1
|
Moskowitzova K, Naus AE, Tsikis ST, Dang TT, Lin SB, Zurakowski D, Fauza DO. Perinatal Vaccination by Transamniotic Fetal mRNA Delivery: Immunization Against Human Cytomegalovirus in a Rodent Model. J Pediatr Surg 2024:161956. [PMID: 39389880 DOI: 10.1016/j.jpedsurg.2024.161956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Gestational cytomegalovirus (CMV) infection is a prevalent disease with significant fetal and neonatal morbidity. MRNA vaccines have emerged as powerful options for postnatal immunization against infections. It has been shown that mRNA delivered into the amniotic fluid reaches the fetal circulation via the placenta. We investigated whether transamniotic mRNA delivery could be a viable strategy for perinatal CMV immunization, first utilizing a rodent model. METHODS Pregnant Sprague Dawley dams underwent volume-matched intra-amniotic injections in all their fetuses (n = 103) of either human CMV (hCMV) envelope glycoprotein B (hCMV-gB) antigen mRNA encapsulated in lipopolyplex (mRNA group; n = 56), or of the same lipopolyplex without mRNA (controls; n = 47) on gestational day 17 (E17; term = E21-22). Term placentas were screened for host production of hCMV-gB by protein immunoblotting. Serum hCMV-gB IgG antibodies were measured at term, and 7 (P7) and 14 (P14) days after birth by ELISA. RESULTS Overall fetal/neonatal survival was 86 % (89/103). Immunoblotting showed hCMV-gB presence in term mRNA placentas (p = 0.008 vs. controls). No hCMV-gB IgG was detected in the serum of term fetuses (4 days following transamniotic delivery). However, significantly increased serum hCMV-gB IgG levels were present in mRNA pups at P7 (p = 0.008) and P14 (p = 0.006) when controlled by mRNA-free injections (11-19 days after transamniotic administration). CONCLUSIONS Transamniotic fetal mRNA delivery of a human cytomegalovirus antigen can induce a humoral immune response extending into the neonatal period in a healthy rat model. Fetal mRNA vaccination via the minimally invasive transamniotic route may become a practical strategy for the prevention of perinatal infections. LEVEL OF EVIDENCE N/A (animal and laboratory study). TYPE OF STUDY Animal and Laboratory Study.
Collapse
Affiliation(s)
- Kamila Moskowitzova
- Departments of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abbie E Naus
- Departments of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Savas T Tsikis
- Departments of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tanya T Dang
- Departments of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuqi B Lin
- Departments of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Zurakowski
- Departments of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dario O Fauza
- Departments of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Li X, Qi J, Wang J, Hu W, Zhou W, Wang Y, Li T. Nanoparticle technology for mRNA: Delivery strategy, clinical application and developmental landscape. Theranostics 2024; 14:738-760. [PMID: 38169577 PMCID: PMC10758055 DOI: 10.7150/thno.84291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The mRNA vaccine, a groundbreaking advancement in the field of immunology, has garnered international recognition by being awarded the prestigious Nobel Prize, which has emerged as a promising prophylactic and therapeutic modality for various diseases, especially in cancer, rare disease, and infectious disease such as COVID-19, wherein successful mRNA treatment can be achieved by improving the stability of mRNA and introducing a safe and effective delivery system. Nanotechnology-based delivery systems, such as lipid nanoparticles, lipoplexes, polyplexes, lipid-polymer hybrid nanoparticles and others, have attracted great interest and have been explored for mRNA delivery. Nanoscale platforms can protect mRNA from extracellular degradation while promoting endosome escape after endocytosis, hence improving the efficacy. This review provides an overview of diverse nanoplatforms utilized for mRNA delivery in preclinical and clinical stages, including formulation, preparation process, transfection efficiency, and administration route. Furthermore, the market situation and prospects of mRNA vaccines are discussed here.
Collapse
Affiliation(s)
- Xiang Li
- Formulation and Process Development (FPD), WuXi Biologics, 291 Fucheng Road, Hangzhou, 311106, China
| | - Jing Qi
- Formulation and Process Development (FPD), WuXi Biologics, 291 Fucheng Road, Hangzhou, 311106, China
| | - Juan Wang
- Formulation and Process Development (FPD), WuXi Biologics, 291 Fucheng Road, Hangzhou, 311106, China
| | - Weiwei Hu
- WuXi Biologics, 291 Fucheng Road, Hangzhou, 311106, China
| | - Weichang Zhou
- WuXi Biologics, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Yi Wang
- Formulation and Process Development (FPD), WuXi Biologics, 291 Fucheng Road, Hangzhou, 311106, China
| | - Tao Li
- Formulation and Process Development (FPD), WuXi Biologics, 291 Fucheng Road, Hangzhou, 311106, China
| |
Collapse
|
4
|
Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65:108130. [PMID: 36933868 DOI: 10.1016/j.biotechadv.2023.108130] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
5
|
Sehrawat S, Osterrieder N, Schmid DS, Rouse BT. Can the triumph of mRNA vaccines against COVID-19 be extended to other viral infections of humans and domesticated animals? Microbes Infect 2023; 25:105078. [PMID: 36435367 PMCID: PMC9682868 DOI: 10.1016/j.micinf.2022.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The unprecedented success of mRNA vaccines in managing the COVID-19 pandemic raises the prospect of applying the mRNA platform to other viral diseases of humans and domesticated animals, which may lead to more efficacious vaccines for some agents. We briefly discuss reasons why mRNA vaccines achieved such success against COVID-19 and indicate what other virus infections and disease conditions might also be ripe for control using mRNA vaccines. We also evaluate situations where mRNA could prove valuable to rebalance the status of immune responsiveness and achieve success as a therapeutic vaccine approach against infections that induce immunoinflammatory lesions.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO Manauli, Mohali 140306, Punjab, India.
