1
|
Nenasheva VV, Stepanenko EA, Tarantul VZ. Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1283-1299. [PMID: 39218025 DOI: 10.1134/s0006297924070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
The multigene TRIM family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied. This review is the first comprehensive analysis of the mechanisms of functioning of the TRIM family genes in response to bacterial infections, which expands our knowledge about the role of TRIM in the innate immune system. When infected with different types of bacteria, individual TRIM proteins regulate inflammatory, interferon, and other responses of the immune system in the cells, and also affect autophagy and apoptosis. Functioning of TRIM proteins in response to bacterial infection, as well as viral infection, often includes ubiquitination and various protein-protein interactions with both bacterial proteins and host cell proteins. At the same time, some TRIM proteins, on the contrary, contribute to the infection development. Different members of the TRIM family possess similar mechanisms of response to viral and bacterial infection, and the final impact of these proteins could vary significantly. New data on the effect of TRIM proteins on bacterial infections make an important contribution to a more detailed understanding of the innate immune system functioning in animals and humans when interacting with pathogens. This data could also be used for the search of new targets for antibacterial defense.
Collapse
|
2
|
Carreno-Florez GP, Kocak BR, Hendricks MR, Melvin JA, Mar KB, Kosanovich J, Cumberland RL, Delgoffe GM, Shiva S, Empey KM, Schoggins JW, Bomberger JM. Interferon signaling drives epithelial metabolic reprogramming to promote secondary bacterial infection. PLoS Pathog 2023; 19:e1011719. [PMID: 37939149 PMCID: PMC10631704 DOI: 10.1371/journal.ppat.1011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.
Collapse
Affiliation(s)
- Grace P. Carreno-Florez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Brian R. Kocak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey A. Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Kosanovich
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
| | - Rachel L. Cumberland
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Greg M. Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
3
|
Stepanenko E, Bondareva N, Sheremet A, Fedina E, Tikhomirov A, Gerasimova T, Poberezhniy D, Makarova I, Tarantul V, Zigangirova N, Nenasheva V. Identification of Key TRIM Genes Involved in Response to Pseudomonas aeruginosa or Chlamydia spp. Infections in Human Cell Lines and in Mouse Organs. Int J Mol Sci 2023; 24:13290. [PMID: 37686095 PMCID: PMC10487655 DOI: 10.3390/ijms241713290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infections represent an unsolved problem today since bacteria can evade antibiotics and suppress the host's immune response. A family of TRIM proteins is known to play a role in antiviral defense. However, the data on the involvement of the corresponding genes in the antibacterial response are limited. Here, we used RT-qPCR to profile the transcript levels of TRIM genes, as well as interferons and inflammatory genes, in human cell lines (in vitro) and in mice (in vivo) after bacterial infections caused by Pseudomonas aeruginosa and Chlamydia spp. As a result, the genes were identified that are involved in the overall immune response and associated primarily with inflammation in human cells and in mouse organs when infected with both pathogens (TRIM7, 8, 14, 16, 17, 18, 19, 20, 21, 47, 68). TRIMs specific to the infection (TRIM59 for P. aeruginosa, TRIM67 for Chlamydia spp.) were revealed. Our findings can serve as a basis for further, more detailed studies on the mechanisms of the immune response to P. aeruginosa and Chlamydia spp. Studying the interaction between bacterial pathogens and the immune system contributes to the search for new ways to successfully fight bacterial infections.
