1
|
Ma X, Liu Z, Yue C, Wang S, Li X, Wang C, Ling S, Wang Y, Liu S, Gu Y. High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda ( Ailuropoda melanoleuca) in estrus and non-estrus. Front Microbiol 2024; 15:1265829. [PMID: 38333585 PMCID: PMC10850575 DOI: 10.3389/fmicb.2024.1265829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus. Methods This study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity. Results and discussion The results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Siwen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Peixoto-Rodrigues MC, da Costa GL, Pinto TN, Adesse D, Oliveira MME, Hauser-Davis RA. A novel report on the emerging and zoonotic neurotropic fungus Trichosporon japonicum in the brain tissue of the endangered Brazilian guitarfish (Pseudobatos horkelii) off the southeastern coast of Brazil. BMC Microbiol 2023; 23:367. [PMID: 38017412 PMCID: PMC10685615 DOI: 10.1186/s12866-023-03128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
Yeast infections have gained significant attention in the field of marine biology in recent years. Among the broad diversity of marine organisms affected by these infections, elasmobranchs (sharks and rays) have emerged as highly susceptible, due to climate change effects, such as increasing water temperatures and pollution, which can alter the composition and abundance of fungal communities. Additionally, injuries, or compromised immune systems resulting from pollution or disease may increase the likelihood of fungal infections in elasmobranchs. Studies are, however, still lacking for this taxonomic group. In this context, this study aimed to screen yeast species in cell cultures obtained from the brain of artisanally captured Pseudobatos horkelii, a cartilaginous fish that, although endangered, is highly captured and consumed worldwide. Fungi were isolated during an attempt to establish primary cultures of elasmobranch neural cells. Culture flasks were swabbed and investigated using morphological, phenotypic, and molecular techniques. Two isolates of the emerging opportunistic pathogen Trichosporon japonicum were identified, with high scores (1.80 and 1.85, respectively) by the MALDI-ToF technique. This is the first report of the basidiomycetous yeast T. japonicum in Pseudobatos horkelii in Brazil. This finding highlights the need for further research to determine the potential impact on elasmobranch health, ecology, as well as on commercial fisheries.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, IInstituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gisela Lara da Costa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tatiane Nobre Pinto
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, IInstituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Lee EH, Choi MH, Lee KH, Song YG, Han SH. Differences of clinical characteristics and outcome in proven invasive Trichosporon infections caused by asahii and non-asahii species. Mycoses 2023; 66:992-1002. [PMID: 37515448 DOI: 10.1111/myc.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Trichosporon is an emerging yeast that causes invasive infections in immunocompromised patients experiencing prolonged hospitalisation, indwelling venous catheters and neutropenia. METHODS This retrospective observational cohort study analysed invasive Trichosporon infections (ITIs) occurring between January 2005 and December 2022 at three tertiary hospitals and compared the clinical characteristics and prognostic factors of ITIs caused by Trichosporon asahii and non-T. asahii spp. After evaluating 1067 clinical isolates, we identified 46 patients with proven ITIs, defined as cases in which Trichosporon was isolated from blood, cerebrospinal fluid, or sterile tissues. RESULTS The patients were separated into T. asahii and non-T. asahii groups containing 25 and 21 patients, respectively, all of which except one were immunocompromised. During this period, both the number of clinical isolates and patients with ITIs (mainly T. asahii) increased; whereas, cases involving non-T. asahii spp. decreased. Compared with the non-T. asahii group, the T. asahii group had more patients with multiple catheters (84% vs. 33%, p = .001) and those receiving renal replacement therapy (48% vs. 14%, p = .005). The all-cause 28-day mortality rate after ITI in the T. asahii group (44%) was significantly higher than in the non-T. asahii group (10%, Log-rank p = .014). The multivariate Cox regression model revealed that T. asahii (reference, non-T. asahii spp.; aHR = 4.3; 95% CI = 1.2-15.2, p = .024) and neutropenia for 5 days or more (aHR = 2.2, 95% CI = 1.5-3.6, p = .035) were independent factors in the 28-day mortality after ITI. CONCLUSION The proven ITIs due to T. asahii produced more unfavourable outcomes compared with ITIs caused by non-T. asahii spp.
Collapse
Affiliation(s)
- Eun Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hyuk Choi
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Goo Song
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
de Andrade IB, Figueiredo-Carvalho MHG, Chaves ALDS, Coelho RA, Almeida-Silva F, Zancopé-Oliveira RM, Frases S, Brito-Santos F, Almeida-Paes R. Metabolic and phenotypic plasticity may contribute for the higher virulence of Trichosporon asahii over other Trichosporonaceae members. Mycoses 2022; 66:430-440. [PMID: 36564594 DOI: 10.1111/myc.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Trichosporonaceae family comprises a large number of basidiomycetes widely distributed in nature. Some of its members, especially Trichosporon asahii, have the ability to cause human infections. This ability is related to a series of virulence factors, which include lytic enzymes production, biofilm formation, resistance to oxidising agents, melanin and glucuronoxylomannan in the cell wall, metabolic plasticity and phenotypic switching. The last two are poorly addressed within human pathogenic Trichosporonaceae. OBJECTIVE These factors were herein studied to contribute with the knowledge of these emerging pathogens and to uncover mechanisms that would explain the higher frequency of T. asahii in human infections. METHODS We included 79 clinical isolates phenotypically identified as Trichosporon spp. and performed their molecular identification. Lactate and N-acetyl glucosamine were the carbon sources of metabolic plasticity studies. Morphologically altered colonies after subcultures and incubation at 37°C indicated phenotypic switching. RESULTS AND CONCLUSION The predominant species was T. asahii (n = 65), followed by Trichosporon inkin (n = 4), Apiotrichum montevideense (n = 3), Trichosporon japonicum (n = 2), Trichosporon faecale (n = 2), Cutaneotrichosporon debeurmannianum (n = 1), Trichosporon ovoides (n = 1) and Cutaneotrichosporon arboriforme (n = 1). T. asahii isolates had statistically higher growth on lactate and N-acetylglucosamine and on glucose during the first 72 h of culture. T. asahii, T. inkin and T. japonicum isolates were able to perform phenotypic switching. These results expand the virulence knowledge of Trichosporonaceae members and point for a role for metabolic plasticity and phenotypic switching on the trichosporonosis pathogenesis.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alessandra Leal da Silva Chaves
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Análises Clínicas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| | | | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Malacrida AM, Corrêa JL, Barros ILE, Veiga FF, Pereira EDCA, Negri M, Svidzinski TIE. Hospital Trichosporon asahii isolates with simple architecture biofilms and high resistance to antifungals routinely used in clinical practice. J Mycol Med 2022; 33:101356. [PMID: 36563454 DOI: 10.1016/j.mycmed.2022.101356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Infections by Trichosporon spp. are increasing worldwide and its treatment remains a challenge. Colonization of medical devices has been considered as a predisposing factor for trichosporonosis, which is related to fungal biofilm production. Thus, this study aimed to evaluate the ability of six hospital T. asahii isolates to form biofilm on abiotic surface, as well as to investigate the impact of three classic antifungals on both planktonic and biofilm forms. The fungal identification was based on macro and micromorphological characteristics, biochemical tests and confirmation by mass spectrometry assisted by the flight time desorption/ionization matrix (MALDI-TOF MS). Antifungal susceptibility assay of planktonic cells showed inhibitory and fungicidal concentrations ranging from 2.5 to 10 µg/mL for voriconazole, 2 to 8 µg/mL for fluconazole, and 1 to 4 µg/mL for amphotericin B. All T. asahii strains were able to form biofilms on the polystyrene microplates surface within 24 h, showing a simple architecture when compared with Candida spp. biofilm. On the other hand, the same antifungals did not show action in neither the inhibition of biofilm formation nor on the formed biofilm. Concluding, the present study reinforced the relevance of the MALDI-TOF MS methodology for a safe identification of T. asahii. Classic antifungals were active on the planktonic form, but not on the biofilms. All isolates formed biofilms on the polystyrene microplates and showed a simple architecture.
