika Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
32
|
Syntenin regulates hepatitis C virus sensitivity to neutralizing antibody by promoting E2 secretion through exosomes. J Hepatol 2019; 71:52-61. [PMID: 30880226 DOI: 10.1016/j.jhep.2019.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Assembly of infectious hepatitis C virus (HCV) particles is known to involve host lipoproteins, giving rise to unique lipo-viro-particles (LVPs), but proteome studies now suggest that additional cellular proteins are associated with HCV virions or other particles containing the viral envelope glycoprotein E2. Many of these host cell proteins are common markers of exosomes, most notably the intracellular adaptor protein syntenin, which is required for exosome biogenesis. We aimed to elucidate the role of syntenin/E2 in HCV infection. METHODS Using cell culture-derived HCV, we studied the biogenesis and function of E2-coated exosomes in both hepatoma cells and primary human hepatocytes (PHHs). RESULTS Knockout of syntenin had a negligible impact on HCV replication and virus production, whereas ectopic expression of syntenin at physiological levels reduced intracellular E2 abundance, while concomitantly increasing the secretion of E2-coated exosomes. Importantly, cells expressing syntenin and HCV structural proteins efficiently released exosomes containing E2 but lacking the core protein. Furthermore, infectivity of HCV released from syntenin-expressing hepatoma cells and PHHs was more resistant to neutralization by E2-specific antibodies and chronic-phase patient serum. We also found that high E2/syntenin levels in sera correlate with lower serum neutralization capability. CONCLUSIONS E2- and syntenin-containing exosomes are a major type of particle released from cells expressing high levels of syntenin. Efficient production of E2-coated exosomes renders HCV infectivity less susceptible to antibody neutralization in hepatoma cells and PHHs. LAY SUMMARY This study identifies a key role for syntenin in the regulation of E2 secretion via exosomes. Efficient production of E2-coated exosomes was shown to make hepatitis C virus less sensitive to antibody neutralization. These results may have implications for the development of a hepatitis C virus vaccine.
Collapse
|
33
|
Redwan EM, AlJaddawi AA, Uversky VN. Structural disorder in the proteome and interactome of Alkhurma virus (ALKV). Cell Mol Life Sci 2019; 76:577-608. [PMID: 30443749 PMCID: PMC7079808 DOI: 10.1007/s00018-018-2968-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Infection by the Alkhurma virus (ALKV) leading to the Alkhurma hemorrhagic fever is a common thread in Saudi Arabia, with no efficient treatment or prevention available as of yet. Although the rational drug design traditionally uses information on known 3D structures of viral proteins, intrinsically disordered proteins (i.e., functional proteins that do not possess unique 3D structures), with their multitude of disorder-dependent functions, are crucial for the biology of viruses. Here, viruses utilize disordered regions in their invasion of the host organisms and in hijacking and repurposing of different host systems. Furthermore, the ability of viruses to efficiently adjust and accommodate to their hostile habitats is also intrinsic disorder-dependent. However, little is currently known on the level of penetrance and functional utilization of intrinsic disorder in the ALKV proteome. To fill this gap, we used here multiple computational tools to evaluate the abundance of intrinsic disorder in the ALKV genome polyprotein. We also analyzed the peculiarities of intrinsic disorder predisposition of the individual viral proteins, as well as human proteins known to be engaged in interaction with the ALKV proteins. Special attention was paid to finding a correlation between protein functionality and structural disorder. To the best of our knowledge, this work represents the first systematic study of the intrinsic disorder status of ALKV proteome and interactome.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Abdullah A AlJaddawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.
| |
Collapse
|
34
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018. [PMID: 30564270 DOI: 10.3389/fgene.2018.00595/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
35
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018; 9:595. [PMID: 30564270 PMCID: PMC6288177 DOI: 10.3389/fgene.2018.00595] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
36
|
Herrera-Uribe J, Jiménez-Marín Á, Lacasta A, Monteagudo PL, Pina-Pedrero S, Rodríguez F, Moreno Á, Garrido JJ. Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Vet Res 2018; 49:90. [PMID: 30208957 PMCID: PMC6134756 DOI: 10.1186/s13567-018-0585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.