Collapse
Affiliation(s)
- Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Natalia Bondareva
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Anna Sheremet
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Elena Fedina
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Alexei Tikhomirov
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
- Department of Chemistry and Technology of Biomedical Pharmaceuticals, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Tatiana Gerasimova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Daniil Poberezhniy
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Irina Makarova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Nailya Zigangirova
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| |
Collapse
|
4
|
Glover RC, Schwardt NH, Leano SKE, Sanchez ME, Thomason MK, Olive AJ, Reniere ML. A genome-wide screen in macrophages identifies PTEN as required for myeloid restriction of Listeria monocytogenes infection. PLoS Pathog 2023; 19:e1011058. [PMID: 37216395 PMCID: PMC10237667 DOI: 10.1371/journal.ppat.1011058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Listeria monocytogenes (Lm) is an intracellular foodborne pathogen which causes the severe disease listeriosis in immunocompromised individuals. Macrophages play a dual role during Lm infection by both promoting dissemination of Lm from the gastrointestinal tract and limiting bacterial growth upon immune activation. Despite the relevance of macrophages to Lm infection, the mechanisms underlying phagocytosis of Lm by macrophages are not well understood. To identify host factors important for Lm infection of macrophages, we performed an unbiased CRISPR/Cas9 screen which revealed pathways that are specific to phagocytosis of Lm and those that are required for internalization of bacteria generally. Specifically, we discovered the tumor suppressor PTEN promotes macrophage phagocytosis of Lm and L. ivanovii, but not other Gram-positive bacteria. Additionally, we found that PTEN enhances phagocytosis of Lm via its lipid phosphatase activity by promoting adherence to macrophages. Using conditional knockout mice lacking Pten in myeloid cells, we show that PTEN-dependent phagocytosis is important for host protection during oral Lm infection. Overall, this study provides a comprehensive identification of macrophage factors involved in regulating Lm uptake and characterizes the function of one factor, PTEN, during Lm infection in vitro and in vivo. Importantly, these results demonstrate a role for opsonin-independent phagocytosis in Lm pathogenesis and suggest that macrophages play a primarily protective role during foodborne listeriosis.
Collapse
Affiliation(s)
- Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicole H. Schwardt
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shania-Kate E. Leano
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Madison E. Sanchez
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Andrew J. Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Danziger O, Patel RS, DeGrace EJ, Rosen MR, Rosenberg BR. Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SARS-CoV-2 restriction factor. PLoS Pathog 2022; 18:e1010464. [PMID: 35421191 PMCID: PMC9041830 DOI: 10.1371/journal.ppat.1010464] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/26/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Interferons establish an antiviral state through the induction of hundreds of interferon-stimulated genes (ISGs). The mechanisms and viral specificities for most ISGs remain incompletely understood. To enable high-throughput interrogation of ISG antiviral functions in pooled genetic screens while mitigating potentially confounding effects of endogenous interferon and antiproliferative/proapoptotic ISG activities, we adapted a CRISPR-activation (CRISPRa) system for inducible ISG expression in isogenic cell lines with and without the capacity to respond to interferons. We used this platform to screen for ISGs that restrict SARS-CoV-2. Results included ISGs previously described to restrict SARS-CoV-2 and novel candidate antiviral factors. We validated a subset of these by complementary CRISPRa and cDNA expression experiments. OAS1, a top-ranked hit across multiple screens, exhibited strong antiviral effects against SARS-CoV-2, which required OAS1 catalytic activity. These studies demonstrate a high-throughput approach to assess antiviral functions within the ISG repertoire, exemplified by identification of multiple SARS-CoV-2 restriction factors.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Emma J. DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mikaela R. Rosen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
7
|
Murray LM, Thillaiyampalam G, Xi Y, Cristino AS, Upham JW. Whole transcriptome analysis of high and low IFN-α producers reveals differential response patterns following rhinovirus stimulation. Clin Transl Immunology 2021; 10:e1356. [PMID: 34868584 PMCID: PMC8599968 DOI: 10.1002/cti2.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives Viral respiratory infections cause considerable morbidity and economic loss. While rhinoviruses (RV) typically cause little more than the common cold, they can produce severe infections and disease exacerbations in susceptible individuals, such as those with asthma. Variations in the regulation of key antiviral cytokines, particularly type I interferon (IFN‐α and IFN‐β), may contribute to RV susceptibility. To understand this variability, we compared the transcriptomes of high and low type I IFN producers. Methods Blood mononuclear cells from 238 individuals with or without asthma were cultured in the presence or absence of RV. Those samples demonstrating high or low RV‐stimulated IFN‐α production (N = 75) underwent RNA‐sequencing. Results Gene expression patterns were similar in samples from healthy participants and those with asthma. At baseline, the high IFN‐α producer group showed higher expression of genes associated with plasmacytoid dendritic cells, the innate immune response and vitamin D activation, but lower expression of oxidative stress pathways than the low IFN‐α producer group. After RV stimulation, the high IFN‐α producer group showed higher expression of genes found in immune response biological pathways and lower expression of genes linked to developmental and catabolic processes when compared to the low IFN‐α producer group. Conclusions These differences suggest that the high IFN‐α group has a higher level of immune system readiness, resulting in a more intense and perhaps more focussed pathogen‐specific immune response. These results contribute to a better understanding of the variability in type I IFN production between individuals.
