1
|
Hu P, Li H, Ji Z, Jing W, Li Z, Yu S, Shan X, Cui Y, Wang B, Dong H, Zhou Y, Wang Z, Xiong H, Zhang X, Li HC, Wang J, Tang J, Wang T, Xie K, Liu Y, Zhu H, Yu Q. Fructose-1,6-diphosphate inhibits viral replication by promoting the lysosomal degradation of HMGB1 and blocking the binding of HMGB1 to the viral genome. PLoS Pathog 2024; 20:e1012782. [PMID: 39693295 DOI: 10.1371/journal.ppat.1012782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose-1,6-diphosphate (FBP), a key glycolytic metabolite, is recognized for its cytoprotective effects during stress. However, the role of FBP in viral infections is unknown. Here, we demonstrate that virus-infected cells exhibit elevated FBP levels. Exogenous FBP inhibits both RNA and DNA virus infections in vitro and in vivo. Modulating intracellular FBP levels by regulating the expression of the metabolic enzymes FBP1 and PFK1 significantly impacts viral infections. Mechanistically, the inhibitory effects of FBP are not a result of altered viral adhesion or entry and are largely independent of type I interferon-mediated immune responses; rather, they occur through modulation of HMGB1. During viral infections, FBP predominantly reduces the protein levels of HMGB1 by facilitating its lysosomal degradation. Furthermore, FBP interacts with HMGB1 and disrupts the binding of HMGB1 to viral genomes, thereby further inhibiting viral replication. Our findings underscore the potential of FBP as a therapeutic target for controlling viral infections.
Collapse
Affiliation(s)
- Penghui Hu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiyi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
| | - Zemin Ji
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weijia Jing
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zihan Li
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sujun Yu
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Shan
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Cui
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Baochen Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongyuan Dong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanzhao Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Zhe Wang
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Xiong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaomei Zhang
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui-Chieh Li
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinrong Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiuzhou Tang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuping Liu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haizhen Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
| | - Qiujing Yu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Walczak-Skierska J, Ludwiczak A, Sibińska E, Pomastowski P. Environmental Influence on Bacterial Lipid Composition: Insights from Pathogenic and Probiotic Strains. ACS OMEGA 2024; 9:37789-37801. [PMID: 39281888 PMCID: PMC11391446 DOI: 10.1021/acsomega.4c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
The lipid composition of bacterial membranes is pivotal in regulating bacterial physiology, pathogenicity, and interactions with hosts. This study presents a comprehensive analysis of bacterial membrane lipid profiles across diverse Gram-positive and Gram-negative species. Utilizing matrix-assisted laser desorption/ionization (MALDI) in conjunction with advanced chemometric tools, we investigate the influence of environmental factors, isolation sources, and host metabolism on bacterial lipid profiles. Our findings unveil significant variations in lipid composition attributed to factors such as carbon/energy availability and exposure to chemicals, including antibiotics. Moreover, we identify distinct lipidomic signatures associated with pathogenic and probiotic bacterial strains, shedding light on their functional properties and metabolic pathways. Notably, bacterial strains isolated from clinical samples exhibit unique lipid profiles influenced by host metabolic dysregulation, particularly evident in conditions such as diabetic foot infections. These results deepen our understanding of the intricate mechanisms governing bacterial membrane lipid biology and hold promise for informing the development of innovative therapeutic and biotechnological strategies.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Agnieszka Ludwiczak
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Str., Toruń 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Ewelina Sibińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| |
Collapse
|
3
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
4
|
Cressler CE, Metz DCG, Chang van Oordt DA, Graham AL. Immunological feedback loops generate parasite persistence thresholds that explain variation in infection duration. Proc Biol Sci 2024; 291:20240934. [PMID: 39317318 PMCID: PMC11421898 DOI: 10.1098/rspb.2024.0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual's infection history.
