1
|
Perez-Zabaleta M, Williams C, Cetecioglu Z. Development and implementation of assays to monitor human adenovirus F40/41 in wastewater: Trends preceding, during, and following the non-A-to-E hepatitis outbreak in Stockholm. ENVIRONMENT INTERNATIONAL 2024; 190:108937. [PMID: 39126729 DOI: 10.1016/j.envint.2024.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Human adenovirus (HAdV) type F41 has been identified as a possible cause of the non-A-to-E hepatitis outbreak. This study uses wastewater monitoring to track HAdV F40 and F41, supporting clinical investigations and providing insights into the pathogen's role in the outbreak. Given the limited clinical monitoring in Sweden of HAdV-F40/41, this approach also helps estimate the true infection burden of this pathogen during the outbreak. This study developed three qPCR assays for the hexon, penton, and fiber genes of HAdV F40 and F41. The hexon assay was F41-specific, while the fiber assay detected multiple HAdV-F strains. Comprehensive monitoring of HAdV-F40/41 levels in Stockholm's wastewater was conducted over 1.5 years, capturing the period before, during, and after the outbreak. A significant infection wave was observed in spring 2022, with strains beyond lineage 2 contributing to the outbreak. Moreover, simultaneous SARS-CoV-2 surveillance revealed that HAdV-F infections peaked at different times from COVID-19, but the HAdV-F wave aligned with the relaxation of pandemic restrictions. These findings offer valuable insights for future HAdV-F investigations and confirm its role in the non-A-to-E hepatitis outbreak.
Collapse
Affiliation(s)
- Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden.
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, SE-171 65 Solna, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| |
Collapse
|
2
|
Eckerstorfer MF, Dolezel M, Miklau M, Greiter A, Heissenberger A, Engelhard M. Scanning the Horizon for Environmental Applications of Genetically Modified Viruses Reveals Challenges for Their Environmental Risk Assessment. Int J Mol Sci 2024; 25:1507. [PMID: 38338787 PMCID: PMC10855828 DOI: 10.3390/ijms25031507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The release of novel genetically modified (GM) virus applications into the environment for agricultural, veterinary, and nature-conservation purposes poses a number of significant challenges for risk assessors and regulatory authorities. Continuous efforts to scan the horizon for emerging applications are needed to gain an overview of new GM virus applications. In addition, appropriate approaches for risk assessment and management have to be developed. These approaches need to address pertinent challenges, in particular with regard to the environmental release of GM virus applications with a high probability for transmission and spreading, including transboundary movements and a high potential to result in adverse environmental effects. However, the current preparedness at the EU and international level to assess such GM virus application is limited. This study addresses some of the challenges associated with the current situation, firstly, by conducting a horizon scan to identify emerging GM virus applications with relevance for the environment. Secondly, outstanding issues regarding the environmental risk assessment (ERA) of GM virus applications are identified based on an evaluation of case study examples. Specifically, the limited scientific information available for the ERA of some applications and the lack of detailed and appropriate guidance for ERA are discussed. Furthermore, considerations are provided for future work that is needed to establish adequate risk assessment and management approaches.
Collapse
Affiliation(s)
- Michael F. Eckerstorfer
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marion Dolezel
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marianne Miklau
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Anita Greiter
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Andreas Heissenberger
- Umweltbundesamt–Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Margret Engelhard
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany;
| |
Collapse
|
3
|
Rizotto LS, Bueno LM, Corrêa TC, Dos Santos de Moraes MV, de Oliveira Viana A, Silva LMN, Benassi JC, Scagion GP, Lopes BLT, de Assis IB, Ometto T, Dorlass EG, Cunha IN, Melinski RD, Leitão GL, Rodrigues RC, da Silva Pereira IM, D'ark Nunes Dos Santos L, Hingst-Zaher E, de Azevedo Junior SM, Junior WRT, de Araújo J, Durigon EL, Arns CW, Ferreira HL. Genetic diversity of adenovirus in neotropical bats from Brazil. Braz J Microbiol 2023; 54:3221-3230. [PMID: 37653362 PMCID: PMC10689316 DOI: 10.1007/s42770-023-01109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Bats can harbor a diversity of viruses, such as adenovirus. Ten different species of bat adenoviruses (BtAdV A to J) have been previous described worlwide. In Brazil, BtAdV was described in three species of phyllostomid species: Artibeus lituratus, Desmodus rotundus, and Sturnira lilium. There are around 180 bat species in Brazil, with 67% inhabiting the Atlantic Forest, with few information about the circulation of BtAdV in this biome. We aimed to describe the molecular detection and the phylogenetic characterization and suggest a classification of BtAdVs circulating in bats from the Brazilian Atlantic Forest. We collected 382 oral and rectal swabs from 208 bats between 2014-2015 and 2020-2021 from São Paulo, Pernambuco, and Santa Catarina Brazilian states. The adenovirus detection was done by a nested PCR targeting the DNA polymerase gene, and all positive samples were sequenced by the Sanger method. The phylogenetic analyses were based on the amino acid sequences using the MEGA 7 and BEAST software. We obtained 16 positive animals (detection rate 7.7%) belonging to seven bat species: Artibeus lituratus, Carollia perspicillata, Sturnira lilium, Molossus molossus, and the first record of Phyllostomus discolor, Eptesicus diminutus, and Myotis riparius. The phylogenetic analysis based on partial amino acid sequences showed that all obtained AdV sequences belong to the Mastadenovirus genus. We observed a high genetic diversity of BtAdV and identified eleven potential BtAdV species circulating in Brazil (BtAdV K to U). Our results contribute to the epidemiological surveillance of adenovirus, increasing the knowledge about the viral diversity and the distribution of AdV in bats from the Atlantic Forest.