Collapse
Affiliation(s)
- Liisa M Murray
- Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Gayathri Thillaiyampalam
- Diamantina Institute The University of Queensland Brisbane QLD Australia.,Griffith Institute for Drug Discovery Griffith University Brisbane QLD Australia
| | - Yang Xi
- Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Alexandre S Cristino
- Diamantina Institute The University of Queensland Brisbane QLD Australia.,Griffith Institute for Drug Discovery Griffith University Brisbane QLD Australia
| | - John W Upham
- Diamantina Institute The University of Queensland Brisbane QLD Australia.,Respiratory and Sleep Medicine Princess Alexandra Hospital Brisbane QLD Australia
| |
Collapse
|
8
|
Rinkenberger N, Abrams ME, Matta SK, Schoggins JW, Alto NM, Sibley LD. Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection. eLife 2021; 10:e73137. [PMID: 34871166 PMCID: PMC8789288 DOI: 10.7554/elife.73137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Toxoplasma gondii is an important human pathogen infecting an estimated one in three people worldwide. The cytokine interferon gamma (IFNγ) is induced during infection and is critical for restricting T. gondii growth in human cells. Growth restriction is presumed to be due to the induction of interferon-stimulated genes (ISGs) that are upregulated to protect the host from infection. Although there are hundreds of ISGs induced by IFNγ, their individual roles in restricting parasite growth in human cells remain somewhat elusive. To address this deficiency, we screened a library of 414 IFNγ induced ISGs to identify factors that impact T. gondii infection in human cells. In addition to IRF1, which likely acts through the induction of numerous downstream genes, we identified RARRES3 as a single factor that restricts T. gondii infection by inducing premature egress of the parasite in multiple human cell lines. Overall, while we successfully identified a novel IFNγ induced factor restricting T. gondii infection, the limited number of ISGs capable of restricting T. gondii infection when individually expressed suggests that IFNγ-mediated immunity to T. gondii infection is a complex, multifactorial process.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - Michael E Abrams
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Sumit K Matta
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - John W Schoggins
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Neal M Alto
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
9
|
Kim H, Subbannayya Y, Humphries F, Skejsol A, Pinto SM, Giambelluca M, Espevik T, Fitzgerald KA, Kandasamy RK. UMP-CMP kinase 2 gene expression in macrophages is dependent on the IRF3-IFNAR signaling axis. PLoS One 2021; 16:e0258989. [PMID: 34705862 PMCID: PMC8550426 DOI: 10.1371/journal.pone.0258989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/09/2021] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLRs) are highly-conserved pattern recognition receptors that mediate innate immune responses to invading pathogens and endogenous danger signals released from damaged and dying cells. Activation of TLRs trigger downstream signaling cascades, that culminate in the activation of interferon regulatory factors (IRFs), which subsequently leads to type I interferon (IFN) response. In the current study, we sought to expand the scope of gene expression changes in THP1-derived macrophages upon TLR4 activation and to identify interferon-stimulated genes. RNA-seq analysis led to the identification of several known and novel differentially expressed genes, including CMPK2, particularly in association with type I IFN signaling. We performed an in-depth characterization of CMPK2 expression, a nucleoside monophosphate kinase that supplies intracellular UTP/CTP for nucleic acid synthesis in response to type I IFN signaling in macrophages. CMPK2 was significantly induced at both RNA and protein levels upon stimulation with TLR4 ligand-LPS and TLR3 ligand-Poly (I:C). Confocal microscopy and subcellular fractionation indicated CMPK2 localization in both cytoplasm and mitochondria of THP-1 macrophages. Furthermore, neutralizing antibody-based inhibition of IFNAR receptor in THP-1 cells and BMDMs derived from IFNAR KO and IRF3 KO knockout mice further revealed that CMPK2 expression is dependent on LPS/Poly (I:C) mediated IRF3- type I interferon signaling. In summary, our findings suggest that CMPK2 is a potential interferon-stimulated gene in THP-1 macrophages and that CMPK2 may facilitate IRF3- type I IFN-dependent anti-bacterial and anti-viral roles.