Collapse
Affiliation(s)
- Clayton E. Cressler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel C. G. Metz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Andrea L. Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
5
|
Reynolds MB, Klein B, McFadden MJ, Judge NK, Navarrete HE, Michmerhuizen BC, Awad D, Schultz TL, Harms PW, Zhang L, O'Meara TR, Sexton JZ, Lyssiotis CA, Kahlenberg JM, O'Riordan MX. Type I interferon governs immunometabolic checkpoints that coordinate inflammation during Staphylococcal infection. Cell Rep 2024; 43:114607. [PMID: 39126652 PMCID: PMC11590196 DOI: 10.1016/j.celrep.2024.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1β. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.
Collapse
Affiliation(s)
- Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin Klein
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah K Judge
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah E Navarrete
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Britton C Michmerhuizen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
Hiramatsu Y, Nishida T, Ota N, Tamaki Y, Nugraha DK, Horiguchi Y. DAT, deacylating autotransporter toxin, from Bordetella parapertussis demyristoylates Gα i GTPases and contributes to cough. Proc Natl Acad Sci U S A 2023; 120:e2308260120. [PMID: 37748060 PMCID: PMC10556565 DOI: 10.1073/pnas.2308260120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The pathogenic bacteria Bordetella pertussis and Bordetella parapertussis cause pertussis (whooping cough) and pertussis-like disease, respectively, both of which are characterized by paroxysmal coughing. We previously reported that pertussis toxin (PTx), which inactivates heterotrimeric GTPases of the Gi family through ADP-ribosylation of their α subunits, causes coughing in combination with Vag8 and lipid A in B. pertussis infection. In contrast, the mechanism of cough induced by B. parapertussis, which produces Vag8 and lipopolysaccharide (LPS) containing lipid A, but not PTx, remained to be elucidated. Here, we show that a toxin we named deacylating autotransporter toxin (DAT) of B. parapertussis inactivates heterotrimeric Gi GTPases through demyristoylation of their α subunits and contributes to cough production along with Vag8 and LPS. These results indicate that DAT plays a role in B. parapertussis infection in place of PTx.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Natsuko Ota
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Yuki Tamaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Dendi K. Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
8
|
Borer ET, Kendig AE, Holt RD. Feeding the fever: Complex host-pathogen dynamics along continuous resource gradients. Ecol Evol 2023; 13:e10315. [PMID: 37502304 PMCID: PMC10368943 DOI: 10.1002/ece3.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Food has long been known to perform dual functions of nutrition and medicine, but mounting evidence suggests that complex host-pathogen dynamics can emerge along continuous resource gradients. Empirical examples of nonmonotonic responses of infection with increasing host resources (e.g., low prevalence at low and high resource supply but high prevalence at intermediate resources) have been documented across the tree of life, but these dynamics, when observed, often are interpreted as nonintuitive, idiosyncratic features of pathogen and host biology. Here, by developing generalized versions of existing models of resource dependence for within- and among-host infection dynamics, we provide a synthetic view of nonmonotonic infection dynamics. We demonstrate that where resources jointly impact two (or more) processes (e.g., growth, defense, transmission, mortality, predation), nonmonotonic infection dynamics, including alternative states, can emerge across a continuous resource supply gradient. We review the few empirical examples that concurrently measured resource effects on multiple rates and pair this with a wide range of examples in which resource dependence of multiple rates could generate nonmonotonic infection outcomes under realistic conditions. This review and generalized framework highlight the likely generality of such resource effects in natural systems and point to opportunities ripe for future empirical and theoretical work.