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 5F, Block 1B, To Yuen Building, 31 To Yuen Street, Kowloon Tong, Hong Kong.
| | - D Scott Schmid
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee Knoxville, TN 37996-0845, USA.
| |
Collapse
|
6
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
7
|
Thigpen J. Congenital Cytomegalovirus-History, Current Practice, and Future Opportunities. Neonatal Netw 2021; 39:293-298. [PMID: 32879045 DOI: 10.1891/0730-0832.39.5.293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Cytomegalovirus (CMV) was first identified in the 1950s and noted to cause newborn disease in the 1960s. It is now known to be the most common cause of congenital infection in the world, leading to various central nervous system sequelae, the most common being hearing loss. Cytomegalovirus is a ubiquitous pathogen that affects nearly 30,000 infants annually in the United States, leading to 3,000-4,000 cases of hearing loss. Prevention through vaccination has proved unreliable, as has the use of immune globulin. Prevention through education has been shown to be the most effective method of minimizing infection. Antiviral therapy is effective at reducing the impact of infection on newborns. Continued global efforts will hopefully provide more solutions for this opportunistic infection.
Collapse
|
8
|
Mate A, Reyes-Goya C, Santana-Garrido Á, Sobrevia L, Vázquez CM. Impact of maternal nutrition in viral infections during pregnancy. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166231. [PMID: 34343638 PMCID: PMC8325560 DOI: 10.1016/j.bbadis.2021.166231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Other than being a physiological process, pregnancy is a condition characterized by major adaptations of maternal endocrine and metabolic homeostasis that are necessary to accommodate the fetoplacental unit. Unfortunately, all these systemic, cellular, and molecular changes in maternal physiology also make the mother and the fetus more prone to adverse outcomes, including numerous alterations arising from viral infections. Common infections during pregnancy that have long been recognized as congenitally and perinatally transmissible to newborns include toxoplasmosis, rubella, cytomegalovirus, and herpes simplex viruses (originally coined as ToRCH infections). In addition, enterovirus, parvovirus B19, hepatitis virus, varicella-zoster virus, human immunodeficiency virus, Zika and Dengue virus, and, more recently, coronavirus infections including Middle Eastern respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) infections (especially the novel SARS-CoV-2 responsible for the ongoing COVID-19 pandemic), constitute relevant targets for current research on maternal-fetal interactions in viral infections during pregnancy. Appropriate maternal education from preconception to the early postnatal period is crucial to promote healthy pregnancies in general and to prevent and/or reduce the impact of viral infections in particular. Specifically, an adequate lifestyle based on proper nutrition plans and feeding interventions, whenever possible, might be crucial to reduce the risk of virus-related gestational diseases and accompanying complications in later life. Here we aim to provide an overview of the emerging literature addressing the impact of nutrition in the context of potentially harmful viral infections during pregnancy.
Collapse
Affiliation(s)
- Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Luis Sobrevia
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
9
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Parker EL, Silverstein RB, Verma S, Mysorekar IU. Viral-Immune Cell Interactions at the Maternal-Fetal Interface in Human Pregnancy. Front Immunol 2020; 11:522047. [PMID: 33117336 PMCID: PMC7576479 DOI: 10.3389/fimmu.2020.522047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
The human decidua and placenta form a distinct environment distinguished for its promotion of immunotolerance to infiltrating semiallogeneic trophoblast cells to enable successful pregnancy. The maternal-fetal interface also successfully precludes transmission of most pathogens. This barrier function occurs in conjunction with a diverse influx of decidual immune cells including natural killer cells, macrophages and T cells. However, several viruses, among other microorganisms, manage to escape destruction by the host adaptive and innate immune system, leading to congenital infection and adverse pregnancy outcomes. In this review, we describe mechanisms of pathogenicity of two such viral pathogens, Human cytomegalovirus (HCMV) and Zika virus (ZIKV) at the maternal-fetal interface. Host decidual immune cell responses to these specific pathogens will be considered, along with their interactions with other cell types and the ways in which these immune cells may both facilitate and limit infection at different stages of pregnancy. Neither HCMV nor ZIKV naturally infect commonly used animal models [e.g., mice] which makes it challenging to understand disease pathogenesis. Here, we will highlight new approaches using placenta-on-a-chip and organoids models that are providing functional and physiologically relevant ways to study viral-host interaction at the maternal-fetal interface.