Collapse
Affiliation(s)
- Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Fiachra Humphries
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Astrid Skejsol
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam Giambelluca
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
10
|
Matta SK, Rinkenberger N, Dunay IR, Sibley LD. Toxoplasma gondii infection and its implications within the central nervous system. Nat Rev Microbiol 2021; 19:467-480. [PMID: 33627834 DOI: 10.1038/s41579-021-00518-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a parasite that infects a wide range of animals and causes zoonotic infections in humans. Although it normally only results in mild illness in healthy individuals, toxoplasmosis is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system. In the acute phase of infection, interferon-dependent immune responses control rapid parasite expansion and mitigate acute disease symptoms. However, after dissemination the parasite differentiates into semi-dormant cysts that form within muscle cells and neurons, where they persist for life in the infected host. Control of infection in the central nervous system, a compartment of immune privilege, relies on modified immune responses that aim to balance infection control while limiting potential damage due to inflammation. In response to the activation of interferon-mediated pathways, the parasite deploys an array of effector proteins to escape immune clearance and ensure latent survival. Although these pathways are best studied in the laboratory mouse, emerging evidence points to unique mechanisms of control in human toxoplasmosis. In this Review, we explore some of these recent findings that extend our understanding for proliferation, establishment and control of toxoplasmosis in humans.
Collapse
Affiliation(s)
- Sumit K Matta
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Rinkenberger
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L David Sibley
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
11
|
Hansen JM, de Jong MF, Wu Q, Zhang LS, Heisler DB, Alto LT, Alto NM. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 2021; 184:3178-3191.e18. [PMID: 34022140 PMCID: PMC8221529 DOI: 10.1016/j.cell.2021.04.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Gasdermin B (GSDMB) belongs to a large family of pore-forming cytolysins that execute inflammatory cell death programs. While genetic studies have linked GSDMB polymorphisms to human disease, its function in the immunological response to pathogens remains poorly understood. Here, we report a dynamic host-pathogen conflict between GSDMB and the IpaH7.8 effector protein secreted by enteroinvasive Shigella flexneri. We show that IpaH7.8 ubiquitinates and targets GSDMB for 26S proteasome destruction. This virulence strategy protects Shigella from the bacteriocidic activity of natural killer cells by suppressing granzyme-A-mediated activation of GSDMB. In contrast to the canonical function of most gasdermin family members, GSDMB does not inhibit Shigella by lysing host cells. Rather, it exhibits direct microbiocidal activity through recognition of phospholipids found on Gram-negative bacterial membranes. These findings place GSDMB as a central executioner of intracellular bacterial killing and reveal a mechanism employed by pathogens to counteract this host defense system.