Collapse
Affiliation(s)
- Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Amy E. Kendig
- Agronomy DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Minnesota Department of Natural ResourcesMinnesota Biological SurveySaint PaulMinnesotaUSA
| | - Robert D. Holt
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
9
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
10
|
Zhang J, Zhu M, Li Q, Tang T, Wen L, Zhong J, Zhang R, Yu XQ, Lu Y. Genome-wide identification and characterization of basic helix-loop-helix transcription factors in Spodoptera litura upon pathogen infection. INSECT SCIENCE 2022; 29:977-992. [PMID: 34687267 DOI: 10.1111/1744-7917.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play an important role in a wide range of metabolic and developmental processes in eukaryotes, and bHLH proteins also participate in immune responses, especially in plants. However, their roles in insects upon entomopathogen infection are unknown. In this study, 54 bHLH genes in 41 families were identified in a polyphagous pest, Spodoptera litura, including a new bHLH gene in group B, which is specifically present in Lepidoptera and was thus named Lep. The conserved amino acids in the bHLH domain, structural architecture, and chromosomal distribution of bHLH genes in S. litura were analyzed. The bHLH genes in Plutella xylostella and Apis mellifera were also updated, and genome-wide comparison and phylogenetic analysis of bHLH members in 5 holometabolous insects were performed. The expression profiles of S. litura bHLH (SlbHLH) genes in 3 tissues at different developmental stages and their responses to S. litura nucleopolyhedrovirus (SpltNPV), Nomuraea rileyi (Nr), and Bacillus thuringiensis (Bt) infection were investigated. More SlbHLHs in group B were expressed and differentially expressed during pathogen infections, and SlbHLHs tended to be downregulated in the midgut of S. litura larvae after B. thuringiensis treatment. Our study provides an overview of bHLH family members in S. litura and their responses to different pathogens used for pest biocontrol. These findings on bHLH members may contribute to uncovering the mechanism of host-pathogen interaction.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Espinel-Mesa DX, González Rugeles CI, Mantilla Hernández JC, Stashenko EE, Villegas-Lanau CA, Quimbaya Ramírez JJ, García Sánchez LT. Immunomodulation and Antioxidant Activities as Possible Trypanocidal and Cardioprotective Mechanisms of Major Terpenes from Lippia alba Essential Oils in an Experimental Model of Chronic Chagas Disease. Antioxidants (Basel) 2021; 10:antiox10111851. [PMID: 34829722 PMCID: PMC8614928 DOI: 10.3390/antiox10111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
In the late phase of Trypanosoma cruzi infection, parasite persistence and an exaggerated immune response accompanied by oxidative stress play a crucial role in the genesis of Chronic Chagasic Cardiomyopathy (CCC). Current treatments (Benznidazole (BNZ) and Nifurtimox) can effect only the elimination of the parasite, but are ineffective for late stage treatment and for preventing heart damage and disease progression. In vivo trypanocidal and cardioprotective activity has been reported for Lippia alba essential oils (EOs), ascribed to their two major terpenes, limonene and caryophyllene oxide. To investigate the role of antioxidant and immunomodulatory mechanisms behind these properties, chronic-T. cruzi-infected rats were treated with oral synergistic mixtures of the aforementioned EOs. For this purpose, the EOs were optimized through limonene-enrichment fractioning and by the addition of exogenous caryophyllene oxide (LIMOX) and used alone or in combined therapy with subtherapeutic doses of BNZ (LIMOXBNZ). Clinical, toxicity, inflammatory, oxidative, and parasitological (qPCR) parameters were assessed in cardiac tissue. These therapies demonstrated meaningful antioxidant and immunomodulatory activity on markers involved in CCC pathogenesis (IFN-γ, TNF-α, IL-4, IL-10, and iNOS), which could explain their significant trypanocidal properties and their noteworthy role in preventing, and even reversing, the progression of cardiac damage in chronic Chagas disease.
Collapse
Affiliation(s)
- Denerieth Ximena Espinel-Mesa
- Infectious Diseases Postgraduate Program, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680006, Santander, Colombia; (D.X.E.-M.); (J.J.Q.R.)
| | - Clara Isabel González Rugeles
- Immunology and Molecular Epidemiology Group, School of Microbiology, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia;
| | | | - Elena E. Stashenko
- National Research Center for the Agroindustrialization of Tropical Aromatic and Medicinal Plant Species—CENIVAM, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia;
| | | | - John Jaime Quimbaya Ramírez
- Infectious Diseases Postgraduate Program, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680006, Santander, Colombia; (D.X.E.-M.); (J.J.Q.R.)
| | - Liliana Torcoroma García Sánchez
- Infectious Diseases Postgraduate Program, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga 680006, Santander, Colombia; (D.X.E.-M.); (J.J.Q.R.)