Collapse
Affiliation(s)
- Amanda Milene Malacrida
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Jakeline Luiz Corrêa
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Isabella Letícia Esteves Barros
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Flávia Franco Veiga
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Elton da Cruz Alves Pereira
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Melyssa Negri
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
6
|
Preparation and Evaluation of Silver Nanoparticles Embedded in Muntingia calabura Leaf Extract to Cure White Piedra. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Pereira LMG, Andrade ARCD, Portela FVM, Aguiar ALR, Silva BND, Moura SGB, Pergentino MLM, Rocha MFG, Sidrim JJDC, Castelo Branco DDSCM, Cordeiro RDA. Heterologous extracellular DNA facilitates the development of Trichosporon asahii and T. inkin biofilms and enhances their tolerance to antifungals. BIOFOULING 2022; 38:778-785. [PMID: 36210505 DOI: 10.1080/08927014.2022.2130788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Trichosporon asahii and T. inkin are emergent agents of deep-seated and disseminated infections in immunocompromised patients. The present study aimed to investigate the role of extracellular DNA (eDNA) and the enzyme deoxyribonuclease (DNase) on the structure of T. asahii and T. inkin biofilms, as well as to examine their effect on the susceptibility to antifungals. Biofilms reached maturity at 48 h; eDNA concentration in the supernatant increased over time (6 < 24 h < 48h). Exogenous eDNA increased biomass of Trichosporon biofilms at all stages of development, enhanced their tolerance to antifungals and improved their structural complexity. DNase reduced biomass, biovolume and thickness of Trichosporon biofilms, thereby rendering them more susceptibility to voriconazole. The results suggest the relevance of eDNA in the structure and antifungal susceptibility of Trichosporon biofilms and highlight the potential of DNase as adjuvant in biofilm control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
- School of Veterinary, State University of Ceará, Fortaleza, Brazil
| | | | | | | |
Collapse
|
8
|
de Andrade IB, Araújo GRDS, Brito-Santos F, Figueiredo-Carvalho MHG, Zancopé-Oliveira RM, Frases S, Almeida-Paes R. Comparative Biophysical and Ultrastructural Analysis of Melanins Produced by Clinical Strains of Different Species From the Trichosporonaceae Family. Front Microbiol 2022; 13:876611. [PMID: 35547117 PMCID: PMC9081797 DOI: 10.3389/fmicb.2022.876611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Melanin is one of the most studied virulence factors in pathogenic fungi. This pigment protects them from a series of both environmental and host stressors. Among basidiomycetes, Cryptococcus neoformans and Trichosporon asahii are known to produce melanin in the presence of phenolic precursors. Other species from the Trichosporonaceae family also produce this pigment, but the extent to this production among the clinically relevant species is unknown. For this reason, the aim of this study was to verify the production of melanin by different Trichosporonaceae species of clinical interest and to compare their pigments with the ones from C. neoformans and T. asahii, which are more prevalent in human infections. Melanin was produced in a minimal medium supplemented with 1 mM L-dihydroxyphenylalanine (L-DOPA). Pigment was evaluated using scanning electron microscopy, Zeta potential measurements, and energy-dispersive X-ray spectroscopy. It was found that, besides C. neoformans and T. asahii, Trichosporon japonicum, Apiotrichum montevideense, Trichosporon inkin, Trichosporon faecale, Cutaneotrichosporon debeurmannianum, and Cutaneotrichosporon arboriformis also produce melanin-like particles in the presence of L-DOPA. Melanin particles have negative charge and are smaller than original cells. Variations in color, fluorescence, and chemical composition was noticed between the studied strains. All melanins presented carbon, oxygen, sodium, and potassium in their composition. Melanins from the most pathogenic species also presented iron, zinc, and copper, which are important during parasitism. Biophysical properties of these melanins can confer to the Trichosporonaceae adaptive advantages to both parasitic and environmental conditions of fungal growth.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Brito-Santos
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Malacrida AM, Salci TP, Negri M, Svidzinski TI. Insight into the antifungals used to address human infection due to Trichosporon spp.: a scoping review. Future Microbiol 2021; 16:1277-1288. [PMID: 34689610 PMCID: PMC8544482 DOI: 10.2217/fmb-2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trichosporonosis infections have been increasing worldwide. Providing adequate treatment for these infections remains a challenge. This scoping review contains information about potential antifungals to treat this pathology. Using online databases, we found 76 articles published between 2010 and 2020 related to this topic. Classic antifungals, molecules and biomolecules, repositioned drugs and natural products have been tested against species of Trichosporon. Experimental research has lacked depth or was limited to in vitro and in vivo tests, so there are no promising new candidates for the clinical treatment of patients with trichosporonosis. Furthermore, most studies did not present appropriate scientific criteria for drug tests, compromising their quality.
Collapse
Affiliation(s)
- Amanda M Malacrida
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Tânia P Salci
- Departament of Pharmacy and Science, Faculdade Integrado de Campo Mourão, Campo Mourão, Paraná, CEP, 87300-970, Brazil
| | - Melyssa Negri
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Terezinha Ie Svidzinski
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| |
Collapse
|
10
|
Scharf S, Bartels A, Kondakci M, Haas R, Pfeffer K, Henrich B. fuPCR as diagnostic method for the detection of rare fungal pathogens, such as Trichosporon, Cryptococcus and Fusarium. Med Mycol 2021; 59:1101-1113. [PMID: 34379780 DOI: 10.1093/mmy/myab045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fungal respiratory tract colonisation is a common finding in patients with hematologic neoplasms due to immunosuppression inherent in the diseases and exacerbated by therapy. This greatly increases the risk of fungal infections of the lungs, which is associated with significant mortality. Therefore, reliable diagnostic methods with rapidly available results are needed to administer adequate antifungal therapy.We have established an improved method for fungal DNA extraction and amplification that allows simultaneous detection of fungal families based on a set of multiplexed real time PCR reactions (fuPCR). We analysed respiratory rinses and blood of 94 patients with haematological systemic diseases by fuPCR and compared it with the results of culture and serological diagnostic methods. 40 healthy subjects served as controls.Regarding Candida species, the highest prevalence resulted from microbiological culture of respiratory rinses and from detection of antibodies in blood serum in patients (61% and 47%, respectively) and in the control group (29% and 51%, respectively). Detection of other pathogenic yeasts, such as Cryptococcus and Trichosporon, and moulds, such as Fusarium, was only possible in patients by fuPCR from both respiratory rinses and whole blood and serum. These fungal species were found statistically significantly more frequent in respiratory rinses collected from patients after myeloablative therapy for stem cell transplantation compared to samples collected before treatment (p<<0.05i>).The results show that fuPCR is a valuable complement to culturing and its inclusion in routine mycological diagnostics might be helpful for early detection of pathophysiologically relevant respiratory colonisation for patients with hematologic neoplasms. LAY ABSTRACT We validated a set of PCR reactions (fuPCR) for use in routine diagnostic. In contrast to culture and serological methods, only by fuPCR pathogenic yeasts (Cryptococcus and Trichosporon) and moulds (Aspergillus and Fusarium) were detected in respiratory rinses and blood of haematological patients.
Collapse
Affiliation(s)
- Sebastian Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Anna Bartels
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Mustafa Kondakci
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Rainer Haas
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
11
|
San Juan PA, Castro I, Dhami MK. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim Microbiome 2021; 3:48. [PMID: 34238378 PMCID: PMC8268595 DOI: 10.1186/s42523-021-00109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background Captive rearing is often critical for animals that are vulnerable to extinction in the wild. However, few studies have investigated the extent to which captivity impacts hosts and their gut microbiota, despite mounting evidence indicating that host health is affected by gut microbes. We assessed the influence of captivity on the gut microbiome of the Brown Kiwi (Apteryx mantelli), a flightless bird endemic to New Zealand. We collected wild (n = 68) and captive (n = 38) kiwi feces at seven sites on the north island of New Zealand. Results Using bacterial 16 S rRNA and fungal ITS gene profiling, we found that captivity was a significant predictor of the kiwi gut bacterial and fungal communities. Captive samples had lower microbial diversity and different composition when compared to wild samples. History of coccidiosis, a gut parasite primarily affecting captive kiwi, showed a marginally significant effect. Conclusions Our findings demonstrate captivity’s potential to shape the Brown Kiwi gut microbiome, that warrant further investigation to elucidate the effects of these differences on health. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00109-0.