Collapse
Affiliation(s)
- Júber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Anna Lacasta
- International Livestock Research Intitute (ILRI), Nairobi, 00100, Kenya.,Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Paula L Monteagudo
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Sonia Pina-Pedrero
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fernando Rodríguez
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Moreno
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Instituto de Agricultura Sostenible, Campus Alameda del Obispo, 14080 CSIC, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
37
|
Microscopy in Infectious Disease Research-Imaging Across Scales. J Mol Biol 2018; 430:2612-2625. [PMID: 29908150 DOI: 10.1016/j.jmb.2018.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
A comprehensive understanding of host-pathogen interactions requires quantitative assessment of molecular events across a wide range of spatiotemporal scales and organizational complexities. Due to recent technical developments, this is currently only achievable with microscopy. This article is providing a general perspective on the importance of microscopy in infectious disease research, with a focus on new imaging modalities that promise to have a major impact in biomedical research in the years to come. Every major technological breakthrough in light microscopy depends on, and is supported by, advancements in computing and information technologies. Bioimage acquisition and analysis based on machine learning will pave the way toward more robust, automated and objective implementation of new imaging modalities and in biomedical research in general. The combination of novel imaging technologies with machine learning and near-physiological model systems promises to accelerate discoveries and breakthroughs in our understanding of infectious diseases, from basic research all the way to clinical applications.
Collapse
|
38
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|
39
|
Glycine Zipper Motifs in Hepatitis C Virus Nonstructural Protein 4B Are Required for the Establishment of Viral Replication Organelles. J Virol 2018; 92:JVI.01890-17. [PMID: 29167346 DOI: 10.1128/jvi.01890-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replication occurs in tight association with remodeled host cell membranes, presenting as cytoplasmic accumulations of single-, double-, and multimembrane vesicles in infected cells. Formation of these so-called replication organelles is mediated by a complex interplay of host cell factors and viral replicase proteins. Of these, nonstructural protein 4B (NS4B), an integral transmembrane protein, appears to play a key role, but little is known about the molecular mechanisms of how this protein contributes to organelle biogenesis. Using forward and reverse genetics, we identified glycine zipper motifs within transmembrane helices 2 and 3 of NS4B that are critically involved in viral RNA replication. Foerster resonance energy transfer analysis revealed the importance of the glycine zippers in NS4B homo- and heterotypic self-interactions. Additionally, ultrastructural analysis using electron microscopy unraveled a prominent role of glycine zipper residues for the subcellular distribution and the morphology of HCV-induced double-membrane vesicles. Notably, loss-of-function NS4B glycine zipper mutants prominently induced single-membrane vesicles with secondary invaginations that might represent an arrested intermediate state in double-membrane vesicle formation. These findings highlight a so-far-unknown role of glycine residues within the membrane integral core domain for NS4B self-interaction and functional as well as structural integrity of HCV replication organelles.IMPORTANCE Remodeling of the cellular endomembrane system leading to the establishment of replication organelles is a hallmark of positive-strand RNA viruses. In the case of HCV, expression of the nonstructural proteins induces the accumulation of double-membrane vesicles that likely arise from a concerted action of viral and coopted cellular factors. However, the underlying molecular mechanisms are incompletely understood. Here, we identify glycine zipper motifs within HCV NS4B transmembrane segments 2 and 3 that are crucial for the protein's self-interaction. Moreover, glycine residues within NS4B transmembrane helices critically contribute to the biogenesis of functional replication organelles and, thus, efficient viral RNA replication. These results reveal how glycine zipper motifs in NS4B contribute to structural and functional integrity of the HCV replication organelles and, thus, viral RNA replication.