- Correspondence:
| |
Collapse
|
12
|
Zhong L, Zhu L, Cai ZW. Mass Spectrometry-based Proteomics and Glycoproteomics in COVID-19 Biomarkers Identification: A Mini-review. JOURNAL OF ANALYSIS AND TESTING 2021; 5:298-313. [PMID: 34513131 PMCID: PMC8423835 DOI: 10.1007/s41664-021-00197-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
The first corona-pandemic, coronavirus disease 2019 (COVID-19) caused a huge health crisis and incalculable damage worldwide. Knowledge of how to cure the disease is urgently needed. Emerging immune escaping mutants of the virus suggested that it may be potentially persistent in human society as a regular health threat as the flu virus. Therefore, it is imperative to identify appropriate biomarkers to indicate pathological and physiological states, and more importantly, clinic outcomes. Proteins are the performers of life functions, and their abundance and modification status can directly reflect the immune status. Protein glycosylation serves a great impact in modulating protein function. The use of both unmodified and glycosylated proteins as biomarkers has also been proved feasible in the studies of SARS, Zika virus, influenza, etc. In recent years, mass spectrometry-based glycoproteomics, as well as proteomics approaches, advanced significantly due to the evolution of mass spectrometry. We focus on the current development of the mass spectrometry-based strategy for COVID-19 biomarkers' investigation. Potential application of glycoproteomics approaches and challenges in biomarkers identification are also discussed.
Collapse
Affiliation(s)
- Li Zhong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Zong-Wei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
13
|
Giogha C, Scott NE, Wong Fok Lung T, Pollock GL, Harper M, Goddard-Borger ED, Pearson JS, Hartland EL. NleB2 from enteropathogenic Escherichia coli is a novel arginine-glucose transferase effector. PLoS Pathog 2021; 17:e1009658. [PMID: 34133469 PMCID: PMC8238200 DOI: 10.1371/journal.ppat.1009658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/28/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation. Bacterial gut pathogens including enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC), manipulate host cell function by using a type III secretion system to inject ‘effector’ proteins directly into the host cell cytoplasm. We and others have shown that many of these effectors are novel enzymes, including NleB1, which transfers a single N-acetylglucosamine (GlcNAc) sugar to arginine residues, mediating Arg-GlcNAc glycosylation. Here, we found that a close homologue of NleB1 that is also present in EPEC and EHEC termed NleB2, uses a different sugar during glycosylation. We demonstrated that in contrast to NleB1, the preferred nucleotide-sugar substrate of NleB2 is UDP-glucose and we identified the amino acid residue within NleB2 that dictates this unique catalytic activity. Substitution of this residue in NleB2 and NleB1 switches the sugar donor usage of these enzymes but does not affect their ability to inhibit host cell signalling. Thus, NleB2 is the first identified bacterial arginine-glucose transferase, an activity which has previously only been described in plants and algae.
Collapse
Affiliation(s)
- Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ethan D. Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
14
|
Doppler imaging detects bacterial infection of living tissue. Commun Biol 2021; 4:178. [PMID: 33568744 PMCID: PMC7876006 DOI: 10.1038/s42003-020-01550-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
Living 3D in vitro tissue cultures, grown from immortalized cell lines, act as living sentinels as pathogenic bacteria invade the tissue. The infection is reported through changes in the intracellular dynamics of the sentinel cells caused by the disruption of normal cellular function by the infecting bacteria. Here, the Doppler imaging of infected sentinels shows the dynamic characteristics of infections. Invasive Salmonella enterica serovar Enteritidis and Listeria monocytogenes penetrate through multicellular tumor spheroids, while non-invasive strains of Escherichia coli and Listeria innocua remain isolated outside the cells, generating different Doppler signatures. Phase distributions caused by intracellular transport display Lévy statistics, introducing a Lévy-alpha spectroscopy of bacterial invasion. Antibiotic treatment of infected spheroids, monitored through time-dependent Doppler shifts, can distinguish drug-resistant relative to non-resistant strains. This use of intracellular Doppler spectroscopy of living tissue sentinels opens a new class of microbial assay with potential importance for studying the emergence of antibiotic resistance. Honggu Choi et al. use biodynamic Doppler imaging to monitor bacterial infection of 3D living tissue and describe changes in the intracellular motions of living host tissue induced by early-stage infection. This work demonstrates the potential for the clinical use of this method to test for antibiotic-resistant infections.