Collapse
Affiliation(s)
- Priscilla A San Juan
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, California, 94305, USA. .,Center for Conservation Biology, Stanford University, Stanford, California, USA.
| | - Isabel Castro
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Manpreet K Dhami
- Manaaki Whenua - Landcare Research, 54 Gerald Street, 7608, Lincoln, New Zealand.
| |
Collapse
|
12
|
Arastehfar A, de Almeida Júnior JN, Perlin DS, Ilkit M, Boekhout T, Colombo AL. Multidrug-resistant Trichosporon species: underestimated fungal pathogens posing imminent threats in clinical settings. Crit Rev Microbiol 2021; 47:679-698. [PMID: 34115962 DOI: 10.1080/1040841x.2021.1921695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Species of Trichosporon and related genera are widely used in biotechnology and, hence, many species have their genome sequenced. Importantly, yeasts of the genus Trichosporon have been increasingly identified as a cause of life-threatening invasive trichosporonosis (IT) in humans and are associated with an exceptionally high mortality rate. Trichosporon spp. are intrinsically resistant to frontline antifungal agents, which accounts for numerous reports of therapeutic failure when echinocandins are used to treat IT. Moreover, these fungi have low sensitivity to polyenes and azoles and, therefore, are potentially regarded as multidrug-resistant pathogens. However, despite the clinical importance of Trichosporon spp., our understanding of their antifungal resistance mechanisms is quite limited. Furthermore, antifungal susceptibility testing is not standardized, and there is a lack of interpretive epidemiological cut-off values for minimal inhibitory concentrations to distinguish non-wild type Trichosporon isolates. The route of infection remains obscure and detailed clinical and environmental studies are required to determine whether the Trichosporon infections are endogenous or exogenous in nature. Although our knowledge on effective IT treatments is rather limited and future randomized clinical trials are required to identify the best antifungal agent, the current paradigm advocates the use of voriconazole, removal of central venous catheters and recovery from neutropenia.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - João N de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, Adana, Turkey
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Ahangarkani F, Ilkit M, Vaseghi N, Zahedi N, Zomorodian K, Khodavaisy S, Afsarian MH, Abbasi K, de Groot T, Meis JF, Badali H. MALDI-TOF MS characterisation, genetic diversity and antifungal susceptibility of Trichosporon species from Iranian clinical samples. Mycoses 2021; 64:918-925. [PMID: 33998718 DOI: 10.1111/myc.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trichosporonosis is an emerging fungal infection caused by Trichosporon species, a genus of yeast-like fungi, which are frequently encountered in human infections ranging from mild cutaneous lesions to fungemia in immunocompromised patients. The incidence of trichosporonosis has increased in recent years, owing to higher numbers of individuals at risk for this infection. Although amphotericin B, posaconazole and isavuconazole are generally effective against Trichosporon species, some isolates may have variable susceptibility to these antifungals. OBJECTIVES Herein, we evaluated the species distribution, genetic diversity and antifungal susceptibility profiles of Trichosporon isolates in Iran. METHODS The yeasts were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Phylogenetic analysis was performed based on amplified fragment length polymorphism (AFLP). The in vitro susceptibilities of eight antifungal agents were analysed using the Clinical and Laboratory Standards Institute broth microdilution methods. RESULTS The isolates belonged to the species T asahii (n = 20), T japonicum (n = 4) and T faecale (n = 3). A dendrogram of the AFLP analysis demonstrated that T asahii and non-asahii Trichosporon strains (T japonicum and T faecale) are phylogenetically distinct. While voriconazole was the most active agent (GM MIC = 0.075 μg/ml), high fluconazole MICs (8 μg/ml) were observed for a quarter of Trichosporon isolates. The GM MIC value of amphotericin B for T asahii and non-asahii Trichosporon species was 0.9 μg/ml. CONCLUSIONS The distribution and antifungal susceptibility patterns of the identified Trichosporon species could inform therapeutic choices for treating these emerging life-threatening fungi.
Collapse
Affiliation(s)
- Fatemeh Ahangarkani
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Cukurova, Adana, Turkey
| | - Narges Vaseghi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nina Zahedi
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Afsarian
- Department of Medical Mycology and Parasitology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Kiana Abbasi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc/ Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Hamid Badali
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
Abstract
The aerobiology of caves in Southern Spain possesses special characteristics, different from caves located in Northern Spain. Previous studies demonstrated the influence of outdoor air on caves in the north and the existence of two different patterns, depending on the season. In summer there is an abundance of Ascomycota, whereas in winter Basidiomycota predominates, which are related to the periods of stagnation and ventilation, respectively. In caves in Southern Spain the presence of airborne Basidiomycota is scarce and Ascomycota represents the main group of fungi widely distributed across the caves in all seasons. The most characteristic features were the abundant presence of entomopathogenic fungi (Beauveria bassiana, Parengyodontium album, Pochonia chlamydosporia, Leptobacillium symbioticum, Leptobacillium leptobactrum) and Cladosporium cladosporioides in Cueva del Tesoro, Cueva de Ardales and Gruta de las Maravillas. However, the presence of yeasts of the genera Cutaneotrichosporon, Trichosporon, Cryptococcus, Naganishia, Cystobasidium, Microstroma and Phragmotaenium was exclusive to Gruta de las Maravillas. Fungal hazard in the three show caves were determined using an ecological indicator based on the concentration of spores in cave air.
Collapse
|
15
|
Production of Secreted Carbohydrates that Present Immunologic Similarities with the Cryptococcus Glucuronoxylomannan by Members of the Trichosporonaceae Family: A Comparative Study Among Species of Clinical Interest. Mycopathologia 2021; 186:377-385. [PMID: 33956292 DOI: 10.1007/s11046-021-00558-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/22/2021] [Indexed: 10/20/2022]
Abstract
Glucuronoxylomannan (GXM) participates in several immunoregulatory mechanisms, which makes it an important Cryptococcus virulence factor that is essential for the disease. Trichosporon asahii and Trichosporon mucoides share with Cryptococcus species the ability to produce GXM. To check whether other opportunistic species in the Trichosporonaceae family produce GXM-like polysaccharides, extracts from 28 strains were produced from solid cultures and their carbohydrate content evaluated by the sulfuric acid / phenol method. Moreover, extracts were assessed for cryptococcal GXM cross-reactivity through latex agglutination and lateral flow assay methods. Cryptococcus neoformans and Saccharomyces cerevisiae were used as positive and negative controls, respectively. In addition to T. asahii, the species Trichosporon inkin, Apiotrichum montevideense, Trichosporon japonicum, Trichosporon faecale, Trichosporon ovoides, Cutaneotrichosporon debeurmannianum, and Cutaneotrichosporon arboriformis are also producers of a polysaccharide immunologically similar to the GXM produced by human pathogenic Cryptococcus species. The carbohydrate concentration of the extracts presented a positive correlation with the GXM contents determined by titration of both methodologies. These results add several species to the list of fungal pathogens that produce glycans of the GXM type and bring information about the origin of potential false-positive results on immunological tests for diagnosis of cryptococcosis based on GXM detection.