Collapse
Affiliation(s)
- Elaine L. Parker
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Rachel B. Silverstein
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Sonam Verma
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Goodwin ML, Webster HS, Wang HY, Jenks JA, Nelson CS, Tu JJ, Mangold JF, Valencia S, Pollara J, Edwards W, McLellan JS, Wrapp D, Fu TM, Zhang N, Freed DC, Wang D, An Z, Permar SR. Specificity and effector functions of non-neutralizing gB-specific monoclonal antibodies isolated from healthy individuals with human cytomegalovirus infection. Virology 2020; 548:182-191. [PMID: 32838941 PMCID: PMC7447913 DOI: 10.1016/j.virol.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/23/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Helen S Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Hsuan-Yuan Wang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Cody S Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jesse F Mangold
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Whitney Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ, USA; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
12
|
Rozhnova G, E Kretzschmar M, van der Klis F, van Baarle D, Korndewal M, C Vossen A, van Boven M. Short- and long-term impact of vaccination against cytomegalovirus: a modeling study. BMC Med 2020; 18:174. [PMID: 32611419 PMCID: PMC7331215 DOI: 10.1186/s12916-020-01629-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infection with cytomegalovirus (CMV) is highly prevalent worldwide and can cause severe disease in immunocompromised persons and congenitally infected infants. The disease burden caused by congenital CMV infection is high, especially in resource-limited countries. Vaccines are currently under development for various target groups. METHODS We evaluated the impact of vaccination strategies and hygiene intervention using transmission models. Model parameters were estimated from a cross-sectional serological population study (n=5179) and a retrospective birth cohort (n=31,484), providing information on the age- and sex-specific CMV prevalence and on the birth prevalence of congenital CMV (cCMV). RESULTS The analyses show that vertical transmission and infectious reactivation are the main drivers of transmission. Vaccination strategies aimed at reducing transmission from mother to child (vaccinating pregnant women or women of reproductive age) can yield substantial reductions of cCMV in 20 years (31.7-71.4% if 70% of women are effectively vaccinated). Alternatively, hygiene intervention aimed at preventing CMV infection and re-infection of women of reproductive age from young children is expected to reduce cCMV by less than 2%. The effects of large-scale vaccination on CMV prevalence can be substantial, owing to the moderate transmissibility of CMV at the population level. However, as CMV causes lifelong infection, the timescale on which reductions in CMV prevalence are expected is in the order of several decades. Elimination of CMV infection in the long run is only feasible for a vaccine with a long duration of protection and high vaccination coverage. CONCLUSIONS Vaccination is an effective intervention to reduce the birth prevalence of cCMV. Population-level reductions in CMV prevalence can only be achieved on a long timescale. Our results stress the value of vaccinating pregnant women and women of childbearing age and provide support for the development of CMV vaccines and early planning of vaccination scenarios and rollouts.
Collapse
Affiliation(s)
- Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
| | - Mirjam E Kretzschmar
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Fiona van der Klis
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Debbie van Baarle
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Marjolein Korndewal
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Ann C Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel van Boven
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
13
|
Nelson CS, Jenks JA, Pardi N, Goodwin M, Roark H, Edwards W, McLellan JS, Pollara J, Weissman D, Permar SR. Human Cytomegalovirus Glycoprotein B Nucleoside-Modified mRNA Vaccine Elicits Antibody Responses with Greater Durability and Breadth than MF59-Adjuvanted gB Protein Immunization. J Virol 2020; 94:e00186-20. [PMID: 32051265 PMCID: PMC7163130 DOI: 10.1128/jvi.00186-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
A vaccine to prevent maternal acquisition of human cytomegalovirus (HCMV) during pregnancy is a primary strategy to reduce the incidence of congenital disease. The MF59-adjuvanted glycoprotein B (gB) protein subunit vaccine (gB/MF59) is the most efficacious vaccine tested to date for this indication. We previously identified that gB/MF59 vaccination elicited poor neutralizing antibody responses and an immunodominant response against gB antigenic domain 3 (AD-3). Thus, we sought to test novel gB vaccines to improve functional antibody responses and reduce AD-3 immunodominance. Groups of juvenile New Zealand White rabbits were administered 3 sequential doses of the full-length gB protein with an MF59-like squalene-based adjuvant, the gB ectodomain protein (lacking AD-3) with squalene adjuvant, or lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA encoding full-length gB. All vaccines were highly immunogenic with similar kinetics and comparable peak gB-binding and functional antibody responses. The AD-3-immunodominant IgG response following human gB/MF59 vaccination was closely mimicked in rabbits. Though gB ectodomain subunit vaccination eliminated targeting of epitopes in AD-3, it did not improve vaccine-elicited neutralizing or nonneutralizing antibody functions. gB nucleoside-modified mRNA-LNP-immunized rabbits exhibited an enhanced durability of vaccine-elicited antibody responses. Furthermore, the gB mRNA-LNP vaccine enhanced the breadth of IgG binding responses against discrete gB peptides. Finally, low-magnitude gB-specific T cell activity was observed in the full-length gB protein and mRNA-LNP groups, though not in ectodomain-vaccinated rabbits. Altogether, these data suggest that the use of gB nucleoside-modified mRNA-LNP vaccines is a viable strategy for improving on the partial efficacy of gB/MF59 vaccination and should be further evaluated in preclinical models.IMPORTANCE Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects, resulting in permanent neurological disability for one newborn child every hour in the United States. After more than a half century of research and development, we remain without a clinically licensed vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease. In this study, we sought to improve upon the glycoprotein B protein vaccine (gB/MF59), the most efficacious HCMV vaccine evaluated in a clinical trial, via targeted modifications to either the protein structure or vaccine formulation. Utilization of a novel vaccine platform, nucleoside-modified mRNA formulated in lipid nanoparticles, increased the durability and breadth of vaccine-elicited antibody responses. We propose that an mRNA-based gB vaccine may ultimately prove more efficacious than the gB/MF59 vaccine and should be further evaluated for its ability to elicit antiviral immune factors that can prevent HCMV-associated disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Goodwin