Collapse
|
15
|
Turk Wensveen T, Gašparini D, Rahelić D, Wensveen FM. Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Res Clin Pract 2021; 172:108637. [PMID: 33352263 PMCID: PMC8050380 DOI: 10.1016/j.diabres.2020.108637] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The recent pandemic of COVID-19 has made abundantly clear that Type 2 diabetes (T2D) increases the risk of more frequent and more severe viral infections. At the same time, pro-inflammatory cytokines of an anti-viral Type-I profile promote insulin resistance and form a risk factor for development of T2D. What this illustrates is that there is a reciprocal, detrimental interaction between the immune and endocrine system in the context of T2D. Why these two systems would interact at all long remained unclear. Recent findings indicate that transient changes in systemic metabolism are induced by the immune system as a strategy against viral infection. In people with T2D, this system fails, thereby negatively impacting the antiviral immune response. In addition, immune-mediated changes in systemic metabolism upon infection may aggravate glycemic control in T2D. In this review, we will discuss recent literature that sheds more light on how T2D impairs immune responses to viral infection and how virus-induced activation of the immune system increases risk of development of T2D.
Collapse
Affiliation(s)
- Tamara Turk Wensveen
- Center for Diabetes, Endocrinology and Cardiometabolism, Thallassotherapia, Opatija, Croatia; Department of Endocrinology, Diabetes and Metabolic Disorders, Clinical Hospital Centre, Rijeka, Croatia; Department of Internal Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Dora Gašparini
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Dario Rahelić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia; School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
16
|
Disrupting Bordetella Immunosuppression Reveals a Role for Eosinophils in Coordinating the Adaptive Immune Response in the Respiratory Tract. Microorganisms 2020; 8:microorganisms8111808. [PMID: 33212993 PMCID: PMC7698589 DOI: 10.3390/microorganisms8111808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Recent findings revealed pivotal roles for eosinophils in protection against parasitic and viral infections, as well as modulation of adaptive immune responses in the gastric mucosa. However, the known effects of eosinophils within the respiratory tract remain predominantly pathological, associated with allergy and asthma. Simulating natural respiratory infections in mice, we examined how efficient and well-adapted pathogens can block eosinophil functions that contribute to the immune response. Bordetella bronchiseptica, a natural pathogen of the mouse, uses the sigma factor btrS to regulate expression of mechanisms that interfere with eosinophil recruitment and function. When btrS is disrupted, immunomodulators are dysregulated, and eosinophils are recruited to the lungs, suggesting they may contribute to much more efficient generation of adaptive immunity induced by this mutant. Eosinophil-deficient mice failed to produce pro-inflammatory cytokines, to recruit lymphocytes, to organize lymphoid aggregates that resemble Bronchus Associated Lymphoid Tissue (BALT), to generate an effective antibody response, and to clear bacterial infection from the respiratory tract. Importantly, the failure of eosinophil-deficient mice to produce these lymphoid aggregates indicates that eosinophils can mediate the generation of an effective lymphoid response in the lungs. These data demonstrate that efficient respiratory pathogens can block eosinophil recruitment, to inhibit the generation of robust adaptive immune responses. They also suggest that some post-infection sequelae involving eosinophils, such as allergy and asthma, might be a consequence of bacterial mechanisms that manipulate their accumulation and/or function within the respiratory tract.