Collapse
|
16
|
Use of RNA Sequencing to Perform Comprehensive Analysis of Long Noncoding RNA Expression Profiles in Macrophages Infected with Trichosporon asahii. Mycopathologia 2021; 186:355-365. [PMID: 33877524 DOI: 10.1007/s11046-021-00552-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/03/2021] [Indexed: 01/06/2023]
Abstract
Trichosporon asahii (T. asahii) is a clinically important opportunistic pathogenic fungus capable of causing systemic lethal infection in immunosuppressive and immunodeficient hosts. However, the mechanism of the host immune response upon T. asahii infection has not been elucidated. Recent evidence has shown that long noncoding RNAs (lncRNAs) play key roles in regulating the immune response to resist microbial infections. In this study, we analyzed the expression profiles of lncRNAs at 12 and 24 h post-infection (hpi) in THP-1 cells infected with T. asahii using RNA sequencing (RNA-Seq). A total of 64 and 160 lncRNAs displayed significant differentially expressed (DE) at 12 h and 24 hpi, respectively. Among these lncRNAs, 18 lncRNAs were continuous DE at two time points. The DE of eight candidate lncRNAs were verified by real time quantitative polymerase chain reaction (RT-qPCR). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to analyze the cis-target genes of 18 DE lncRNAs. The results showed that they were enriched in signaling pathways related to the host immune response, indicating that these lncRNAs might play important roles in fungi-host interactions. Finally, we explored the function of lncRNA NEAT1 and found that the expression of TNF-α and IL-1β declined after NEAT1 knockdown in T. asahii-infected THP-1 cells. To our knowledge, this is the first report of a expression analysis of lncRNAs in macrophages infected with T. asahii. Our study helps to elucidate the role of lncRNAs in the host immune response to early infection by T. asahii.
Collapse
|
17
|
Martínez-Herrera E, Duarte-Escalante E, Reyes-Montes MDR, Arenas R, Acosta-Altamirano G, Moreno-Coutiño G, Vite-Garín TM, Meza-Robles A, Frías-De-León MG. Molecular identification of yeasts from the order Trichosporonales causing superficial infections. Rev Iberoam Micol 2021; 38:119-124. [PMID: 33839018 DOI: 10.1016/j.riam.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The molecular reclassification of the order Trichosporonales placed the medically relevant Trichosporon species into three genera of the family Trichosporonaceae: Cutaneotrichosporon, Trichosporon, and Apiotrichum. From the clinical and epidemiological standpoint, it is important to identify any species of the family Trichosporonaceae because they present different antifungal susceptibility profiles. In Mexico, little is known about trichosporonosis etiology because the fungi are identified through phenotypic methods. AIMS To identify at a molecular level 12 yeast isolates morfologically compatible with Trichosporon, obtained from patients with superficial infections. METHODS The yeast isolates were obtained from patients with white piedra, onychomycosis, and hand and foot dermatomycosis, and were identified morphologically and genotypically (sequencing of the IGS1 region and phylogenetic analysis using the Maximum Likelihood Method). The phylogenetic analysis included 40 yeast sequences from the order Trichosporonales and one from Cryptococcus neoformans as outgroup. RESULTS Based on the molecular analysis, we identified three (25%) Trichosporon inkin isolates, two (16.7%) Trichosporon asteroides, two (16.7%) Cutaneotrichosporon mucoides, and one each (8.3%) of Trichosporon aquatile, Trichosporon asahii, Apiotrichum montevideense, Cutaneotrichosporon cutaneum, and Cutaneotrichosporon jirovecii. CONCLUSIONS The molecular characterization of the isolates showed a broad diversity of species within the order Trichosporonales, particularly among onychomycosis. It is essential to identify these yeasts at the species level to delve into their epidemiology.
Collapse
Affiliation(s)
- Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Edo. Méx., Mexico
| | - Esperanza Duarte-Escalante
- Laboratorio de Micología Molecular, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico
| | - María Del Rocío Reyes-Montes
- Laboratorio de Micología Molecular, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico
| | - Roberto Arenas
- Sección de Micología, Hospital General "Dr. Manuel Gea González", Mexico
| | - Gustavo Acosta-Altamirano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Edo. Méx., Mexico
| | | | - Tania Mayela Vite-Garín
- Laboratorio de Inmunología de Hongos, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico
| | | | | |
Collapse
|
18
|
Liu Q, Wang X. Characterization and phylogenetic analysis of the complete mitochondrial genome of pathogen Trichosporon inkin (Trichosporonales: Trichosporonaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:803-805. [PMID: 33763584 PMCID: PMC7954414 DOI: 10.1080/23802359.2021.1882912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the present study, the complete mitochondrial genome of Trichosporon inkin was sequenced and assembled. The complete mitochondrial genome of T. inkin contained 22 protein-coding genes (PCG), 2 ribosomal RNA (rRNA) genes, and 24 transfer RNA (tRNA) genes. The total size of the T. inkin mitochondrial genome is 39,466 bp, with the GC content of 27.56%. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the T. inkin exhibited a close relationship with Trichosporon asahii.
Collapse
Affiliation(s)
- Qiaofeng Liu
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Xin Wang
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
19
|
Zhang MW, Zhu ZH, Xia ZK, Yang X, Luo WT, Ao JH, Yang RY. Comprehensive circRNA-microRNA-mRNA network analysis revealed the novel regulatory mechanism of Trichosporon asahii infection. Mil Med Res 2021; 8:19. [PMID: 33750466 PMCID: PMC7941914 DOI: 10.1186/s40779-021-00311-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Invasive Trichosporon asahii (T. asahii) infection frequently occurs with a high mortality in immunodeficient hosts, but the pathogenesis of T. asahii infection remains elusive. Circular RNAs (circRNAs) are a type of endogenous noncoding RNA that participate in various disease processes. However, the mechanism of circRNAs in T. asahii infection remains completely unknown. METHODS RNA sequencing (RNA-seq) was performed to analyze the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in THP-1 cells infected with T. asahii or uninfected samples. Some of the RNA-seq results were verified by RT-qPCR. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the differentially expressed mRNAs. A circRNA-miRNA-mRNA network was constructed and verified by dual-luciferase reporter assay and overexpression experiments. RESULTS A total of 46 circRNAs, 412 mRNAs and 47 miRNAs were differentially expressed at 12 h after T. asahii infection. GO and KEGG analyses showed that the differentially expressed mRNAs were primarily linked to the leukocyte migration involved in the inflammatory response, the Toll-like receptor signaling pathway, and the TNF signaling pathway. A competing endogenous RNA (ceRNA) network was constructed with 5 differentially expressed circRNAs, 5 differentially expressed miRNAs and 42 differentially expressed mRNAs. Among them, hsa_circ_0065336 was found to indirectly regulate PTPN11 expression by sponging miR-505-3p. CONCLUSIONS These data revealed a comprehensive circRNA-associated ceRNA network during T. asahii infection, thus providing new insights into the pathogenesis of the T. asahii-host interactions.