Collapse
Affiliation(s)
- Laís Santos Rizotto
- Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, FMVZ-USP, São Paulo, SP, Brazil
| | - Larissa Mayumi Bueno
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Thaís Camilo Corrêa
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | | | | | - Julia Cristina Benassi
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | | | | | - Tatiana Ometto
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Erick Gustavo Dorlass
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | | | | | | | - Roberta Costa Rodrigues
- Laboratory of Ornithology, Department of Biology, Federal Rural University of Pernambuco, UFRPE, Recife, PE, Brazil
| | | | - Lilia D'ark Nunes Dos Santos
- Laboratory of Ornithology, Department of Biology, Federal Rural University of Pernambuco, UFRPE, Recife, PE, Brazil
| | | | | | | | - Jansen de Araújo
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Edison Luiz Durigon
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Clarice Weis Arns
- Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Helena Lage Ferreira
- Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, FMVZ-USP, São Paulo, SP, Brazil.
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil.
| |
Collapse
|
4
|
Collins ND, Beaty S, Wallace E, Li Y, Sanborn M, Yang Y, Adhikari A, Shabram P, Warfield K, Karasavvas N, Kuschner RA, Hang J. Differential Genome Replication of a Unique Single-Amino-Acid Mutation in the Adenovirus-4 Component of the Live Oral Adenovirus Type 4 and Type 7 Vaccine. Vaccines (Basel) 2023; 11:1144. [PMID: 37514960 PMCID: PMC10385111 DOI: 10.3390/vaccines11071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The FDA-approved Adenovirus Type 4 and Type 7 Vaccine, Live, Oral is highly effective and essential in preventing acute respiratory diseases (ARDs) in U.S. military recruits. Our study revealed the presence of a previously undetected mutation, not found in the wild-type human adenovirus type 4 (HAdV-4) component of the licensed vaccine, which contains an amino acid substitution (P388T) in the pre-terminal protein (pTP). This study demonstrated that replication of the T388 HAdV-4 vaccine mutant virus is favored over the wild type in WI-38 cells, the cell type utilized in vaccine manufacturing. However, results from serial human stool specimens of vaccine recipients support differential genome replication in the gastrointestinal tract (GI), demonstrated by the steady decline of the percentage of mutant T388 vaccine virus. Since vaccine efficacy depends upon GI replication and the subsequent immune response, the mutation can potentially impact vaccine efficacy.