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Hunter Roark
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
Rasmussen SA, Kancherla V, Conover E. Joint position statement on vaccines from the Society for Birth Defects Research and Prevention and the Organization of Teratology Information Specialists. Birth Defects Res 2020; 112:527-534. [PMID: 32270605 DOI: 10.1002/bdr2.1674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Sonja A Rasmussen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, Florida, USA
| | - Vijaya Kancherla
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Elizabeth Conover
- Department of Genetic Medicine, Munroe Meyer Institute, University of Nebraska Medical Center Omaha, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Baraniak I, Gomes AC, Sodi I, Langstone T, Rothwell E, Atkinson C, Pichon S, Piras-Douce F, Griffiths PD, Reeves MB. Seronegative patients vaccinated with cytomegalovirus gB-MF59 vaccine have evidence of neutralising antibody responses against gB early post-transplantation. EBioMedicine 2019; 50:45-54. [PMID: 31735553 PMCID: PMC6921368 DOI: 10.1016/j.ebiom.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) causes a ubiquitous infection which can pose a significant threat for immunocompromised individuals, such as those undergoing solid organ transplant (SOT). Arguably, the most successful vaccine studied to date is the recombinant glycoprotein-B (gB) with MF59 adjuvant which, in 3 Phase II trials, demonstrated 43-50% efficacy in preventing HCMV acquisition in seronegative healthy women or adolescents and reduction in virological parameters after SOT. However, the mechanism of vaccine protection in seronegative recipients remains undefined. METHODS We evaluated samples from the cohort of seronegative SOT patients enroled in the Phase II glycoprotein-B/MF59 vaccine trial who received organs from seropositive donors. Samples after SOT (0-90 days) were tested by real-time quantitative PCR for HCMV DNA. Anti-gB antibody levels were measured by ELISA. Neutralization was measured as a decrease in infectivity for fibroblast cell cultures revealed by expression of immediate-early antigens. FINDINGS Serological analyses revealed a more rapid increase in the humoral response against gB post transplant in vaccine recipients than in those randomised to receive placebo. Importantly, a number of patient sera displayed HCMV neutralising responses - neutralisation which was abrogated by pre-absorbing the sera with recombinant gB. INTERPRETATION We hypothesise that the vaccine primed the immune system of seronegative recipients which, when further challenged with virus at time of transplant, allowed the host to mount rapid immunological humoral responses even under conditions of T cell immune suppression during transplantation.
Collapse
Affiliation(s)
- Ilona Baraniak
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Ariane C Gomes
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Isabella Sodi
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Toby Langstone
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Emily Rothwell
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Claire Atkinson
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Sylvie Pichon
- Clinical Development, Sanofi Pasteur, Marcy l'Etoile, France
| | | | - Paul D Griffiths
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, UCL, Royal Free Campus, London NW3 2PF, United Kingdom.
| |
Collapse
|
16
|
Coppola T, Mangold JF, Cantrell S, Permar SR. Impact of Maternal Immunity on Congenital Cytomegalovirus Birth Prevalence and Infant Outcomes: A Systematic Review. Vaccines (Basel) 2019; 7:E129. [PMID: 31561584 PMCID: PMC6963523 DOI: 10.3390/vaccines7040129] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 11/16/2022] Open
Abstract
Congenital cytomegalovirus (cCMV) is the leading non-genetic cause of sensorineural hearing loss (SNHL), and efforts are geared towards prevention through vaccine development. Transmission rates following primary maternal infection occur at rates of 30-40%, however reported placental rates upon non-primary maternal infection is reported to be less than <4%. There is significant debate about whether this reduction in transmission rate is due to pre-existing maternal immunity, which could identify possible immunologic targets for vaccines. To address this question, we performed a systemic review of the literature using Preferred Reporting Items for Systematic Review and Analysis (PRISMA) guidelines. We identified cohort studies in high CMV seroprevalent (>80%) areas or in developing regions that examined a cohort of at least 50 infants for congenital CMV acquisition. We identified 19 articles that met criteria and were further categorized based on pre-conception serology, maternal seroprevalence, or previously known seroprevalence. Birth prevalence rates ranged from 0.4% to 6% (median 1.1%), with the studies reporting on clinical outcome (16/19 studies) noting the majority of infected infants as asymptomatic. We also utilized a recent study that differentiated primary maternal infections from chronic infections in a highly seropositive population to calculate a placental transmission rate in women with pre-existing immunity compared to that of no pre-existing immunity. This work confirms a low cCMV birth prevalence in highly seropositive populations, indicates via a calculated placental transmission rate that the CMV placental transmission rate is lower in non-primary infection than that of primary infection, and reveals gaps in data for further research aiming to identify targets for vaccine development.
Collapse
Affiliation(s)
- Tiziana Coppola
- Department of Pediatrics, Duke University Hospital, Durham, NC, 27701, USA.
| | | | - Sarah Cantrell
- Medical Center Library & Archives, Duke University, Durham, NC, 27701, USA.
| | - Sallie R Permar
- Department of Pediatrics, Duke University Hospital, Durham, NC, 27701, USA.