Collapse
Affiliation(s)
- Justin M Hansen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maarten F de Jong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qi Wu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li-Shu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David B Heisler
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura T Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Abstract
Infectious disease research spans scales from the molecular to the global—from specific mechanisms of pathogen drug resistance, virulence, and replication to the movement of people, animals, and pathogens around the world. All of these research areas have been impacted by the recent growth of large-scale data sources and data analytics. Some of these advances rely on data or analytic methods that are common to most biomedical data science, while others leverage the unique nature of infectious disease, namely its communicability. This review outlines major research progress in the past few years and highlights some remaining opportunities, focusing on data or methodological approaches particular to infectious disease.
Collapse
Affiliation(s)
- Peter M. Kasson
- Department of Biomedical Engineering and Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
13
|
Abrams ME, Johnson KA, Perelman SS, Zhang LS, Endapally S, Mar KB, Thompson BM, McDonald JG, Schoggins JW, Radhakrishnan A, Alto NM. Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nat Microbiol 2020; 5:929-942. [PMID: 32284563 PMCID: PMC7442315 DOI: 10.1038/s41564-020-0701-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022]
Abstract
Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene that converts cholesterol to the oxysterol 25-hydroxycholesterol (25HC). Circulating 25HC modulates essential immunological processes including antiviral immunity, inflammasome activation and antibody class switching; and dysregulation of CH25H may contribute to chronic inflammatory disease and cancer. Although 25HC is a potent regulator of cholesterol storage, uptake, efflux and biosynthesis, how these metabolic activities reprogram the immunological state of target cells remains poorly understood. Here, we used recently designed toxin-based biosensors that discriminate between distinct pools of plasma membrane cholesterol to elucidate how 25HC prevents Listeria monocytogenes from traversing the plasma membrane of infected host cells. The 25HC-mediated activation of acyl-CoA:cholesterol acyltransferase (ACAT) triggered rapid internalization of a biochemically defined fraction of cholesterol, termed 'accessible' cholesterol, from the plasma membrane while having little effect on cholesterol in complexes with sphingomyelin. We show that evolutionarily distinct bacterial species, L. monocytogenes and Shigella flexneri, exploit the accessible pool of cholesterol for infection and that acute mobilization of this pool by oxysterols confers immunity to these pathogens. The significance of this signal-mediated membrane remodelling pathway probably extends beyond host defence systems, as several other biologically active oxysterols also mobilize accessible cholesterol through an ACAT-dependent mechanism.
Collapse
Affiliation(s)
- Michael E Abrams
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristen A Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sofya S Perelman
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, New York University School of Medicine, NY, NY, USA
| | - Li-Shu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shreya Endapally
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Hoffpauir CT, Bell SL, West KO, Jing T, Wagner AR, Torres-Odio S, Cox JS, West AP, Li P, Patrick KL, Watson RO. TRIM14 Is a Key Regulator of the Type I IFN Response during Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:153-167. [PMID: 32404352 DOI: 10.4049/jimmunol.1901511] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/20/2020] [Indexed: 01/05/2023]
Abstract
Tripartite motif-containing proteins (TRIMs) play a variety of recently described roles in innate immunity. Although many TRIMs regulate type I IFN expression following cytosolic nucleic acid sensing of viruses, their contribution to innate immune signaling and gene expression during bacterial infection remains largely unknown. Because Mycobacterium tuberculosis is an activator of cGAS-dependent cytosolic DNA sensing, we set out to investigate a role for TRIM proteins in regulating macrophage responses to M. tuberculosis In this study, we demonstrate that TRIM14, a noncanonical TRIM that lacks an E3 ubiquitin ligase RING domain, is a critical negative regulator of the type I IFN response in Mus musculus macrophages. We show that TRIM14 interacts with both cGAS and TBK1 and that macrophages lacking TRIM14 dramatically hyperinduce IFN stimulated gene (ISG) expression following M. tuberculosis infection, cytosolic nucleic acid transfection, and IFN-β treatment. Consistent with a defect in resolution of the type I IFN response, Trim14 knockout macrophages have more phospho-Ser754 STAT3 relative to phospho-Ser727 and fail to upregulate the STAT3 target Socs3, which is required to turn off IFNAR signaling. These data support a model whereby TRIM14 acts as a scaffold between TBK1 and STAT3 to promote phosphorylation of STAT3 at Ser727 and resolve ISG expression. Remarkably, Trim14 knockout macrophages hyperinduce expression of antimicrobial genes like Nos2 and are significantly better than control cells at limiting M. tuberculosis replication. Collectively, these data reveal an unappreciated role for TRIM14 in resolving type I IFN responses and controlling M. tuberculosis infection.