Collapse
|
40
|
Identification of Novel Functions for Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. J Virol 2017; 91:JVI.00048-17. [PMID: 28179528 DOI: 10.1128/jvi.00048-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein complex is composed of E1 and E2 subunits. E2 is the receptor-binding protein as well as the major target of neutralizing antibodies, whereas the functions of E1 remain poorly defined. Here, we took advantage of the recently published structure of the N-terminal region of the E1 ectodomain to interrogate the functions of this glycoprotein by mutating residues within this 79-amino-acid region in the context of an infectious clone. The phenotypes of the mutants were characterized to determine the effects of the mutations on virus entry, replication, and assembly. Furthermore, biochemical approaches were also used to characterize the folding and assembly of E1E2 heterodimers. Thirteen out of 19 mutations led to viral attenuation or inactivation. Interestingly, two attenuated mutants, T213A and I262A, were less dependent on claudin-1 for cellular entry in Huh-7 cells. Instead, these viruses relied on claudin-6, indicating a shift in receptor dependence for these two mutants in the target cell line. An unexpected phenotype was also observed for mutant D263A which was no longer infectious but still showed a good level of core protein secretion. Furthermore, genomic RNA was absent from these noninfectious viral particles, indicating that the D263A mutation leads to the assembly and release of viral particles devoid of genomic RNA. Finally, a change in subcellular colocalization between HCV RNA and E1 was observed for the D263A mutant. This unique observation highlights for the first time cross talk between HCV glycoprotein E1 and the genomic RNA during HCV morphogenesis.IMPORTANCE Hepatitis C virus (HCV) infection is a major public health problem worldwide. It encodes two envelope proteins, E1 and E2, which play a major role in the life cycle of this virus. E2 has been extensively characterized, whereas E1 remains poorly understood. Here, we investigated E1 functions by using site-directed mutagenesis in the context of the viral life cycle. Our results identify unique phenotypes. Unexpectedly, two mutants clearly showed a shift in receptor dependence for cell entry, highlighting a role for E1 in modulating HCV particle interaction with a cellular receptor(s). More importantly, another mutant led to the assembly and release of viral particles devoid of genomic RNA. This unique phenotype was further characterized, and we observed a change in subcellular colocalization between HCV RNA and E1. This unique observation highlights for the first time cross talk between a viral envelope protein and genomic RNA during morphogenesis.
Collapse
|
41
|
Falcón V, Acosta-Rivero N, González S, Dueñas-Carrera S, Martinez-Donato G, Menéndez I, Garateix R, Silva JA, Acosta E, Kourı J. Ultrastructural and biochemical basis for hepatitis C virus morphogenesis. Virus Genes 2017; 53:151-164. [PMID: 28233195 DOI: 10.1007/s11262-017-1426-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/06/2017] [Indexed: 12/16/2022]
Abstract
Chronic infection with HCV is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. One of the least understood steps in the HCV life cycle is the morphogenesis of new viral particles. HCV infection alters the lipid metabolism and generates a variety of microenvironments in the cell cytoplasm that protect viral proteins and RNA promoting viral replication and assembly. Lipid droplets (LDs) have been proposed to link viral RNA synthesis and virion assembly by physically associating these viral processes. HCV assembly, envelopment, and maturation have been shown to take place at specialized detergent-resistant membranes in the ER, rich in cholesterol and sphingolipids, supporting the synthesis of luminal LDs-containing ApoE. HCV assembly involves a regulated allocation of viral and host factors to viral assembly sites. Then, virus budding takes place through encapsidation of the HCV genome and viral envelopment in the ER. Interaction of ApoE with envelope proteins supports the viral particle acquisition of lipids and maturation. HCV secretion has been suggested to entail the ion channel activity of viral p7, several components of the classical trafficking and autophagy pathways, ESCRT, and exosome-mediated export of viral RNA. Here, we review the most recent advances in virus morphogenesis and the interplay between viral and host factors required for the formation of HCV virions.
Collapse
Affiliation(s)
- Viviana Falcón
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Nelson Acosta-Rivero
- National Center for Scientific Research, P.O. Box 6414, 10600, Havana, Cuba. .,Centre for Protein Studies, Faculty of Biology, University of Havana, 10400, Havana, Cuba.