- Duke HumanVaccine Institute, Durham, NC, 27701, USA.
| |
Collapse
|
17
|
Nelson CS, Huffman T, Jenks JA, Cisneros de la Rosa E, Xie G, Vandergrift N, Pass RF, Pollara J, Permar SR. HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions. Proc Natl Acad Sci U S A 2018; 115:6267-6272. [PMID: 29712861 PMCID: PMC6004431 DOI: 10.1073/pnas.1800177115] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection worldwide, frequently causing hearing loss and brain damage in afflicted infants. A vaccine to prevent maternal acquisition of HCMV during pregnancy is necessary to reduce the incidence of infant disease. The glycoprotein B (gB) + MF59 adjuvant subunit vaccine platform is the most successful HCMV vaccine tested to date, demonstrating ∼50% efficacy in preventing HCMV acquisition in multiple phase 2 trials. However, the mechanism of vaccine protection remains unknown. Plasma from 33 postpartum women gB/MF59 vaccinees at peak immunogenicity was tested for gB epitope specificity as well as neutralizing and nonneutralizing anti-HCMV effector functions and compared with an HCMV-seropositive cohort. gB/MF59 vaccination elicited IgG responses with gB-binding magnitude and avidity comparable to natural infection. Additionally, IgG subclass distribution was similar with predominant IgG1 and IgG3 responses induced by gB vaccination and HCMV infection. However, vaccine-elicited antibodies exhibited limited neutralization of the autologous virus, negligible neutralization of multiple heterologous strains, and limited binding responses against gB structural motifs targeted by neutralizing antibodies including AD-1, AD-2, and domain I. Vaccinees had high-magnitude IgG responses against AD-3 linear epitopes, demonstrating immunodominance against this nonneutralizing, cytosolic region. Finally, vaccine-elicited IgG robustly bound membrane-associated gB on the surface of transfected or HCMV-infected cells and mediated virion phagocytosis, although were poor mediators of NK cell activation. Altogether, these data suggest that nonneutralizing antibody functions, including virion phagocytosis, likely played a role in the observed 50% vaccine-mediated protection against HCMV acquisition.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Tori Huffman
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Jennifer A Jenks
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | | - Guanhua Xie
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Nathan Vandergrift
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Robert F Pass
- Department of Pediatrics, University of Alabama, Birmingham, AL 35233
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
18
|
John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 2018; 36:1689-1699. [PMID: 29456015 DOI: 10.1016/j.vaccine.2018.01.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations.
Collapse
Affiliation(s)
- Shinu John
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Olga Yuzhakov
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Angela Woods
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Jessica Deterling
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Kimberly Hassett
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Christine A Shaw
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Giuseppe Ciaramella
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Abstract
INTRODUCTION Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. AREAS COVERED This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. EXPERT COMMENTARY The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Collapse
Affiliation(s)
- Michael Barry
- a Division of Infectious Diseases, Department of Medicine, Department of Immunology, Department of Molecular Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
20
|
Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis 2018; 29:615-624. [PMID: 27607910 DOI: 10.1097/qco.0000000000000317] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess the recent studies of therapy of pregnant women and neonates, aimed at preventing the consequences of congenital cytomegalovirus (CMV) infection. RECENT FINDINGS A recent randomized controlled trial of treatment of CMV during pregnancy with hyperimmune globulin did not show significant efficacy in prevention of foetal infection and morbidity, although there was a trend towards improvement with treatment. Trials of antiviral therapy of the mother during pregnancy have involved small numbers only, confounded by ethical and practical difficulties, and further studies are needed to demonstrate whether or not antivirals are useful and well tolerated in this setting.Antiviral treatment of neonatal CMV acquired congenitally has been studied in well controlled trials and the antiviral valganciclovir has shown efficacy in reducing the more severe outcomes. Trials are ongoing of the use of antivirals in less severe disease, although results are likely to take several years. SUMMARY Congenital CMV infection is the most frequent cause of congenital malformation in developed countries, with a symptomatic prevalence of 0.64% of all live births. Infection may result in neurodevelopmental delay, foetal or neonatal death, and most frequently, sensorineural hearing loss. Successful control of viral infections during pregnancy and in the newborn period is essential in reducing early and late morbidity and mortality. Control of congenital CMV infection may be via primary prevention methods such as reducing contact with the pathogen, improved hygiene - both for the pregnant mother and for the neonate, or secondary prevention via reduction of vertical transmission from mother to foetus and reduction in consequences of infection by treatment of infected pregnant women and infected neonates.
Collapse
|
21
|
Schleiss MR, Permar SR, Plotkin SA. Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00268-17. [PMID: 29046308 PMCID: PMC5717185 DOI: 10.1128/cvi.00268-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Minneapolis, Minnesota, USA
| | - Sallie R Permar
- Duke University Medical School, Human Vaccine Institute, Department of Pediatrics, Durham, North Carolina, USA
| | - Stanley A Plotkin
- University of Pennsylvania, Vaxconsult, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Itell HL, Nelson CS, Martinez DR, Permar SR. Maternal immune correlates of protection against placental transmission of cytomegalovirus. Placenta 2017; 60 Suppl 1:S73-S79. [PMID: 28456432 PMCID: PMC5650553 DOI: 10.1016/j.placenta.2017.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common congenitally transmitted pathogen worldwide, impacting an estimated 1 million newborns annually. In a subset of infected infants, congenital HCMV causes severe, long-lasting sequelae, including deafness, microcephaly, neurodevelopmental delay, and even death. Accordingly, a maternal vaccine to prevent congenital HCMV infection continues to be a top public health priority. Nevertheless, all vaccines tested to date have failed to meet clinical trial endpoints. Maternal immunity provides partial protection against congenital HCMV transmission, as vertical transmission from seropositive mothers is relatively rare. Therefore, an understanding of the maternal immune correlates of protection against HCMV congenital infection will be critical to inform design of an efficacious maternal vaccine. This review summarizes our understanding of the innate and adaptive immune correlates of protection against congenital transmission of HCMV, and discusses the advantages and applications of a novel nonhuman primate model of congenital CMV transmission to aid in rational vaccine design and evaluation.