Collapse
Affiliation(s)
- Caitlyn T Hoffpauir
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807
| | - Kelsi O West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807
| | - Tao Jing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77807; and
| | - Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77807; and
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807;
| |
Collapse
|
15
|
Seifert LL, Si C, Saha D, Sadic M, de Vries M, Ballentine S, Briley A, Wang G, Valero-Jimenez AM, Mohamed A, Schaefer U, Moulton HM, García-Sastre A, Tripathi S, Rosenberg BR, Dittmann M. The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLoS Pathog 2019; 15:e1007634. [PMID: 31682641 PMCID: PMC6932815 DOI: 10.1371/journal.ppat.1007634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Induction of vast transcriptional programs is a central event of innate host responses to viral infections. Here we report a transcriptional program with potent antiviral activity, driven by E74-like ETS transcription factor 1 (ELF1). Using microscopy to quantify viral infection over time, we found that ELF1 inhibits eight diverse RNA and DNA viruses after multi-cycle replication. Elf1 deficiency results in enhanced susceptibility to influenza A virus infections in mice. ELF1 does not feed-forward to induce interferons, and ELF1’s antiviral effect is not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNA-seq revealed that the ELF1 transcriptional program is distinct from interferon signatures. Thus, ELF1 provides an additional layer of the innate host response, independent from the action of type I interferons. After decades of research on the innate immune system, we still struggle to understand exactly how this first line of defense protects cells against viral infections. Our gap in knowledge stems, on one hand, from the sheer number of effector genes, few of which have been characterized in mechanistic detail. On the other hand, our understanding of innate gene transcription is constantly evolving. We know that different regulatory mechanisms greatly influence the quality, magnitude, and timing of gene expression, all of which may contribute to the antiviral power of the innate response. Deciphering these regulatory mechanisms is indispensable for harnessing the power of innate immunity in novel antiviral therapies. Here, we report a novel transcriptional program as part of the cell-intrinsic immune system, raised by E74-like ETS transcription factor 1 (ELF1). ELF1 potently restricts multi-cycle propagation of all viruses tested in our study. Reduced levels of ELF1 significantly diminish host defenses against influenza A virus in vitro and in vivo, suggesting a critical but previously overlooked role of this ETS transcription factor. The ELF1 program is complex and comprises over 300 potentially antiviral genes, which are almost entirely distinct from those known to be induced by interferon. Taken together, our data provide evidence for a program of antiviral protection that expands the previously known arsenal of the innate immune response.
Collapse
Affiliation(s)
- Leon Louis Seifert
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Clara Si
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Debjani Saha
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mohammad Sadic
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maren de Vries
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah Ballentine
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aaron Briley
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana M. Valero-Jimenez
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Adil Mohamed
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York, United States of America
| | - Hong M. Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Microbiology and Cell Biology Department, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Meike Dittmann
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Helbig KJ, Teh MY, Crosse KM, Monson EA, Smith M, Tran EN, Standish AJ, Morona R, Beard MR. The interferon stimulated gene viperin, restricts Shigella. flexneri in vitro. Sci Rep 2019; 9:15598. [PMID: 31666594 PMCID: PMC6821890 DOI: 10.1038/s41598-019-52130-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
The role of interferon and interferon stimulated genes (ISG) in limiting bacterial infection is controversial, and the role of individual ISGs in the control of the bacterial life-cycle is limited. Viperin, is a broad acting anti-viral ISGs, which restricts multiple viral pathogens with diverse mechanisms. Viperin is upregulated early in some bacterial infections, and using the intracellular bacterial pathogen, S. flexneri, we have shown for the first time that viperin inhibits the intracellular bacterial life cycle. S. flexneri replication in cultured cells induced a predominantly type I interferon response, with an early increase in viperin expression. Ectopic expression of viperin limited S. flexneri cellular numbers by as much as 80% at 5hrs post invasion, with similar results also obtained for the intracellular pathogen, Listeria monocytogenes. Analysis of viperins functional domains required for anti-bacterial activity revealed the importance of both viperin's N-terminal, and its radical SAM enzymatic function. Live imaging of S. flexneri revealed impeded entry into viperin expressing cells, which corresponded to a loss of cellular cholesterol. This data further defines viperin's multi-functional role, to include the ability to limit intracellular bacteria; and highlights the role of ISGs and the type I IFN response in the control of bacterial pathogens.