Collapse
Affiliation(s)
- Natalie D Collins
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shannon Beaty
- Emergent BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Elana Wallace
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Yuanzhang Li
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mark Sanborn
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Yu Yang
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Anima Adhikari
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Paul Shabram
- Emergent BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Kelly Warfield
- Emergent BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Nicos Karasavvas
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Robert A Kuschner
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jun Hang
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
5
|
Morfopoulou S, Buddle S, Torres Montaguth OE, Atkinson L, Guerra-Assunção JA, Moradi Marjaneh M, Zennezini Chiozzi R, Storey N, Campos L, Hutchinson JC, Counsell JR, Pollara G, Roy S, Venturini C, Antinao Diaz JF, Siam A, Tappouni LJ, Asgarian Z, Ng J, Hanlon KS, Lennon A, McArdle A, Czap A, Rosenheim J, Andrade C, Anderson G, Lee JCD, Williams R, Williams CA, Tutill H, Bayzid N, Martin Bernal LM, Macpherson H, Montgomery KA, Moore C, Templeton K, Neill C, Holden M, Gunson R, Shepherd SJ, Shah P, Cooray S, Voice M, Steele M, Fink C, Whittaker TE, Santilli G, Gissen P, Kaufer BB, Reich J, Andreani J, Simmonds P, Alrabiah DK, Castellano S, Chikowore P, Odam M, Rampling T, Houlihan C, Hoschler K, Talts T, Celma C, Gonzalez S, Gallagher E, Simmons R, Watson C, Mandal S, Zambon M, Chand M, Hatcher J, De S, Baillie K, Semple MG, Martin J, Ushiro-Lumb I, Noursadeghi M, Deheragoda M, Hadzic N, Grammatikopoulos T, Brown R, Kelgeri C, Thalassinos K, Waddington SN, Jacques TS, Thomson E, Levin M, Brown JR, Breuer J. Genomic investigations of unexplained acute hepatitis in children. Nature 2023; 617:564-573. [PMID: 36996872 PMCID: PMC10170458 DOI: 10.1038/s41586-023-06003-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.
Collapse
Affiliation(s)
- Sofia Morfopoulou
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Sarah Buddle
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Oscar Enrique Torres Montaguth
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Laura Atkinson
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - José Afonso Guerra-Assunção
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mahdi Moradi Marjaneh
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Riccardo Zennezini Chiozzi
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | - Nathaniel Storey
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luis Campos
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Ciaran Hutchinson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John R Counsell
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Gabriele Pollara
- Division of Infection and Immunity, University College London, London, UK
| | - Sunando Roy
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cristina Venturini
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Juan F Antinao Diaz
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Ala'a Siam
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
| | - Luke J Tappouni
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Zeinab Asgarian
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
| | - Killian S Hanlon
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander Lennon
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrew McArdle
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Agata Czap
- Division of Infection and Immunity, University College London, London, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Catarina Andrade
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jack C D Lee
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rachel Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Charlotte A Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Helena Tutill
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nadua Bayzid
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luz Marina Martin Bernal
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Kylie-Ann Montgomery
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Catherine Moore
- Wales Specialist Virology Centre, Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, UK
| | - Kate Templeton
- Department of Medical Microbiology, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Claire Neill
- Public Health Agency Northern Ireland, Belfast, UK
| | - Matt Holden
- School of Medicine, University of St. Andrews, St. Andrews, UK
- Public Health Scotland, Edinburgh, UK
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | | | - Priyen Shah
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Samantha Cooray
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Marie Voice
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Michael Steele
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Colin Fink
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Thomas E Whittaker
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Giorgia Santilli
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Jana Reich
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Julien Andreani
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre Hospitalier Universitaire (CHU) Grenoble-Alpes, Grenoble, France
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dimah K Alrabiah
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sergi Castellano
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- University College London Genomics, University College London, London, UK
| | | | - Miranda Odam
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Tommy Rampling
- Division of Infection and Immunity, University College London, London, UK
- UK Health Security Agency, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catherine Houlihan
- Division of Infection and Immunity, University College London, London, UK
- UK Health Security Agency, London, UK
- Department of Clinical Virology, University College London Hospitals, London, UK
| | | | | | | | | | | | | | | | | | | | | | - James Hatcher
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Surjo De
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Malcolm Gracie Semple
- Pandemic Institute, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Joanne Martin
- Centre for Genomics and Child Health, The Blizard Institute, Queen Mary University of London, London, UK
| | | | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | | | | | | | - Rachel Brown
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Chayarani Kelgeri
- Liver Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Konstantinos Thalassinos
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
- Medical Research Council Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Thomas S Jacques
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Emma Thomson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Michael Levin
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
6
|
Veith T, Bleicker T, Eschbach-Bludau M, Brünink S, Mühlemann B, Schneider J, Beheim-Schwarzbach J, Rakotondranary SJ, Ratovonamana YR, Tsagnangara C, Ernest R, Randriantafika F, Sommer S, Stetter N, Jones TC, Drosten C, Ganzhorn JU, Corman VM. Non-structural genes of novel lemur adenoviruses reveal codivergence of virus and host. Virus Evol 2023; 9:vead024. [PMID: 37091898 PMCID: PMC10121206 DOI: 10.1093/ve/vead024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Adenoviruses (AdVs) are important human and animal pathogens and are frequently used as vectors for gene therapy and vaccine delivery. Surprisingly, there are only scant data regarding primate AdV origin and evolution, especially in the most basal primate hosts. We detect and sequence AdVs from faeces of two Madagascan lemur species. Complete genome sequence analyses define a new AdV species with a particularly large gene encoding a protein of unknown function in the early gene region 3. Unexpectedly, the new AdV species is not most similar to human or other simian AdVs but to bat adenovirus C. Genome characterisation shows signals of virus-host codivergence in non-structural genes, which show lower diversity than structural genes. Outside a lemur species mixing zone, recombination less frequently separates structural genes, as in human adenovirus C. The evolutionary history of lemur AdVs likely involves both a host switch and codivergence with the lemur hosts.