Collapse
Affiliation(s)
- Hannah L Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - David R Martinez
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
23
|
Sheerin D, Openshaw PJM, Pollard AJ. Issues in vaccinology: Present challenges and future directions. Eur J Immunol 2017; 47:2017-2025. [PMID: 28861908 PMCID: PMC7163762 DOI: 10.1002/eji.201746942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
Vaccination is a principal and highly cost-effective means of controlling infectious diseases, providing direct protection against pathogens by conferring long-lasting immunological memory and inducing population-level herd immunity. Despite rapid ongoing progress in vaccinology, there remain many obstacles to the development and deployment of novel or improved vaccines; these include the underlying science of how to induce and sustain appropriate protective immune responses as well as bureaucratic, logistic and socio-political hurdles. The failure to distribute and administer existing vaccines to at-risk communities continues to account for a large proportion of infant mortality worldwide: almost 20 million children do not have access to basic vaccines and several million still die each year as a result. While emerging epidemic or pandemic diseases pose a significant threat to global health and prosperity, there are many infectious diseases which provide a continuous or cyclical burden on healthcare systems which also need to be addressed. Gaps in knowledge of the human immune system stand in the way of developing technologies to overcome individual and pathogenic variation. The challenges in tackling infectious disease and directions that the field of preventive medicine may take to improve the current picture of global health are the focus of this review.
Collapse
Affiliation(s)
- Dylan Sheerin
- Oxford Vaccine GroupDepartment of PaediatricsUniversity of OxfordOxfordUK
- the NIHR Oxford Biomedical Research Centre
| | - Peter JM Openshaw
- Respiratory MedicineNational Heart and Lung InstituteImperial College LondonUK
| | - Andrew J Pollard
- Oxford Vaccine GroupDepartment of PaediatricsUniversity of OxfordOxfordUK
- the NIHR Oxford Biomedical Research Centre
| |
Collapse
|
24
|
Korndewal MJ, Oudesluys-Murphy AM, Kroes ACM, van der Sande MAB, de Melker HE, Vossen ACTM. Long-term impairment attributable to congenital cytomegalovirus infection: a retrospective cohort study. Dev Med Child Neurol 2017; 59:1261-1268. [PMID: 28990181 DOI: 10.1111/dmcn.13556] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
AIM This study aimed to estimate long-term impairment attributable to congenital cytomegalovirus infection (cCMV). METHOD This nationwide cohort study retrospectively assessed cCMV in children born in 2008 in the Netherlands, testing 31 484 stored neonatal dried blood spots. Extensive medical data of cCMV-positive children (n=133) and matched cCMV-negative comparison children (n=274) up to 6 years of age were analysed. RESULTS Moderate to severe long-term impairment was diagnosed in 24.8% (33 out of 133) of all cCMV-positive children (53.8% in symptomatic, 17.8% in asymptomatic), compared with 12.0% (33 out of 274) of cCMV-negative children. Sensorineural hearing loss was seen only in five cCMV-positive children (3.8%). Developmental delays were diagnosed more often in cCMV-positive children than cCMV-negative children: motor (12.0% vs 1.5%), cognitive (6.0% vs 1.1%), and speech-language (16.5% vs 7.3%). Long-term impairment in multiple domains was more frequent in symptomatic (19.2%) and asymptomatic (8.4%) cCMV-positive children than cCMV-negative children (1.8%). INTERPRETATION Children with cCMV were twice as likely to have long-term impairment up to the age of 6 years, especially developmental delays and sensorineural hearing loss, than cCMV-negative comparison children, with a risk difference of 12.8%. These insights into the risk of cCMV-associated impairment can help optimize care and stimulate preventive measures. WHAT THIS PAPER ADDS Congenital cytomegalovirus infection (cCMV) leads to impairment in 25% of cases. Fifty per cent of children with cCMV symptoms at birth have long-term impairment. The risk difference of moderate to severe long-term impairment between children with and without cCMV is 13%, attributable to cCMV. cCMV leads to motor, cognitive, and speech-language developmental delay in children.
Collapse
Affiliation(s)
- Marjolein J Korndewal
- Center for Infectious Diseases, Epidemiology and Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marianne A B van der Sande
- Center for Infectious Diseases, Epidemiology and Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester E de Melker
- Center for Infectious Diseases, Epidemiology and Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ann C T M Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
25
|
Wilcox CR, Holder B, Jones CE. Factors Affecting the FcRn-Mediated Transplacental Transfer of Antibodies and Implications for Vaccination in Pregnancy. Front Immunol 2017; 8:1294. [PMID: 29163461 PMCID: PMC5671757 DOI: 10.3389/fimmu.2017.01294] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022] Open
Abstract
At birth, neonates are particularly vulnerable to infection and transplacental transfer of immunoglobulin G (IgG) from mother to fetus provides crucial protection in the first weeks of life. Transcytosis of IgG occurs via binding with the neonatal Fc receptor (FcRn) in the placental synctiotrophoblast. As maternal vaccination becomes an increasingly important strategy for the protection of young infants, improving our understanding of transplacental transfer and the factors that may affect this will become increasingly important, especially in low-income countries where the burden of morbidity and mortality is highest. This review highlights factors of relevance to maternal vaccination that may modulate placental transfer—IgG subclass, glycosylation of antibody, total maternal IgG concentration, maternal disease, infant gestational age, and birthweight—and outlines the conflicting evidence and questions that remain regarding the complexities of these relationships. Furthermore, the intricacies of the Ab–FcRn interaction remain poorly understood and models that may help address future research questions are described.