| | | | | | | | - Ivon Menéndez
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Rocio Garateix
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - José A Silva
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | | | | |
Collapse
|
42
|
N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe 2016; 20:654-665. [PMID: 27773535 PMCID: PMC5123813 DOI: 10.1016/j.chom.2016.09.015] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023]
Abstract
The RNA modification N6-methyladenosine (m6A) post-transcriptionally regulates RNA function. The cellular machinery that controls m6A includes methyltransferases and demethylases that add or remove this modification, as well as m6A-binding YTHDF proteins that promote the translation or degradation of m6A-modified mRNA. We demonstrate that m6A modulates infection by hepatitis C virus (HCV). Depletion of m6A methyltransferases or an m6A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m6A sites across the HCV genome and determined that inactivating m6A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m6A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m6A. Altogether, this work identifies m6A as a conserved regulatory mark across Flaviviridae genomes. The RNA genomes of HCV, ZIKV, DENV, YFV, and WNV contain m6A modification The cellular m6A machinery regulates HCV infectious particle production YTHDF proteins reduce HCV particle production and localize at viral assembly sites m6A-abrogating mutations in HCV E1 increase infectious particle production
Collapse
|
43
|
Senís E, Mockenhaupt S, Rupp D, Bauer T, Paramasivam N, Knapp B, Gronych J, Grosse S, Windisch MP, Schmidt F, Theis FJ, Eils R, Lichter P, Schlesner M, Bartenschlager R, Grimm D. TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus. Nucleic Acids Res 2016; 45:e3. [PMID: 27614072 PMCID: PMC5224498 DOI: 10.1093/nar/gkw805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022] Open
Abstract
Successful RNAi applications depend on strategies allowing robust and persistent expression of minimal gene silencing triggers without perturbing endogenous gene expression. Here, we propose a novel avenue which is integration of a promoterless shmiRNA, i.e. a shRNA embedded in a micro-RNA (miRNA) scaffold, into an engineered genomic miRNA locus. For proof-of-concept, we used TALE or CRISPR/Cas9 nucleases to site-specifically integrate an anti-hepatitis C virus (HCV) shmiRNA into the liver-specific miR-122/hcr locus in hepatoma cells, with the aim to obtain cellular clones that are genetically protected against HCV infection. Using reporter assays, Northern blotting and qRT-PCR, we confirmed anti-HCV shmiRNA expression as well as miR-122 integrity and functionality in selected cellular progeny. Moreover, we employed a comprehensive battery of PCR, cDNA/miRNA profiling and whole genome sequencing analyses to validate targeted integration of a single shmiRNA molecule at the expected position, and to rule out deleterious effects on the genomes or transcriptomes of the engineered cells. Importantly, a subgenomic HCV replicon and a full-length reporter virus, but not a Dengue virus control, were significantly impaired in the modified cells. Our original combination of DNA engineering and RNAi expression technologies benefits numerous applications, from miRNA, genome and transgenesis research, to human gene therapy.
Collapse
Affiliation(s)
- Elena Senís
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Stefan Mockenhaupt
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Tobias Bauer
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Medical Faculty Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Jan Gronych
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Stefanie Grosse
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Marc P Windisch
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Florian Schmidt
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Department of Mathematics, Technische Universität München, Garching, 85748, Germany
| | - Roland Eils
- BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany.,Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, 69120, Germany
| | - Peter Lichter
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany .,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
44
|
Meyers NL, Fontaine KA, Kumar GR, Ott M. Entangled in a membranous web: ER and lipid droplet reorganization during hepatitis C virus infection. Curr Opin Cell Biol 2016; 41:117-24. [PMID: 27240021 DOI: 10.1016/j.ceb.2016.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. To establish and maintain chronic infection, HCV extensively rearranges cellular organelles to generate distinct compartments for viral RNA replication and virion assembly. Here, we review our current knowledge of how HCV proliferates and remodels ER-derived membranes while preserving and expanding associated lipid droplets during viral infection. Unraveling the molecular mechanisms responsible for HCV-induced membrane reorganization will enhance our understanding of the HCV life-cycle, the associated liver pathology, and the biology of the ER:lipid droplet interface in general.
Collapse
Affiliation(s)
- Nathan L Meyers
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States
| | - Krystal A Fontaine
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States
| | - G Renuka Kumar
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States
| | - Melanie Ott
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States.