Collapse
|
17
|
Liu T, Yang Q, Wei W, Wang K, Wang E. Toll/IL-1 receptor-containing proteins STIR-1, STIR-2 and STIR-3 synergistically assist Yersinia ruckeri SC09 immune escape. FISH & SHELLFISH IMMUNOLOGY 2020; 103:357-365. [PMID: 32461169 DOI: 10.1016/j.fsi.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Immune escape is a common feature of bacteria, viruses, parasites and even cancer cells. Our earlier work on an integrative and conjugative element (ICEr2) of Yersinia ruckeri SC09 demonstrated contributory roles of stir-1, stir-2 and stir-3 in bacterial toxicity and ability to code for immune evasion. Here, we further examined the ability of stir-4 in ICE (r2) and its encoded STIR-4 protein to mediate immune evasion using comparative genomic analysis. Additionally, the mechanisms underlying the synergistic activities of STIR-1, STIR-2, STIR-3 and STIR-4 in immune evasion were examined. Our results showed that STIR-4 did not contribute to bacterial toxicity, either in vivo nor in vitro, or show the ability to assist in bacterial immune escape. STIR-1, STIR-2, and STIR-3 formed heterotrimers in bacteria while facilitating immune evasion, which we speculate may be essential to maintain their stability. This discovery also partially explains the previous finding that a single gene can mediate immune evasion. Our data provide further knowledge on the distribution of ICE (r2)-like elements in bacteria, validating the prevalence of large-scale gene transfer in pathogens and its potential for enhancing virulence levels. Further studies are necessary to establish the biological significance of the ICE (r2) component.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenyan Wei
- Institute of Fisheries of Chengdu Agriculture and Forestry Academy, Chengdu, China
| | - Kaiyu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Erlong Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
The Drosophila melanogaster Metabolic Response against Parasitic Nematode Infection Is Mediated by TGF-β Signaling. Microorganisms 2020; 8:microorganisms8070971. [PMID: 32610560 PMCID: PMC7409035 DOI: 10.3390/microorganisms8070971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
The nematode Heterorhabditis bacteriophora, its mutualistic bacterium Photorhabdus luminescens, and the fruit fly Drosophila melanogaster establish a unique system to study the basis of infection in relation to host metabolism. Our previous results indicate that the Transforming Growth Factor β (TGF-β) signaling pathway participates in the D. melanogaster metabolic response against nematode parasitism. However, our understanding of whether the presence of Photorhabdus bacteria in Heterorhabditis nematodes affects the metabolic state of D. melanogaster during infection is limited. Here, we investigated the involvement of TGF-β signaling branches, Activin and Bone Morphogenetic Protein (BMP), in the D. melanogaster metabolic response against axenic (lacking bacteria) or symbiotic (containing bacteria) H. bacteriophora infection. We show that BMP signaling mediates lipid metabolism against axenic or symbiotic H. bacteriophora and alters the size of fat body lipid droplets against symbiotic nematode infection. Also, following symbiotic H. bacteriophora infection, Activin signaling modulates sugar metabolism. Our results indicate that Activin and BMP signaling interact with the D. melanogaster metabolic response to H. bacteriophora infection regardless of the presence or absence of Photorhabdus. These findings provide evidence for the role of TGF-β signaling in host metabolism, which could lead to the development of novel treatments for parasitic diseases.
Collapse
|
19
|
Dewan KK, Linz B, DeRocco SE, Harvill ET. Acellular Pertussis Vaccine Components: Today and Tomorrow. Vaccines (Basel) 2020; 8:vaccines8020217. [PMID: 32414005 PMCID: PMC7349526 DOI: 10.3390/vaccines8020217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Pertussis is a highly communicable acute respiratory infection caused by Bordetella pertussis. Immunity is not lifelong after natural infection or vaccination. Pertussis outbreaks occur cyclically worldwide and effective vaccination strategies are needed to control disease. Whole-cell pertussis (wP) vaccines became available in the 1940s but have been replaced in many countries with acellular pertussis (aP) vaccines. This review summarizes disease epidemiology before and after the introduction of wP and aP vaccines, discusses the rationale and clinical implications for antigen inclusion in aP vaccines, and provides an overview of novel vaccine strategies aimed at better combating pertussis in the future.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.K.D.); (B.L.)
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.K.D.); (B.L.)
| | | | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.K.D.); (B.L.)