Collapse
Affiliation(s)
- Talitha Veith
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Monika Eschbach-Bludau
- Institute of Virology, University Hospital, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Sebastian Brünink
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Julia Schneider
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - S Jacques Rakotondranary
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Département Biologie Animale, Faculté des Sciences, Université d’ Antananarivo, P.O. Box 906, Antananarivo 101, Madagascar
| | - Yedidya R Ratovonamana
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Département Biologie Animale, Faculté des Sciences, Université d’ Antananarivo, P.O. Box 906, Antananarivo 101, Madagascar
| | - Cedric Tsagnangara
- Tropical Biodiversity and Social Enterprise SARL, Immeuble CNAPS, premier étage, Fort Dauphin 614, Madagascar
| | - Refaly Ernest
- Tropical Biodiversity and Social Enterprise SARL, Immeuble CNAPS, premier étage, Fort Dauphin 614, Madagascar
| | | | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm 89069, Germany
| | - Nadine Stetter
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, Hamburg 20359, Germany
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Jörg U Ganzhorn
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
- Labor Berlin, Charité—Vivantes GmbH, Sylter Straße 2, Berlin 13353, Germany
| |
Collapse
|
7
|
Saint-Pierre Contreras G, Conei Valencia D, Lizama L, Vargas Zuñiga D, Avendaño Carvajal LF, Ampuero Llanos S. An Old Acquaintance: Could Adenoviruses Be Our Next Pandemic Threat? Viruses 2023; 15:330. [PMID: 36851544 PMCID: PMC9966032 DOI: 10.3390/v15020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Human adenoviruses (HAdV) are one of the most important pathogens detected in acute respiratory diseases in pediatrics and immunocompromised patients. In 1953, Wallace Rowe described it for the first time in oropharyngeal lymphatic tissue. To date, more than 110 types of HAdV have been described, with different cellular tropisms. They can cause respiratory and gastrointestinal symptoms, even urinary tract inflammation, although most infections are asymptomatic. However, there is a population at risk that can develop serious and even lethal conditions. These viruses have a double-stranded DNA genome, 25-48 kbp, 90 nm in diameter, without a mantle, are stable in the environment, and resistant to fat-soluble detergents. Currently the diagnosis is made with lateral flow immunochromatography or molecular biology through a polymerase chain reaction. This review aimed to highlight the HAdV variability and the pandemic potential that a HAdV3 and 7 recombinant could have considering the aggressive outbreaks produced in health facilities. Herein, we described the characteristics of HAdV, from the infection to treatment, vaccine development, and the evaluation of the social determinants of health associated with HAdV, suggesting the necessary measures for future sanitary control to prevent disasters such as the SARS-CoV-2 pandemic, with an emphasis on the use of recombinant AdV vaccines to control other potential pandemics.
Collapse
Affiliation(s)
- Gustavo Saint-Pierre Contreras
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
- Unidad Microbiología, Hospital Barros Luco Trudeau, Servicio de Salud Metropolitano Sur, Santiago 8900000, Chile
| | - Daniel Conei Valencia
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile
| | - Luis Lizama
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Daniela Vargas Zuñiga
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Luis Fidel Avendaño Carvajal
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Sandra Ampuero Llanos
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| |
Collapse
|
8
|
Kumagai A, Kajikawa S, Miyazaki A, Hatama S. Whole-genome sequencing of live attenuated bovine adenovirus type 7 vaccine strain TS-GT suggests biomarkers for virulence attenuation. J Vet Med Sci 2022; 84:1118-1120. [PMID: 35768217 PMCID: PMC9412064 DOI: 10.1292/jvms.22-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine adenovirus type 7 (BAdV-7) is one of the most important respiratory and enteric pathogens in the cattle industry. Although live attenuated vaccines are used to control the virus in Japan, limited information is available on the genomic regions that determine viral pathogenicity. We determined the complete genome sequence of the attenuated BAdV-7 strain TS-GT. The genome is 30,052 bp long and contains 45-bp inverted terminal repeats and 30 predicted genes. A genome sequence comparison showed that 99.9% of the TS-GT genome is identical to the prototypic and pathogenic BAdV-7 strain Fukuroi; however, the TS-GT genome contains a novel mutation and four indels. We describe here potential relationships between these genomic changes and the biological characteristics of BAdV-7.