Collapse
Affiliation(s)
- K J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - M Y Teh
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - K M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E A Monson
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - M Smith
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E N Tran
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - A J Standish
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - R Morona
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - M R Beard
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
17
|
Liu Z, Mar KB, Hanners NW, Perelman SS, Kanchwala M, Xing C, Schoggins JW, Alto NM. A NIK-SIX signalling axis controls inflammation by targeted silencing of non-canonical NF-κB. Nature 2019; 568:249-253. [PMID: 30894749 PMCID: PMC6812682 DOI: 10.1038/s41586-019-1041-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/18/2019] [Indexed: 12/31/2022]
Abstract
The non-canonical NF-κB signalling cascade is essential for lymphoid organogenesis, B cell maturation, osteoclast differentiation, and inflammation in mammals1,2; dysfunction of this system is associated with human diseases, including immunological disorders and cancer3-6. Although expression of NF-κB-inducing kinase (NIK, also known as MAP3K14) is the rate-limiting step in non-canonical NF-κB pathway activation2,7, the mechanisms by which transcriptional responses are regulated remain largely unknown. Here we show that the sine oculis homeobox (SIX) homologue family transcription factors SIX1 and SIX2 are integral components of the non-canonical NF-κB signalling cascade. The developmentally silenced SIX proteins are reactivated in differentiated macrophages by NIK-mediated suppression of the ubiquitin proteasome pathway. Consequently, SIX1 and SIX2 target a subset of inflammatory gene promoters and directly inhibit the trans-activation function of the transcription factors RELA and RELB in a negative feedback circuit. In support of a physiologically pivotal role for SIX proteins in host immunity, a human SIX1 transgene suppressed inflammation and promoted the recovery of mice from endotoxic shock. In addition, SIX1 and SIX2 protected RAS/P53-driven non-small-cell lung carcinomas from inflammatory cell death induced by SMAC-mimetic chemotherapeutic agents (small-molecule activators of the non-canonical NF-κB pathway). Our findings identify a NIK-SIX signalling axis that fine-tunes inflammatory gene expression programs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natasha W Hanners
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sofya S Perelman
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Cumming HE, Bourke NM. Type I IFNs in the female reproductive tract: The first line of defense in an ever-changing battleground. J Leukoc Biol 2018; 105:353-361. [PMID: 30549324 DOI: 10.1002/jlb.mr0318-122rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
The primary function of the female reproductive tract (FRT) is to enable successful reproduction, yet the biologic mechanisms required to accomplish this, which include fluctuating sex hormones and tolerance of semen and a semi-allogeneic fetus, can leave this unique mucosal environment susceptible to pathogenic challenge. Consequently, the FRT has evolved specialized innate and adaptive immune responses tailored to protecting itself from infection without compromising reproductive success. A family of innate immune cytokines that has emerged as important regulators of these immune responses is the type I IFNs. Type I IFNs are typically rapidly produced in response to pathogenic stimulation and are capable of sculpting pleotropic biologic effects, including immunomodulation, antiproliferative effects, and inducing antiviral and bactericidal molecules. Here, we review what is currently known about type I IFN-mediated immunity in the FRT in human, primate, and murine models and explore their importance with respect to three highly relevant FRT infections: HIV, Zika, and Chlamydia.