Collapse
Affiliation(s)
- Christopher R Wilcox
- National Institute of Health Research Wellcome Trust Clinical Research Facility, Southampton, United Kingdom
| | - Beth Holder
- Paediatrics Section, Division of Infectious Diseases, Centre for International Child Health, Imperial College London, London, United Kingdom
| | - Christine E Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
26
|
Affiliation(s)
| | - Russell W Steele
- 1 University of Queensland, Herston, Queensland, Australia.,2 Tulane University, New Orleans, LA, USA
| |
Collapse
|
27
|
van Boven M, van de Kassteele J, Korndewal MJ, van Dorp CH, Kretzschmar M, van der Klis F, de Melker HE, Vossen AC, van Baarle D. Infectious reactivation of cytomegalovirus explaining age- and sex-specific patterns of seroprevalence. PLoS Comput Biol 2017; 13:e1005719. [PMID: 28949962 PMCID: PMC5630159 DOI: 10.1371/journal.pcbi.1005719] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/06/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
Human cytomegalovirus (CMV) is a herpes virus with poorly understood transmission dynamics. Person-to-person transmission is thought to occur primarily through transfer of saliva or urine, but no quantitative estimates are available for the contribution of different infection routes. Using data from a large population-based serological study (n = 5,179), we provide quantitative estimates of key epidemiological parameters, including the transmissibility of primary infection, reactivation, and re-infection. Mixture models are fitted to age- and sex-specific antibody response data from the Netherlands, showing that the data can be described by a model with three distributions of antibody measurements, i.e. uninfected, infected, and infected with increased antibody concentration. Estimates of seroprevalence increase gradually with age, such that at 80 years 73% (95%CrI: 64%-78%) of females and 62% (95%CrI: 55%-68%) of males are infected, while 57% (95%CrI: 47%-67%) of females and 37% (95%CrI: 28%-46%) of males have increased antibody concentration. Merging the statistical analyses with transmission models, we find that models with infectious reactivation (i.e. reactivation that can lead to the virus being transmitted to a novel host) fit the data significantly better than models without infectious reactivation. Estimated reactivation rates increase from low values in children to 2%-4% per year in women older than 50 years. The results advance a hypothesis in which transmission from adults after infectious reactivation is a key driver of transmission. We discuss the implications for control strategies aimed at reducing CMV infection in vulnerable groups. Human cytomegalovirus (CMV) is a herpes virus causing lifelong infection. In high-income countries, the probability of infection increases gradually with age such that at old age up to 100% of the population is infected. CMV is thought to be transmitted mainly by transfer of saliva or urine, but little quantitative evidence is available about the transmission dynamics. We analyze serological data to estimate age- and sex-specific rates of infection, re-infection, and reactivation. The analyses show that infectious reactivation (i.e. reactivation of the virus in an infected person that is sufficient for it to be transmitted to another person) is essential to explain the data. We propose that infectious reactivation in adults is an important driver of transmission of CMV.
Collapse
Affiliation(s)
- Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- * E-mail:
| | - Jan van de Kassteele
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marjolein J. Korndewal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Leiden University Medical Center, Department of Medical Microbiology, Leiden, the Netherlands
| | - Christiaan H. van Dorp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Mirjam Kretzschmar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fiona van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Hester E. de Melker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ann C. Vossen
- Leiden University Medical Center, Department of Medical Microbiology, Leiden, the Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
28
|
Itell HL, Kaur A, Deere JD, Barry PA, Permar SR. Rhesus monkeys for a nonhuman primate model of cytomegalovirus infections. Curr Opin Virol 2017; 25:126-133. [PMID: 28888133 DOI: 10.1016/j.coviro.2017.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (HCMV) is the leading opportunistic viral infection in solid organ transplant patients and is the most common congenitally transmitted pathogen worldwide. Despite the significant burden of disease HCMV causes in immunosuppressed patients and infected newborns, there are no licensed preventative vaccines or effective immunotherapeutic treatments for HCMV, largely due to our incomplete understanding of the immune correlates of protection against HCMV infection and disease. Though CMV species-specificity imposes an additional challenge in defining a suitable animal model for HCMV, nonhuman primate (NHP) CMVs are the most genetically related to HCMV. In this review, we discuss the advantages and applicability of rhesus monkey models for studying HCMV infections and pathogenesis and ultimately informing vaccine development.