Collapse
Affiliation(s)
- Asuka Kumagai
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Sayo Kajikawa
- Himeji Livestock Hygiene Service Center, Hyogo, Japan
| | - Ayako Miyazaki
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Shinichi Hatama
- National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan.,Strategic Planning Headquarters, National Agriculture and Food Research Organization, Ibaraki, Japan
| |
Collapse
|
9
|
Boezen D, Ali G, Wang M, Wang X, van der Werf W, Vlak JM, Zwart MP. Empirical estimates of the mutation rate for an alphabaculovirus. PLoS Genet 2022; 18:e1009806. [PMID: 35666722 PMCID: PMC9203023 DOI: 10.1371/journal.pgen.1009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of μ = 1×10−7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to μ = 5×10−7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed. Virus populations can evolve rapidly, driven by the large number of mutations that occur during virus replication. It is challenging to measure mutation rates because selection will affect which mutations are observed: beneficial mutations are overrepresented in virus populations, while deleterious mutations are selected against and therefore underrepresented. Few mutation rates have been estimated for viruses with large DNA genomes, and there are no estimates for any insect virus. Here, we estimate the mutation rate for an alphabaculovirus, a virus that infects caterpillars and has a large, 134 kilobase pair DNA genome. To ensure that selection did not bias our estimate of mutation rate, we studied which mutations occurred in a large artificial region inserted into the virus genome, where mutations did not affect viral fitness. We deep sequenced evolved virus populations, and compared the distribution of observed mutants to predictions from a simulation model to estimate mutation rate. We found evidence for a relatively low mutation rate, of one mutation in every 10 million bases replicated. This estimate is in line with expectations for a DNA virus with self-correcting replication machinery and a large genome.
Collapse
Affiliation(s)
- Dieke Boezen
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ghulam Ali
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Manli Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Chu VT, Simon E, Lu X, Rockwell P, Abedi GR, Gardner C, Kujawski SA, Schneider E, Gentile M, Ramsey LA, Liu R, Jones S, Janik C, Siniscalchi A, Landry ML, Christopher J, Lindstrom S, Steiner S, Thomas D, Gerber SI, Biggs HM. Outbreak of Acute Respiratory Illness Associated with Human Adenovirus Type 4 at the U.S. Coast Guard Academy, 2019. J Infect Dis 2021; 225:55-64. [PMID: 34139752 DOI: 10.1093/infdis/jiab322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although a human adenovirus (HAdV) vaccine is available for military use, officers-in-training are not routinely vaccinated. We describe an HAdV-associated respiratory outbreak among unvaccinated cadets at the U.S. Coast Guard Academy and its impact on cadet training. METHODS We defined a case as a cadet with new onset cough or sore throat during August 1-October 4, 2019. We reviewed medical records and distributed a questionnaire to identify cases and to estimate impact on cadet training. We performed real-time PCR testing on patient and environmental samples and whole genome sequencing on a subset of positive patient samples. RESULTS Among the 1,072 cadets, 378 (35%) cases were identified by medical records (n=230) or additionally by the questionnaire (n=148). Of the 230 cases identified from medical records, 138 (60%) were male and 226 (98%) had no underlying conditions. From questionnaire responses, 113/228 (50%) cases reported duty restrictions. Of cases with respiratory specimens, 36/50 (72%) were HAdV positive; all 14 sequenced specimens were HAdV-4a1. Sixteen (89%) of 18 environmental specimens from the cadet dormitory were HAdV-positive. CONCLUSIONS The HAdV-4-associated outbreak infected a substantial number of cadets and significantly impacted cadet training. Routine vaccination could prevent HAdV respiratory outbreaks in this population.