Collapse
Affiliation(s)
- Ming-Wang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, 400038 China
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
| | - Zhi-Hong Zhu
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572000 Hainan China
| | - Zhi-Kuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Xin Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Wan-Ting Luo
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Jun-Hong Ao
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
| | - Rong-Ya Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700 China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280 Guangdong China
| |
Collapse
|
20
|
Purahong W, Hossen S, Nawaz A, Sadubsarn D, Tanunchai B, Dommert S, Noll M, Ampornpan LA, Werukamkul P, Wubet T. Life on the Rocks: First Insights Into the Microbiota of the Threatened Aquatic Rheophyte Hanseniella heterophylla. FRONTIERS IN PLANT SCIENCE 2021; 12:634960. [PMID: 34194446 PMCID: PMC8238419 DOI: 10.3389/fpls.2021.634960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/15/2021] [Indexed: 05/15/2023]
Abstract
Little is known about microbial communities of aquatic plants despite their crucial ecosystem function in aquatic ecosystems. Here, we analyzed the microbiota of an aquatic rheophyte, Hanseniella heterophylla, growing at three areas differing in their degree of anthropogenic disturbance in Thailand employing a metabarcoding approach. Our results show that diverse taxonomic and functional groups of microbes colonize H. heterophylla. Proteobacteria, Actinobacteria, Dothideomycetes, and Sordariomycetes form the backbone of the microbiota. Surprisingly, the beneficial microbes reported from plant microbiomes in terrestrial habitats, such as N-fixing bacteria and ectomycorrhizal fungi, were also frequently detected. We showed that biofilms for attachment of H. heterophylla plants to rocks may associate with diverse cyanobacteria (distributed in eight families, including Chroococcidiopsaceae, Coleofasciculaceae, Leptolyngbyaceae, Microcystaceae, Nostocaceae, Phormidiaceae, Synechococcaceae, and Xenococcaceae) and other rock biofilm-forming bacteria (mainly Acinetobacter, Pseudomonas, and Flavobacterium). We found distinct community compositions of both bacteria and fungi at high and low anthropogenic disturbance levels regardless of the study areas. In the highly disturbed area, we found strong enrichment of Gammaproteobacteria and Tremellomycetes coupled with significant decline of total bacterial OTU richness. Bacteria involved with sulfamethoxazole (antibiotic) degradation and human pathogenic fungi (Candida, Cryptococcus, Trichosporon, and Rhodotorula) were exclusively detected as indicator microorganisms in H. heterophylla microbiota growing in a highly disturbed area, which can pose a major threat to human health. We conclude that aquatic plant microbiota are sensitive to anthropogenic disturbance. Our results also unravel the potential use of this plant as biological indicators in remediation or treatment of such disturbed ecosystems.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- *Correspondence: Witoon Purahong, ;
| | - Shakhawat Hossen
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Institute of Ecology and Evolution, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ali Nawaz
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Garching, Germany
| | - Dolaya Sadubsarn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Sven Dommert
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - La-aw Ampornpan
- Department of Biology, Srinakharinwirot University, Bangkok, Thailand
| | - Petcharat Werukamkul
- Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
- Petcharat Werukamkul,
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Lan Y, Lu S, Zheng B, Tang Z, Li J, Zhang J. Combinatory Effect of ALA-PDT and Itraconazole Treatment for Trichosporon asahii. Lasers Surg Med 2020; 53:722-730. [PMID: 33164224 DOI: 10.1002/lsm.23343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Trichosporiosis is an opportunistic infection that includes superficial infections, white piedra, hypersensitivity pneumonitis, and invasive trichosporonosis. The effect of antifungal agents against these infections is largely weakened by drug resistance and biofilms-related virulence. Photodynamic therapy (PDT) is a new therapeutic approach developed not only to combat cancerous lesions but also to treat infectious diseases such as fungal infections. However, there are few studies on the antimicrobial mechanism of 5-aminolevulinic acid PDT (ALA-PDT) in treating Trichosporon. In this work, we explored the possibility of combining ALA-PDT with an antifungal agent to enhance the therapeutic efficacy of Trichosporon asahii (T. asahii) in a clinical setting and in vitro. STUDY DESIGN/MATERIALS AND METHODS The biofilms of T. asahii were constructed by a 96-well plate-based method in vitro. The planktonic and adherent T. asahii were exposed to different concentrations of photosensitizers and different light doses. After PDT treatment, counting colony-forming units and tetrazolium (XTT) reduction assay were used to estimate the antifungal efficacy. The minimal inhibitory concentration of itraconazole before and after PDT treatment was determined by the broth dilution method, and XTT viability assay was used to detect and evaluate the synergistic potential of ALA-PDT and itraconazole combinations in inhibiting biofilms. Scanning electron microscopy (SEM) was performed to assess the disruption of biofilms. RESULTS Using combination therapy, we have successfully treated a patient who had a T. asahii skin infection. Further in vitro studies showed that the antifungal effect of ALA-PDT on planktonic and adherent T. asahii was dependent on the concentration of ALA and light dosages used. We also found that the sensitivity of both planktonic and biofilm cells to itraconazole were increased after ALA-PDT. Synergistic effect were observed for biofilms in ALA-PDT and itraconazole-combined treatment. The disruption of biofilms was confirmed by SEM, suggesting that ALA-PDT effectively damaged the biofilms and the destruction was further enhanced by ALA-PDT combination of antifungal agents. CONCLUSIONS In conclusion, these data suggest that ALA-PDT could be an alternative strategy for controlling infections caused by Trichosporon. The combination therapy of ALA-PDT with itraconazole could result in increased elimination of planktonic cells and biofilms compared with single therapy. All these findings indicate that it could be a promising treatment against trichosporonosis. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Yu Lan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Road Central, Shenzhen, 518033, China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Bowen Zheng
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zengqi Tang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Jiahao Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Junmin Zhang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| |
Collapse
|
22
|
Ider S, Belguesmia Y, Cazals G, Boukherroub R, Coucheney F, Kihal M, Enjalbal C, Drider D. The antimicrobial peptide oranicin P16 isolated from Trichosporon asahii ICVY021, found in camel milk's, inhibits Kocuria rhizophila. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
|
24
|
Idris NFB, Huang G, Jia Q, Yuan L, Li Y, Tu Z. Mixed Infection of Toe Nail Caused by Trichosporon asahii and Rhodotorula mucilaginosa. Mycopathologia 2019; 185:373-376. [PMID: 31760556 DOI: 10.1007/s11046-019-00406-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
Trichosporon asahii and Rhodotorula mucilaginosa are important fungal species causing disseminated disease in immunocompromised patients. Onychomycosis prevalence rate ranges from 2 to 30%, which were 50% of nail diseases and 30% of superficial mycosis, respectively. Although important, little is known about the co-habitation of T. asahii and R. mucilaginosa in the causation of onychomycosis. Here, we present the co-habitation of T. asahii and R. mucilaginosa as causative agents of onychomycosis in a healthy 41-year-old male in China. Direct microscopic examination, fungal culture and MALDI-TOF MS were employed in isolated pathogens; hence, antifungal susceptibility test was evaluated. T. asahii was sensitive to posaconazole, voriconazole and itraconazole, whereas R. mucilaginosa was sensitive to both 5-flucytosine and amphotericin B. This report highlights the co-habitation of T. asahii and R. mucilaginosa in the causation of onychomycosis and to raise the awareness of this infection among dermatologists.
Collapse
Affiliation(s)
- Nur Fazleen Binti Idris
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Guowang Huang
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qianying Jia
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yuan
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yimin Li
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zeng Tu
- Department of Microbiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Aydin M, Kustimur S, Kalkanci A, Duran T. Identification of medically important yeasts by sequence analysis of the internal transcribed spacer and D1/D2 region of the large ribosomal subunit. Rev Iberoam Micol 2019; 36:129-138. [PMID: 31690527 DOI: 10.1016/j.riam.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/26/2019] [Accepted: 05/03/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The prevalence of opportunistic yeast infections has increased in recent decades as the result of an increasing immunocompromised patient population. AIMS To evaluate ribosomal RNA (rRNA) gene sequence to identify medically important yeast species, to investigate the performance of both the rRNA gene internal transcribed spacer (ITS) and D1/D2 region in identifying clinically relevant yeasts, and to compare these results with those of a standard phenotypic method. METHODS Both regions from 50 yeast strains, comprising 45 clinical isolates and 5 reference strains, were amplified using PCR and then sequenced. The sequences were compared to reference data available from the GenBank database of the National Center for Biotechnology Information using the BLASTn tool. RESULTS Using ID32C, 88% (44/50) of all strains were identified accurately at the species level, although 6% were misidentified; two Candida eremophila isolates were identified as Candida glabrata and Candida tropicalis, and one Saprochaete clavata isolate was identified as Saprochaete capitata. Two of the four isolates identified by phenotypic methods as Trichosporon asahii were defined so by analyzing the ITS region, but the remaining two were not distinguishable from closely related species. Based on the D1/D2 region, these four isolates had 100% sequence identity with T. asahii, Trichosporon japonicum, and Trichosporon asteroides. The isolate identified as Trichosporon inkin using ID32C could not be distinguished from Trichosporon ovoides by analyzing the ITS and D1/D2 regions. CONCLUSIONS Identifying medically important yeasts by sequencing the ITS and D1/D2 region is a rapid and reliable alternative to conventional identification methods. For a diagnostic algorithm, we suggest a two-step procedure integrating conventional methods (e.g. microscopic morphology on corn meal agar with Tween® 80 and API ID32C®) and sequence analysis of the ITS and D1/D2 region.