Collapse
Affiliation(s)
- Hannah L Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Jesse D Deere
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA
| | - Peter A Barry
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
29
|
Coleman S, Choi KY, McGregor A. Cytomegalovirus UL128 homolog mutants that form a pentameric complex produce virus with impaired epithelial and trophoblast cell tropism and altered pathogenicity in the guinea pig. Virology 2017. [PMID: 28651121 DOI: 10.1016/j.virol.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Guinea pig cytomegalovirus (GPCMV) encodes a homolog pentameric complex (PC) for specific cell tropism and congenital infection. In human cytomegalovirus, the PC is an important antibody neutralizing target and GPCMV studies will aid in the development of intervention strategies. Deletion mutants of the C-terminal domains of unique PC proteins (UL128, UL130 and UL131 homologs) were unable to form a PC in separate transient expression assays. Minor modifications to the UL128 homolog (GP129) C-terminal domain enabled PC formation but viruses encoding these mutants had altered tropism to renal and placental trophoblast cells. Mutation of the presumptive CC chemokine motif encoded by GP129 was investigated by alanine substitution of the CC motif (codons 26-27) and cysteines (codons 47 and 62). GP129 chemokine mutants formed PC but GP129 chemokine mutant viruses had reduced epitropism. A GP129 chemokine mutant virus pathogenicity study demonstrated reduced viral load to target organs but highly extended viremia.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
30
|
In utero cytomegalovirus infection and development of childhood acute lymphoblastic leukemia. Blood 2016; 129:1680-1684. [PMID: 27979823 DOI: 10.1182/blood-2016-07-723148] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/17/2016] [Indexed: 02/07/2023] Open
Abstract
It is widely suspected, yet controversial, that infection plays an etiologic role in the development of acute lymphoblastic leukemia (ALL), the most common childhood cancer and a disease with a confirmed prenatal origin in most cases. We investigated infections at diagnosis and then assessed the timing of infection at birth in children with ALL and age, gender, and ethnicity matched controls to identify potential causal initiating infections. Comprehensive untargeted virome and bacterial analyses of pretreatment bone marrow specimens (n = 127 ALL in comparison with 38 acute myeloid leukemia cases in a comparison group) revealed prevalent cytomegalovirus (CMV) infection at diagnosis in childhood ALL, demonstrating active viral transcription in leukemia blasts as well as intact virions in serum. Screening of newborn blood samples revealed a significantly higher prevalence of in utero CMV infection in ALL cases (n = 268) than healthy controls (n = 270) (odds ratio [OR], 3.71, confidence interval [CI], 1.56-7.92, P = .0016). Risk was more pronounced in Hispanics (OR=5.90, CI=1.89-25.96) than in non-Hispanic whites (OR=2.10 CI= 0.69-7.13). This is the first study to suggest that congenital CMV infection is a risk factor for childhood ALL and is more prominent in Hispanic children. Further investigation of CMV as an etiologic agent for ALL is warranted.
Collapse
|
31
|
Slyker JA. Cytomegalovirus and paediatric HIV infection. J Virus Erad 2016; 2:208-214. [PMID: 27781102 PMCID: PMC5075347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytomegalovirus (CMV) was among the most common AIDS-defining illnesses prior to the advent of combination antiretroviral therapy (ART). In the ART era, CMV disease remains a significant public health threat among HIV-infected adults and children with delayed HIV diagnosis. CMV co-infection may additionally contribute to accelerated HIV progression, development of inflammation-related comorbidities, immune senescence and developmental deficits. Elimination of CMV would have tremendous public health significance and is an important priority; however, current vaccine strategies are not targeted at HIV-infected individuals. Antivirals active against CMV may be a novel strategy to prevent acquisition and improve outcomes, but haematological side effects are common and necessitate cautious use in pregnant women and infants. Studies in HIV-infected children on ART lag behind adults, and the clinical significance of CMV in this population is not well understood. Furthermore, the effects of CMV in HIV-exposed uninfected (HEU) children need to be clarified to understand whether CMV interventions should also be a priority for this growing population. This review discusses our current understanding of CMV transmission and pathogenesis in HIV-exposed children and highlights unanswered questions for future research.
Collapse
Affiliation(s)
- Jennifer A Slyker
- University of Washington,
Department of Global Health,
Seattle,
Washington,
USA,Corresponding author: Jennifer Slyker,
Harborview Medical Center,
325 9th Ave,
SeattleWA98118,
USA
| |
Collapse
|
32
|
|
33
|
Filteau S, Rowland-Jones S. Cytomegalovirus Infection May Contribute to the Reduced Immune Function, Growth, Development, and Health of HIV-Exposed, Uninfected African Children. Front Immunol 2016; 7:257. [PMID: 27446087 PMCID: PMC4928134 DOI: 10.3389/fimmu.2016.00257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
With increasing access to antiretroviral therapy (ART) in Africa, most children born to HIV-infected mothers are not themselves HIV-infected. These HIV-exposed, uninfected (HEU) children are at increased risk of mortality and have immune, growth, development, and health deficits compared to HIV-unexposed children. HEU children are known to be at higher risk than HIV-unexposed children of acquiring cytomegalovirus (CMV) infection in early life. This risk is largely unaffected by ART and is increased by breastfeeding, which itself is critically important for child health and survival. Early CMV infection, namely in utero or during early infancy, may contribute to reduced growth, altered or impaired immune functions, and sensory and cognitive deficits. We review the evidence that CMV may be responsible for the health impairments of HEU children. There are currently no ideal safe and effective interventions to reduce postnatal CMV infection. If a clinical trial showed proof of the principle that decreasing early CMV infection improved health and development of HEU children, this could provide the impetus needed for the development of better interventions to improve the health of this vulnerable population.
Collapse
Affiliation(s)
- Suzanne Filteau
- Department of Population Health, London School of Hygiene & Tropical Medicine , London , UK
| | | |
Collapse
|