Collapse
Affiliation(s)
- Victoria T Chu
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Esan Simon
- United States Coast Guard Academy, New London, Connecticut, USA.,United States Public Health Service, Rockville, Maryland, USA
| | - Xiaoyan Lu
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Glen R Abedi
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher Gardner
- United States Coast Guard Academy, New London, Connecticut, USA.,Yale-New Haven Hospital and Yale University, New Haven, Connecticut, USA
| | - Stephanie A Kujawski
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eileen Schneider
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Micah Gentile
- United States Coast Guard Academy, New London, Connecticut, USA
| | - Lee Ann Ramsey
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Robert Liu
- United States Coast Guard Academy, New London, Connecticut, USA
| | - Sydney Jones
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Connecticut Department of Public Health, Hartford, Connecticut, USA
| | - Christopher Janik
- United States Coast Guard Academy, New London, Connecticut, USA.,United States Public Health Service, Rockville, Maryland, USA
| | - Alan Siniscalchi
- Connecticut Department of Public Health, Hartford, Connecticut, USA
| | - Marie L Landry
- Yale-New Haven Hospital and Yale University, New Haven, Connecticut, USA
| | | | - Stephen Lindstrom
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shane Steiner
- United States Public Health Service, Rockville, Maryland, USA.,United States Coast Guard, Washington, D.C., USA
| | - Dana Thomas
- United States Public Health Service, Rockville, Maryland, USA.,United States Coast Guard, Washington, D.C., USA
| | - Susan I Gerber
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Holly M Biggs
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Pandey NV. DNA viruses and cancer: insights from evolutionary biology. Virusdisease 2020; 31:1-9. [PMID: 32206692 PMCID: PMC7085488 DOI: 10.1007/s13337-019-00563-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
When it comes to understanding the exact mechanisms behind the virus induced cancers, we have often turned to molecular biology. It would be fair to argue that our understanding of cancers caused by viruses has significantly improved since the isolation of Epstein-Barr virus from Burkitt's lymphoma. However they are some important questions that remain unexplored like what advantage do viruses derive by inducing carcinogenesis? Why do viruses code for the so called oncogenes? Why DNA viruses are disproportionately linked to cancers? These questions have been addressed from the lens of evolutionary biology in this review. The evolutionary analysis of virus induced cancer suggests that persistent strategy of infection could be a stable strategy for DNA viruses and also the main culprit behind their tendency to cause cancer. The framework presented in the review not only explains wider observations about cancer caused by viruses but also offers fresh predictions to test the hypothesis.
Collapse
|
12
|
Kuny CV, Bowen CD, Renner DW, Johnston CM, Szpara ML. In vitro evolution of herpes simplex virus 1 (HSV-1) reveals selection for syncytia and other minor variants in cell culture. Virus Evol 2020; 6:veaa013. [PMID: 32296542 PMCID: PMC7151645 DOI: 10.1093/ve/veaa013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The large dsDNA virus herpes simplex virus 1 (HSV-1) is considered to be genetically stable, yet it can rapidly evolve in response to strong selective pressures such as antiviral treatment. Deep sequencing has revealed that clinical and laboratory isolates of this virus exist as populations that contain a mixture of minor alleles or variants, similar to many RNA viruses. The classic virology approach of plaque purifying virus creates a genetically homogenous population, but it is not clear how closely this represents the mixed virus populations found in nature. We sought to study the evolution of mixed versus highly purified HSV-1 populations in controlled cell culture conditions, to examine the impact of this genetic diversity on evolution. We found that a mixed population of HSV-1 acquired more genetic diversity and underwent a more dramatic phenotypic shift than a plaque-purified population, producing a viral population that was almost entirely syncytial after just ten passages. At the genomic level, adaptation and genetic diversification occurred at the level of minor alleles or variants in the viral population. Certain genetic variants in the mixed viral population appeared to be positively selected in cell culture, and this shift was also observed in clinical samples during their first passages in vitro. In contrast, the plaque-purified viral population did not appear to change substantially in phenotype or overall quantity of minor allele diversity. These data indicate that HSV-1 is capable of evolving rapidly in a given environment, and that this evolution is facilitated by diversity in the viral population.