Collapse
Affiliation(s)
- Merve Aydin
- Department of Medical Microbiology, Erzincan University School of Medicine, Erzincan, Turkey; Department of Medical Microbiology, KTO Karatay University School of Medicine, Konya, Turkey.
| | - Semra Kustimur
- Department of Medical Microbiology, Gazi University School of Medicine, Ankara, Turkey
| | - Ayse Kalkanci
- Department of Medical Microbiology, Gazi University School of Medicine, Ankara, Turkey
| | - Tugce Duran
- Department of Medical Genetics, KTO Karatay University School of Medicine, Konya, Turkey
| |
Collapse
|
26
|
Sato E, Togawa A, Masaki M, Shirahashi A, Kumagawa M, Kawano Y, Ishikura H, Yamashiro Y, Takagi S, To H, Kobata K, Takeshita M, Kusaba K, Sueoka E, Tamura K, Takamatsu Y, Takata T. Community-acquired Disseminated Exophiala dermatitidis Mycosis with Necrotizing Fasciitis in Chronic Graft-versus-host Disease. Intern Med 2019; 58:877-882. [PMID: 30449799 PMCID: PMC6465022 DOI: 10.2169/internalmedicine.1706-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
We herein report a case of systemic phaeohyphomycosis by Exophiala dermatitidis (E. dermatitidis) with chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). The patient had been taking oral corticosteroids for years to control the GVHD. Yeast-like fungi were identified in a blood culture, so treatment with micafungin (150 mg/day) was begun, with no improvement. The patient passed away on hospital Day 12. A sequence analysis of rRNA revealed the isolate to be E. dermatitidis. This report brings attention to an emerging mycosis of community-acquired Exophiala species infection in the very-late phase after allogenic HSCT in patients with chronic GVHD.
Collapse
Affiliation(s)
- Eiichi Sato
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
| | - Atsushi Togawa
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
| | - Michio Masaki
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
| | - Akihiko Shirahashi
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
| | - Midori Kumagawa
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
- Department of Blood Transfusion, Fukuoka University Hospital, Japan
| | - Yasumasa Kawano
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Japan
| | - Yuri Yamashiro
- Department of Plastic and Reconstructive Surgery, Fukuoka University Hospital, Japan
| | - Satoshi Takagi
- Department of Plastic and Reconstructive Surgery, Fukuoka University Hospital, Japan
| | - Hiromi To
- Department of Clinical Laboratory Medicine, Fukuoka University Hospital, Japan
| | - Katsumi Kobata
- Department of Pathology, Fukuoka University Hospital, Japan
| | | | - Koji Kusaba
- Department of Laboratory Medicine, Saga University Hospital, Japan
| | - Eisaburo Sueoka
- Department of Laboratory Medicine, Saga University Hospital, Japan
| | - Kazuo Tamura
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
| | - Tohru Takata
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Internal Medicine, Fukuoka University Hospital, Japan
- Department of Infection Control, Fukuoka University Hospital, Japan
| |
Collapse
|
27
|
Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp. Microb Pathog 2019; 130:219-225. [PMID: 30878621 DOI: 10.1016/j.micpath.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
Trichosporon spp. have been increasingly recognized as an important pathogen of invasive and disseminated infections in immunocompromised patients. These species are prone to form biofilms in medical devices such as catheters and prosthesis, which are associated with antifungal resistance and therapeutic failure. Therefore, new antifungals with a broader anti-biofilm activity need to be discovered. In the present study we evaluate the inhibitory potential of sodium butyrate (NaBut) - a histone deacetylase inhibitor that can alter chromatin conformation - against planktonic and sessile cells of T. asahii and T. inkin. Minimum inhibitory concentration (MIC) of NaBut against planktonic cells was evaluated by microdilution and morphological changes were analyzed by optical microscopy on malt agar supplemented with NaBut. Biofilms were evaluated during adhesion, development and after maturation for metabolic activity and biomass, as well as regarding ultrastructure by scanning electron microscopy and confocal laser scanning microscopy. NaBut inhibited the growth of planktonic cells by 50% at 60 mM or 120 mM (p < 0.05) and also reduced filamentation of Trichosporon spp. NaBut reduced adhesion of Trichosporon cells by 45% (10xMIC) on average (p < 0.05). During biofilm development, NatBut (10xMIC) reduced metabolic activity and biomass up to 63% and 81%, respectively (p < 0.05). Mature biofilms were affected by NaBut (10xMIC), showing reduction of metabolic activity and biomass of approximately 48% and 77%, respectively (p < 0.05). Ultrastructure analysis showed that NaBut (MIC and 10xMIC) was able to disassemble mature biofilms. The present study describes the antifungal and anti-biofilm potential of NaBut against these opportunist emerging fungi.
Collapse
|
28
|
Cordeiro RDA, Pereira LMG, de Sousa JK, Serpa R, Andrade ARC, Portela FVM, Evangelista AJDJ, Sales JA, Aguiar ALR, Mendes PBL, Brilhante RSN, Sidrim JJDC, Castelo-Branco DDSCM, Rocha MFG. Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Med Mycol 2019; 57:1038-1045. [DOI: 10.1093/mmy/myy160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Trichosporon species have been considered important agents of opportunistic systemic infections, mainly among immunocompromised patients. Infections by Trichosporon spp. are generally associated with biofilm formation in invasive medical devices. These communities are resistant to therapeutic antifungals, and therefore the search for anti-biofilm molecules is necessary. This study evaluated the inhibitory effect of farnesol against planktonic and sessile cells of clinical Trichosporon asahii (n = 3) andTrichosporon inkin (n = 7) strains. Biofilms were evaluated during adhesion, development stages and after maturation for metabolic activity, biomass and protease activity, as well as regarding morphology and ultrastructure by optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. Farnesol inhibited Trichosporon planktonic growth by 80% at concentrations ranging from 600 to 1200 μM for T. asahii and from 75 to 600 μM for T. inkin. Farnesol was able to reduce cell adhesion by 80% at 300 μM for T. asahii and T. inkin at 600 μM, while biofilm development of both species was inhibited by 80% at concentration of 150 μM, altering their structure. After biofilm maturation, farnesol decreased T. asahii biofilm formation by 50% at 600 μM concentration and T. inkin formation at 300 μM. Farnesol inhibited gradual filamentation in a concentration range between 600 and 1200 μM. Farnesol caused reduction of filament structures of Trichosporon spp. at every stage of biofilm development analyzed. These data show the potential of farnesol as an anti-biofilm molecule.
Collapse
Affiliation(s)
- Rossana de Aguiar Cordeiro
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | | | - José Kleybson de Sousa
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | - Rosana Serpa
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | | | | | | | - Jamille Alencar Sales
- Faculty of Veterinary Medicine, Post Graduate Program in Veterinary Science, State University of Ceará, Brazil
| | - Ana Luiza Ribeiro Aguiar
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | - José Júlio da Costa Sidrim
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | | | - Marcos Fabio Gadelha Rocha
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Veterinary Medicine, Post Graduate Program in Veterinary Science, State University of Ceará, Brazil
| |
Collapse
|
29
|
Galligan ER, Fix L, Husain S, Zachariah P, Yamashiro DJ, Lauren CT. Disseminated trichosporonosis with atypical histologic findings in a patient with acute lymphocytic leukemia. J Cutan Pathol 2018; 46:159-161. [PMID: 30468020 DOI: 10.1111/cup.13397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 12/12/2022]
Abstract
We report a case of disseminated Trichosporon asahii in a patient on systemic antifungal therapy who presented with multiple cutaneous nodules suggestive of fungal infection. Histologic features resembled neutrophilic eccrine hidradenitis but staining with periodic acid-Schiff and Gomori methenamine silver confirmed the clinical diagnosis. This case highlights the importance of maintaining suspicion for trichosporonosis and contextualizing histologic findings within the underlying clinical picture.