| |
Collapse
|
45
|
Liu CW, Atkinson MA, Zhang Q. Type 1 diabetes cadaveric human pancreata exhibit a unique exocrine tissue proteomic profile. Proteomics 2016; 16:1432-46. [PMID: 26935967 DOI: 10.1002/pmic.201500333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/26/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder resulting from a self-destruction of pancreatic islet beta cells. The complete proteome of the human pancreas, where both the dysfunctional beta cells and their proximal environment co-exist, remains unknown. Here, we used TMT10-based isobaric labeling and multidimensional LC-MS/MS to quantitatively profile the differences between pancreatic head region tissues from T1D (N = 5) and healthy subjects (N = 5). Among the 5357 (1% false discovery rate) confidently identified proteins, 145 showed statistically significant dysregulation between T1D and healthy subjects. The differentially expressed pancreatic proteome supports the growing notion of a potential role for exocrine pancreas involvement in T1D. This study also demonstrates the utility for this approach to analyze dysregulated proteins as a means to investigate islet biology, pancreatic pathology and T1D pathogenesis.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA.,Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
46
|
Functional Genomic Strategies for Elucidating Human-Virus Interactions: Will CRISPR Knockout RNAi and Haploid Cells? Adv Virus Res 2016; 94:1-51. [PMID: 26997589 PMCID: PMC7112329 DOI: 10.1016/bs.aivir.2015.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last several years a wealth of transformative human–virus interaction discoveries have been produced using loss-of-function functional genomics. These insights have greatly expanded our understanding of how human pathogenic viruses exploit our cells to replicate. Two technologies have been at the forefront of this genetic revolution, RNA interference (RNAi) and random retroviral insertional mutagenesis using haploid cell lines (haploid cell screening), with the former technology largely predominating. Now the cutting edge gene editing of the CRISPR/Cas9 system has also been harnessed for large-scale functional genomics and is poised to possibly displace these earlier methods. Here we compare and contrast these three screening approaches for elucidating host–virus interactions, outline their key strengths and weaknesses including a comparison of an arrayed multiple orthologous RNAi reagent screen to a pooled CRISPR/Cas9 human rhinovirus 14–human cell interaction screen, and recount some notable insights made possible by each. We conclude with a brief perspective on what might lie ahead for the fast evolving field of human–virus functional genomics.
Collapse
|
47
|
Hölscher C, Sonntag F, Henrich K, Chen Q, Beneke J, Matula P, Rohr K, Kaderali L, Beil N, Erfle H, Kleinschmidt JA, Müller M. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses. PLoS Pathog 2015; 11:e1005281. [PMID: 26625259 PMCID: PMC4666624 DOI: 10.1371/journal.ppat.1005281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Qingxin Chen
- German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Beneke
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Petr Matula
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute for Bioinformatics, Greifswald, Germany
| | - Nina Beil
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Holger Erfle
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | | | - Martin Müller
- German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
48
|
Rincón V, Rodríguez-Huete A, Mateu MG. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly. J Gen Virol 2015; 96:2595-2606. [DOI: 10.1099/vir.0.000187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Verónica Rincón
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G. Mateu
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
49
|
Abstract
Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.
Collapse
Affiliation(s)
- Holly Ramage
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
50
|
Ploen D, Hildt E. Hepatitis C virus comes for dinner: How the hepatitis C virus interferes with autophagy. World J Gastroenterol 2015; 21:8492-8507. [PMID: 26229393 PMCID: PMC4515832 DOI: 10.3748/wjg.v21.i28.8492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/10/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly-regulated, conserved cellular process for the degradation of intracellular components in lysosomes to maintain the energetic balance of the cell. It is a pro-survival mechanism that plays an important role during development, differentiation, apoptosis, ageing and innate and adaptive immune response. Besides, autophagy has been described to be involved in the development of various human diseases, e.g., chronic liver diseases and the development of hepatocellular carcinoma. The hepatitis C virus (HCV) is a major cause of chronic liver diseases. It has recently been described that HCV, like other RNA viruses, hijacks the autophagic machinery to improve its replication. However, the mechanisms underlying its activation are conflicting. HCV replication and assembly occurs at the so-called membranous web that consists of lipid droplets and rearranged endoplasmic reticulum-derived membranes including single-, double- and multi-membrane vesicles. The double-membrane vesicles have been identified to contain NS3, NS5A, viral RNA and the autophagosomal marker microtubule-associated protein 1 light chain 3, corroborating the involvement of the autophagic pathway in the HCV life-cycle. In this review, we will highlight the crosstalk of the autophagosomal compartment with different steps of the HCV life-cycle and address its implications on favoring the survival of infected hepatocytes.
Collapse
|