Collapse
Affiliation(s)
- Chad V Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Christopher D Bowen
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Daniel W Renner
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Christine M Johnston
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Moriah L Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
Hepatitis E Virus Shows More Genomic Alterations in Cell Culture than In Vivo. Pathogens 2019; 8:pathogens8040255. [PMID: 31766624 PMCID: PMC6963849 DOI: 10.3390/pathogens8040255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E Virus (HEV) mutations following ribavirin treatment have been associated with treatment non-response and viral persistence, but spontaneous occurring genomic variations have been less well characterized. We here set out to study the HEV genome composition in 2 patient sample types and 2 infection models. Near full HEV genome Sanger sequences of serum- and feces-derived HEV from two chronic HEV genotype 3 (gt3) patients were obtained. In addition, viruses were sequenced after in vitro or in vivo expansion on A549 cells or a humanized mouse model, respectively. We show that HEV acquired 19 nucleotide mutations, of which 7 nonsynonymous amino acids changes located in Open Reading Frame 1 (ORF1), ORF2, and ORF3 coding regions, after prolonged in vitro culture. In vivo passage resulted in selection of 8 nucleotide mutations with 2 altered amino acids in the X domain and Poly-proline region of ORF1. Intra-patient comparison of feces- and serum-derived HEV gt3 of two patients showed 7 and 2 nucleotide mutations with 2 and 0 amino acid changes, respectively. Overall, the number of genomic alterations was up to 1.25× per 1000 nucleotides or amino acids in in vivo samples, and up to 2.84× after in vitro expansion of the same clinical HEV strain. In vitro replication of a clinical HEV strain is therefore associated with more mutations, compared to the minor HEV genomic alterations seen after passage of the same strain in an immune deficient humanized mouse; as well as in feces and blood of 2 immunosuppressed chronically infected HEV patients. These data suggest that HEV infected humanized mice more closely reflect the HEV biology seen in solid organ transplant recipients.
Collapse
|
14
|
Khrustalev VV, Khrustaleva TA, Stojarov AN, Sharma N, Bhaskar B, Giri R. The history of mutational pressure changes during the evolution of adeno-associated viruses: A message to gene therapy and DNA-vaccine vectors designers. INFECTION GENETICS AND EVOLUTION 2019; 77:104100. [PMID: 31678645 DOI: 10.1016/j.meegid.2019.104100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
The use of virus-associated vectors for gene therapy and vaccination have emerged as safe and effective delivery system. Like all other genetic materials, these vehicles are also prone to spontaneous mutations. To understand what types of nucleotide mutations are expected in the vector, one needs to know distinct characteristics of mutational process in the corresponding virus. In this study we analyzed mutational pressure directions along the length of the genomes of all types of primate adeno-associated viruses (AAV) that are frequently used in gene therapy or DNA-vaccines. We observed clear evidences of transcription-associated mutational pressure in AAV: nucleotide usage biases are changing drastically after each of the three promoters: the higher the rate of transcription, the stronger the bias towards GC to AT mutations. Moreover, the usage of G decreased at the lower transcription rate (after P19 promoter) than the usage of C (after P40 promoter). Since nucleotide usage biases are retrospective indices, we created a scenario of changes in transcriptional map during the AAV evolution. Current mutational pressure directions are different for AAV types, while all of them demonstrate high rates of T to C transitions in the second long ORF. Since transcription rate and cell tropism are the main factors determining the preferable direction of nucleotide mutations in AAV, mutational pressure should be checked experimentally in DNA vectors before their final design with the aim to make the transferred gene more stable against those mutations.
Collapse
Affiliation(s)
| | - Tatyana Aleksandrovna Khrustaleva
- Biochemical Group of Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Bhaskar Bhaskar
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India; BioX Centre, Indian Institute of Technology Mandi, VPO Kamand, 175005, India
| |
Collapse
|
15
|
Risso-Ballester J, Sanjuán R. High Fidelity Deep Sequencing Reveals No Effect of ATM, ATR, and DNA-PK Cellular DNA Damage Response Pathways on Adenovirus Mutation Rate. Viruses 2019; 11:v11100938. [PMID: 31614688 PMCID: PMC6832117 DOI: 10.3390/v11100938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Most DNA viruses exhibit relatively low rates of spontaneous mutation. However, the molecular mechanisms underlying DNA virus genetic stability remain unclear. In principle, mutation rates should not depend solely on polymerase fidelity, but also on factors such as DNA damage and repair efficiency. Most eukaryotic DNA viruses interact with the cellular DNA damage response (DDR), but the role of DDR pathways in preventing mutations in the virus has not been tested empirically. To address this goal, we serially transferred human adenovirus type 5 in cells in which the telangiectasia-mutated PI3K-related protein kinase (ATM), the ATM/Rad3-related (ATR) kinase, and the DNA-dependent protein kinase (DNA-PK) were chemically inactivated, as well as in control cells displaying normal DDR pathway functioning. High-fidelity deep sequencing of these viral populations revealed mutation frequencies in the order of one-millionth, with no detectable effect of the inactivation of DDR mediators ATM, ATR, and DNA-PK on adenovirus sequence variability. This suggests that these DDR pathways do not play a major role in determining adenovirus genetic diversity.