Collapse
Affiliation(s)
- Eloise R Galligan
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Lindsey Fix
- Department of Dermatology, Columbia University Medical Center, New York, New York
| | - Sameera Husain
- Department of Dermatology, Division of Dermatopathology, Columbia University Medical Center, New York, New York
| | - Philip Zachariah
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Darrell J Yamashiro
- Department of Pediatrics, Columbia University Medical Center, New York, New York.,Departments of Pediatrics, Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Christine T Lauren
- Department of Dermatology, Columbia University Medical Center, New York, New York.,Department of Pediatrics, Columbia University Medical Center, New York, New York.,Departments of Dermatology and Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
30
|
Yu SY, Guo LN, Xiao M, Kudinha T, Kong F, Wang H, Cheng JW, Zhou ML, Xu H, Xu YC. Trichosporon dohaense, a rare pathogen of human invasive infections, and literature review. Infect Drug Resist 2018; 11:1537-1547. [PMID: 30288064 PMCID: PMC6160283 DOI: 10.2147/idr.s174301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Trichosporon dohaense is a rare fungal species that has not been described in human invasive infections. Patients and methods In this study, we investigated two T. dohaense isolates from patients with invasive infections in two hospitals in China, as part of the China Hospital Invasive Fungal Surveillance Net (CHIF-NET) program. Both patients were under immunocompromised conditions. Results On chromogenic agar, T. dohaense isolates were dark blue, similar to the color of Candida. tropicalis, but the characteristic moist colony appearance was quite different from that of T. asahii. The two isolates were misidentified as T. asahii and T. inkin by the VITEK 2 YST system. The rDNA internal transcribed spacer (ITS) region and the D1/D2 domain sequences of the two T. dohaense isolates were 100% identical to T. dohaense type strain CBS10761T. The sequence of the intergenic spacer region-1 also clearly distinguished the species. Of the three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems, Bruker Biotyper and Autobio MS correctly identified the two isolates to species level, whereas Vitek MS systems misidentified them as T. ovoides or T. asteroides. Echinocandins exhibited no in vitro activities against the two T. dohaense isolates. In addition, the isolates exhibited intermediate susceptibility to fluconazole (with minimal inhibitory concentrations [MICs] of 8 and 16 µg/mL) and itraconazole, voriconazole, and posaconazole (MICs of 0.25-1 µg/mL). T. dohaense demonstrated susceptibility to amphotericin B with MIC of 1 µg/mL. The MICs of fluconazole and voriconazole in our study were higher than the MIC50 of 62 for T. asahii isolates (4 and 0.064 µg/mL) in the CHIF-NET program. Conclusion This case study points to a possible emergence of T. dohaense as an opportunistic human invasive fungal pathogen, and the reduced susceptibility should be noted.
Collapse
Affiliation(s)
- Shu-Ying Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, .,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China, .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China,
| | - Li-Na Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China,
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China,
| | - Timothy Kudinha
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, NSW, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - He Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China,
| | - Jing-Wei Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, .,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China, .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China,
| | - Meng-Lan Zhou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, .,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China, .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China,
| | - Hui Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, .,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China, .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China,
| |
Collapse
|
31
|
Biegańska MJ, Rzewuska M, Dąbrowska I, Malewska-Biel B, Ostrzeszewicz M, Dworecka-Kaszak B. Mixed Infection of Respiratory Tract in a Dog Caused by Rhodotorula mucilaginosa and Trichosporon jirovecii: A Case Report. Mycopathologia 2017; 183:637-644. [PMID: 29196923 PMCID: PMC5958165 DOI: 10.1007/s11046-017-0227-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
This report describes the isolation of two environmental fungi: Rhodotorula mucilaginosa and Trichosporon jirovecii accompanied by Pseudomonas aeruginosa and Escherichia coli from a dog with bronchotracheitis. All microorganisms were isolated routinely from a mucopurulent discharge, obtained during bronchoscopy from laryngotracheal area. The initial identification of yeasts was confirmed by API Candida and by molecular analysis of internal transcribed spacer region. Administered antimicrobial treatment with Marbofloxacin and Canizol has brought the improvement in the dogs’ health status. The final results of control mycological culture were negative. Most probably underlying hypothyroidism and the use of steroids were the factors predisposing this patient to opportunistic infection of mixed aetiology. As far as we are concerned, this is the first case of dogs’ respiratory tract infection caused by R. mucilaginosa and T. jirovecii.
Collapse
Affiliation(s)
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Dąbrowska
- Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Bożena Malewska-Biel
- Department of Small Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Ostrzeszewicz
- Department of Small Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw, Poland
| | | |
Collapse
|
32
|
Trichosporon asahii secretes a 30-kDa aspartic peptidase. Microbiol Res 2017; 205:66-72. [DOI: 10.1016/j.micres.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
|
33
|
Epidemiology of dermatomycoses in Kerman province, southeast of Iran: A 10-years retrospective study (2004-2014). Microb Pathog 2017; 110:561-567. [PMID: 28757272 DOI: 10.1016/j.micpath.2017.07.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Superficial and cutaneous fungal infections (SCFIs) are an important public health problem and are common in tropical and subtropical countries. Pityriasis versicolor, dermatophytosis, erythrasma, onychomycosis, and otomycosis are the major diseases associated with SCFIs. The aim of this study was to evaluate the prevalence and causative agents of dermatomycoses over a period of 10 years in Kerman province, southeast of Iran. METHODS A number of 1782 subjects, including 1096 females and 686 males, with cutaneous disorders in their skin, nail, and hair suspected to have SCFIs participated in this study. The collected specimens were examined using direct microscopy examination, staining, culture on specific media and PCR-RFLP technique. RESULTS In total, 617 (34.62%) subjects had SCFIs, of whom 290 (47%) were female and 327 (53%) were male. Identified SCFIs included yeast infections, dermatophytosis, saprophyte onychomycosis, erythrasma, and otomycosis due to non-dermatophytic molds (NDMs). The highest prevalence of dermatomycoses was found among the 41-50-year and 31-40-year age groups. Tinea unguium was the most common clinical pattern of dermatomycoses, and T. mentagrophytes was the predominant agent. Also, Aspergillus spp. were the most common NDMs agents of onychomycosis and otomycosis. CONCLUSIONS This study summarized the epidemiological trends and etiologic agents of SCFIs in a 10-year period in Kerman, southeast of Iran. Consideration of the current epidemiologic trends in the prevalence and knowledge of the exact causative agents of SCFIs may play an important key role towards further investigations, diagnosis, and modification of current treatments.