Collapse
Affiliation(s)
- Helen E Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Nollaig M Bourke
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Richardson RB, Ohlson MB, Eitson JL, Kumar A, McDougal MB, Boys IN, Mar KB, De La Cruz-Rivera PC, Douglas C, Konopka G, Xing C, Schoggins JW. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat Microbiol 2018; 3:1214-1223. [PMID: 30224801 PMCID: PMC6202210 DOI: 10.1038/s41564-018-0244-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/13/2018] [Indexed: 11/24/2022]
Abstract
The endoplasmic reticulum (ER) is an architecturally diverse organelle that serves as a membrane source for the replication of multiple viruses. Flaviviruses, including yellow fever virus, West Nile virus, dengue virus and Zika virus, induce unique single-membrane ER invaginations that house the viral replication machinery1. Whether this virus-induced ER remodelling is vulnerable to antiviral pathways is unknown. Here, we show that flavivirus replication at the ER is targeted by the interferon (IFN) response. Through genome-scale CRISPR screening, we uncovered an antiviral mechanism mediated by a functional gene pairing between IFI6 (encoding IFN-α-inducible protein 6), an IFN-stimulated gene cloned over 30 years ago2, and HSPA5, which encodes the ER-resident heat shock protein 70 chaperone BiP. We reveal that IFI6 is an ER-localized integral membrane effector that is stabilized through interactions with BiP. Mechanistically, IFI6 prophylactically protects uninfected cells by preventing the formation of virus-induced ER membrane invaginations. Notably, IFI6 has little effect on other mammalian RNA viruses, including the related Flaviviridae family member hepatitis C virus, which replicates in double-membrane vesicles that protrude outwards from the ER. These findings support a model in which the IFN response is armed with a membrane-targeted effector that discriminately blocks the establishment of virus-specific ER microenvironments that are required for replication. Flavivirus replication at the endoplasmic reticulum (ER) is targeted by the interferon response through blocking of the formation of virus-induced ER membrane invaginations by the interferon-stimulated gene IFI6, encoding an ER-localized integral membrane effector.
Collapse
Affiliation(s)
- R Blake Richardson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maikke B Ohlson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwani Kumar
- Bioinformatics Core, McDermott Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew B McDougal
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ian N Boys
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Connor Douglas
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Bioinformatics Core, McDermott Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Alhussien MN, Kamboj A, Aljader MA, Panda BS, Yadav ML, Sharma L, Mohammed S, Sheikh AA, Lotfan M, Kapila R, Mohanty A, Dang AK. Effect of tropical thermal stress on peri-implantation immune responses in cows. Theriogenology 2018; 114:149-158. [DOI: 10.1016/j.theriogenology.2018.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
|
21
|
Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018; 16:32-46. [PMID: 29176582 DOI: 10.1038/nrmicro.2017.126] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen responsible for a disease called listeriosis, which is potentially lethal in immunocompromised individuals. This bacterium, first used as a model to study cell-mediated immunity, has emerged over the past 20 years as a paradigm in infection biology, cell biology and fundamental microbiology. In this Review, we highlight recent advances in the understanding of human listeriosis and L. monocytogenes biology. We describe unsuspected modes of hijacking host cell biology, ranging from changes in organelle morphology to direct effects on host transcription via a new class of bacterial effectors called nucleomodulins. We then discuss advances in understanding infection in vivo, including the discovery of tissue-specific virulence factors and the 'arms race' among bacteria competing for a niche in the microbiota. Finally, we describe the complexity of bacterial regulation and physiology, incorporating new insights into the mechanisms of action of a series of riboregulators that are critical for efficient metabolic regulation, antibiotic resistance and interspecies competition.
Collapse
Affiliation(s)
- Lilliana Radoshevich
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|