Collapse
Affiliation(s)
- Jennifer Risso-Ballester
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| |
Collapse
|
16
|
Berman CM, Papa LJ, Hendel SJ, Moore CL, Suen PH, Weickhardt AF, Doan ND, Kumar CM, Uil TG, Butty VL, Hoeben RC, Shoulders MD. An Adaptable Platform for Directed Evolution in Human Cells. J Am Chem Soc 2018; 140:18093-18103. [PMID: 30427676 DOI: 10.1021/jacs.8b10937] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The discovery and optimization of biomolecules that reliably function in metazoan cells is imperative for both the study of basic biology and the treatment of disease. We describe the development, characterization, and proof-of-concept application of a platform for directed evolution of diverse biomolecules of interest (BOIs) directly in human cells. The platform relies on a custom-designed adenovirus variant lacking multiple genes, including the essential DNA polymerase and protease genes, features that allow us to evolve BOIs encoded by genes as large as 7 kb while attaining the mutation rates and enforcing the selection pressure required for successful directed evolution. High mutagenesis rates are continuously attained by trans-complementation of a newly engineered, highly error-prone form of the adenoviral polymerase. Selection pressure that couples desired BOI functions to adenoviral propagation is achieved by linking the functionality of the encoded BOI to the production of adenoviral protease activity by the human cell. The dynamic range for directed evolution can be enhanced to several orders of magnitude via application of a small-molecule adenoviral protease inhibitor to modulate selection pressure during directed evolution experiments. This platform makes it possible, in principle, to evolve any biomolecule activity that can be coupled to adenoviral protease expression or activation by simply serially passaging adenoviral populations carrying the BOI. As proof-of-concept, we use the platform to evolve, directly in the human cell environment, several transcription factor variants that maintain high levels of function while gaining resistance to a small-molecule inhibitor. We anticipate that this platform will substantially expand the repertoire of biomolecules that can be reliably and robustly engineered for both research and therapeutic applications in metazoan systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taco G Uil
- Department of Cell and Chemical Biology , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | | | - Robert C Hoeben
- Department of Cell and Chemical Biology , Leiden University Medical Center , 2300 RC Leiden , The Netherlands
| | | |
Collapse
|
17
|
Stepanenko AA, Chekhonin VP. A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 2018; 679:11-18. [PMID: 30171937 DOI: 10.1016/j.gene.2018.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/23/2022]
Abstract
In this review, we specifically focus on genetic modifications of oncolytic adenovirus 5 (Ad5)-based vectors that enhance replication, oncolysis/spread, and virus-mediated tumor immunosurveillance. The finding of negative regulation of minor core protein V by SUMOylation led to the identification of amino acid residues, which when mutated increase adenovirus replication and progeny yield. Suppression of Dicer and/or RNAi pathway with shRNA or p19 tomato bushy stunt protein also results in significant enhancement of adenovirus replication and progeny yield. Truncation mutations in E3-19K or i-leader sequence or overexpression of adenovirus death protein (ADP) potently increase adenovirus progeny release and spread without affecting virus yield. Moreover, E3-19K protein, which was found to inhibit both major histocompatibility complex I (MHCI) and MHC-I chain-related A and B proteins (MICA/MICB) expression on the cell surface, protecting infected cells from T-lymphocyte and natural killer (NK) cell attack, may be tailored to selectively target only MHCI or MICA/MICB, or to lose the ability to downregulate both. At last, E3-19K protein may be exploited to deliver tumor-associated epitopes directly to the endoplasmic reticulum for loading MHCI in the transporter associated with antigen processing (TAP)-deregulated cells.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia
| |
Collapse
|
18
|
Abstract
Many viruses evolve rapidly. This is due, in part, to their high mutation rates. Mutation rate estimates for over 25 viruses are currently available. Here, we review the population genetics of virus mutation rates. We specifically cover the topics of mutation rate estimation, the forces that drive the evolution of mutation rates, and how the optimal mutation rate can be context-dependent.
Collapse
|