Collapse
|
34
|
Duarte-Oliveira C, Rodrigues F, Gonçalves SM, Goldman GH, Carvalho A, Cunha C. The Cell Biology of the Trichosporon-Host Interaction. Front Cell Infect Microbiol 2017; 7:118. [PMID: 28439501 PMCID: PMC5383668 DOI: 10.3389/fcimb.2017.00118] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/23/2017] [Indexed: 11/13/2022] Open
Abstract
Fungi of the genus Trichosporon are increasingly recognized as causative agents of superficial and invasive fungal disease in humans. Although most species are considered commensals of the human skin and gastrointestinal tract, these basidiomycetes are an increasing cause of fungal disease among immunocompromised hosts, such as hematological patients and solid organ transplant recipients. The initiation of commensal or pathogenic programs by Trichosporon spp. involves the adaptation to the host microenvironment and its immune system. However, the exact virulence factors activated upon the transition to a pathogenic lifestyle, including the intricate biology of the cell wall, and how these interact with and subvert the host immune responses remain largely unknown. Here, we revisit our current understanding of the virulence attributes of Trichosporon spp., particularly T. asahii, and their interaction with the host immune system, and accommodate this knowledge within novel perspectives on fungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal.,ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal.,ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal.,ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São PauloSão Paulo, Brazil
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal.,ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBraga, Portugal.,ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| |
Collapse
|
35
|
Réblová M, Hubka V, Thureborn O, Lundberg J, Sallstedt T, Wedin M, Ivarsson M. From the Tunnels into the Treetops: New Lineages of Black Yeasts from Biofilm in the Stockholm Metro System and Their Relatives among Ant-Associated Fungi in the Chaetothyriales. PLoS One 2016; 11:e0163396. [PMID: 27732675 PMCID: PMC5061356 DOI: 10.1371/journal.pone.0163396] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/14/2016] [Indexed: 11/25/2022] Open
Abstract
Rock-inhabiting fungi harbour species-rich, poorly differentiated, extremophilic taxa of polyphyletic origin. Their closest relatives are often well-known species from various biotopes with significant pathogenic potential. Speleothems represent a unique rock-dwelling habitat, whose mycobiota are largely unexplored. Isolation of fungi from speleothem biofilm covering bare granite walls in the Kungsträdgården metro station in Stockholm yielded axenic cultures of two distinct black yeast morphotypes. Phylogenetic analyses of DNA sequences from six nuclear loci, ITS, nuc18S and nuc28S rDNA, rpb1, rpb2 and β-tubulin, support their placement in the Chaetothyriales (Ascomycota). They are described as a new genus Bacillicladium with the type species B. lobatum, and a new species Bradymyces graniticola. Bacillicladium is distantly related to the known five chaetothyrialean families and is unique in the Chaetothyriales by variable morphology showing hyphal, meristematic and yeast-like growth in vitro. The nearest relatives of Bacillicladium are recruited among fungi isolated from cardboard-like construction material produced by arboricolous non-attine ants. Their sister relationship is weakly supported by the Maximum likelihood analysis, but strongly supported by Bayesian inference. The genus Bradymyces is placed amidst members of the Trichomeriaceae and is ecologically undefined; it includes an opportunistic animal pathogen while two other species inhabit rock surfaces. ITS rDNA sequences of three species accepted in Bradymyces and other undescribed species and environmental samples were subjected to phylogenetic analysis and in-depth comparative analysis of ITS1 and ITS2 secondary structures in order to study their intraspecific variability. Compensatory base change criterion in the ITS2 secondary structure supported delimitation of species in Bradymyces, which manifest a limited number of phenotypic features useful for species recognition. The role of fungi in the speleothem biofilm and relationships of Bacillicladium and Bradymyces with other members of the Chaetothyriales are discussed.
Collapse
Affiliation(s)
- Martina Réblová
- Department of Taxonomy, Institute of Botany of the Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
- * E-mail:
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, 128 01, Prague, 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague, 4, Czech Republic
| | - Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Johannes Lundberg
- Department of Botany, Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Therese Sallstedt
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark
- Department of Palaeobiology, Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Mats Wedin
- Department of Botany, Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Magnus Ivarsson
- Department of Palaeobiology, Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| |
Collapse
|
36
|
Abdel-Sater MA, Moubasher AAH, Soliman Z. Identification of three yeast species using the conventional and internal transcribed spacer region sequencing methods as first or second global record from human superficial infections. Mycoses 2016; 59:652-61. [DOI: 10.1111/myc.12520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed Ahmed Abdel-Sater
- Department of Botany and Microbiology; Faculty of Science and Assiut University Mycological Centre; Assiut University; Assiut Egypt
| | - Abdel-Aal Hassan Moubasher
- Department of Botany and Microbiology; Faculty of Science and Assiut University Mycological Centre; Assiut University; Assiut Egypt
| | - Zeinab Soliman
- Department of Botany and Microbiology; Faculty of Science and Assiut University Mycological Centre; Assiut University; Assiut Egypt
| |
Collapse
|
37
|
Kuan CS, Ismail R, Kwan Z, Yew SM, Yeo SK, Chan CL, Toh YF, Na SL, Lee KW, Hoh CC, Yee WY, Ng KP. Isolation and Characterization of an Atypical Metschnikowia sp. Strain from the Skin Scraping of a Dermatitis Patient. PLoS One 2016; 11:e0156119. [PMID: 27280438 PMCID: PMC4900598 DOI: 10.1371/journal.pone.0156119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/08/2016] [Indexed: 01/23/2023] Open
Abstract
A yeast-like organism was isolated from the skin scraping sample of a stasis dermatitis patient in the Mycology Unit Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The isolate produced no pigment and was not identifiable using chromogenic agar and API 20C AUX. The fungus was identified as Metschnikowia sp. strain UM 1034, which is close to that of Metschnikowia drosophilae based on ITS- and D1/D2 domain-based phylogenetic analysis. However, the physiology of the strain was not associated to M. drosophilae. This pathogen exhibited low sensitivity to all tested azoles, echinocandins, 5-flucytosine and amphotericin B. This study provided insight into Metschnikowia sp. strain UM 1034 phenotype profiles using a Biolog phenotypic microarray (PM). The isolate utilized 373 nutrients of 760 nutrient sources and could adapt to a broad range of osmotic and pH environments. To our knowledge, this is the first report of the isolation of Metschnikowia non-pulcherrima sp. from skin scraping, revealing this rare yeast species as a potential human pathogen that may be misidentified as Candida sp. using conventional methods. Metschnikowia sp. strain UM 1034 can survive in flexible and diverse environments with a generalist lifestyle.
Collapse
Affiliation(s)
- Chee Sian Kuan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rokiah Ismail
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhenli Kwan
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siok Koon Yeo
- School of Biosciences, Taylor’s University Lakeside Campus, Selangor Darul Ehsan, Malaysia
| | - Chai Ling Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yue Fen Toh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Wei Lee
- Codon Genomics SB, Selangor Darul Ehsan, Malaysia
| | | | - Wai-Yan Yee
- Codon Genomics SB, Selangor Darul Ehsan, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
38
|
Liao Y, Lu X, Yang S, Luo Y, Chen Q, Yang R. Epidemiology and Outcome of Trichosporon Fungemia: A Review of 185 Reported Cases From 1975 to 2014. Open Forum Infect Dis 2015; 2:ofv141. [PMID: 26566536 PMCID: PMC4630454 DOI: 10.1093/ofid/ofv141] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
We first reviewed the English-language literature for reported cases of Trichosporon fungemia over the past four decades, and did comprehensive analysis in order to guide our understanding of epidemiology and outcome-related aspects, especially the antifungal treatment and CVC management. Background. Trichosporon species have emerged as an important non-Candida spp yeast pathogen in immunocompromised patients in recent decades; however, the systemic analysis of Trichosporon epidemiology has seldom been reported. Methods. We reviewed 185 reported cases of Trichosporon fungemia from 1975 to 2014 in the English-language literature, and the epidemiology and prognostic factors of the included cases are described. Results. The number of cases reported has increased with time, especially over the past decade. During the 3 decades from 1975 to 2004, the most commonly used antifungal compounds were amphotericin B/liposomal amphotericin B; however, in recent decades (2005–2014), triazoles (especially voriconazole) have become the most widely used agents, significantly improving outcome in the reported cases. Correlation analysis revealed that negative outcome is associated with several prognostic factors, including a history of antimicrobial use, bacterial bloodstream coinfection, prophylactic/empirical antifungal therapy, Trichosporon beigelii infection, and receiving the antifungal regimen of amphotericin B/liposomal amphotericin B. In addition, a significantly greater proportion of patients with a positive outcome had fungemia without invasive tissue infection and received a voriconazole regimen or an AmB-triazole combined regimen. Significant positive outcome was also associated with patients who had recovered from neutropenia or after central venous catheter removal. Conclusions. Voriconazole can be recommended as a first-line antifungal compound to treat Trichosporon fungemia; the immune status of the host plays a crucial role in the outcome of this infection, and the removal of vascular catheters should be considered if feasible.
Collapse
Affiliation(s)
- Yong Liao
- Department of Dermatology , General Hospital of Beijing Military Command ; The Clinical Medical College in the Beijing Military Region of Second Military Medical University of People's Liberation Army
| | - Xuelian Lu
- Department of Dermatology , General Hospital of Beijing Military Command
| | - Suteng Yang
- Department of Dermatology , General Hospital of Beijing Military Command ; The Clinical Medical College in the Beijing Military Region of Second Military Medical University of People's Liberation Army
| | - Yi Luo
- Medical Clinic, General Political Department of People's Liberation Army, Beijing
| | - Qi Chen
- Department of Statistics , Second Military Medical University , Shanghai , China
| | - Rongya Yang
- Department of Dermatology , General Hospital of Beijing Military Command
| |
Collapse
|