- Correspondence:
| |
Collapse
|
20
|
Petráčková D, Farman MR, Amman F, Linhartová I, Dienstbier A, Kumar D, Držmíšek J, Hofacker I, Rodriguez ME, Večerek B. Transcriptional profiling of human macrophages during infection with Bordetella pertussis. RNA Biol 2020; 17:731-742. [PMID: 32070192 PMCID: PMC7237194 DOI: 10.1080/15476286.2020.1727694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Bordetella pertussis, a strictly human re-emerging pathogen and the causative agent of whooping cough, exploits a broad variety of virulence factors to establish efficient infection. Here, we used RNA sequencing to analyse the changes in gene expression profiles of human THP-1 macrophages resulting from B. pertussis infection. In parallel, we attempted to determine the changes in intracellular B. pertussis-specific transcriptomic profiles resulting from interaction with macrophages. Our analysis revealed that global gene expression profiles in THP-1 macrophages are extensively rewired 6 h post-infection. Among the highly expressed genes, we identified those encoding cytokines, chemokines, and transcription regulators involved in the induction of the M1 and M2 macrophage polarization programmes. Notably, several host genes involved in the control of apoptosis and inflammation which are known to be hijacked by intracellular bacterial pathogens were overexpressed upon infection. Furthermore, in silico analyses identified large temporal changes in expression of specific gene subsets involved in signalling and metabolic pathways. Despite limited numbers of the bacterial reads, we observed reduced expression of majority of virulence factors and upregulation of several transcriptional regulators during infection suggesting that intracellular B. pertussis cells switch from virulent to avirulent phase and actively adapt to intracellular environment, respectively.
Collapse
Affiliation(s)
- Denisa Petráčková
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Mariam R. Farman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Irena Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Molecular Biology of Bacterial Pathogens, Prague, Czech Republic
| | - Ana Dienstbier
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Dilip Kumar
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Jakub Držmíšek
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| | - Maria Eugenia Rodriguez
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CINDEFI (UNLP CONICET La Plata), La Plata, Argentina
| | - Branislav Večerek
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| |
Collapse
|
21
|
Kelly AM, McLoughlin RM. Target the Host, Kill the Bug; Targeting Host Respiratory Immunosuppressive Responses as a Novel Strategy to Improve Bacterial Clearance During Lung Infection. Front Immunol 2020; 11:767. [PMID: 32425944 PMCID: PMC7203494 DOI: 10.3389/fimmu.2020.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is under constant pressure to protect the body from invading bacteria. An effective inflammatory immune response must be tightly orchestrated to ensure complete clearance of any invading bacteria, while simultaneously ensuring that inflammation is kept under strict control to preserve lung viability. Chronic bacterial lung infections are seen as a major threat to human life with the treatment of these infections becoming more arduous as the prevalence of antibiotic resistance becomes increasingly commonplace. In order to survive within the lung bacteria target the host immune system to prevent eradication. Many bacteria directly target inflammatory cells and cytokines to impair inflammatory responses. However, bacteria also have the capacity to take advantage of and strongly promote anti-inflammatory immune responses in the host lung to inhibit local pro-inflammatory responses that are critical to bacterial elimination. Host cells such as T regulatory cells and myeloid-derived suppressor cells are often enhanced in number and activity during chronic pulmonary infection. By increasing suppressive cell populations and cytokines, bacteria promote a permissive environment suitable for their prolonged survival. This review will explore the anti-inflammatory aspects of the lung immune system that are targeted by bacteria and how bacterial-induced immunosuppression could be inhibited through the use of host-directed therapies to improve treatment options for chronic lung infections.
Collapse
Affiliation(s)
- Alanna M Kelly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
van Leeuwen A, Budischak SA, Graham AL, Cressler CE. Parasite resource manipulation drives bimodal variation in infection duration. Proc Biol Sci 2020; 286:20190456. [PMID: 31064304 DOI: 10.1098/rspb.2019.0456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over a billion people on earth are infected with helminth parasites and show remarkable variation in parasite burden and chronicity. These parasite distributions are captured well by classic statistics, such as the negative binomial distribution. But the within-host processes underlying this variation are not well understood. In this study, we explain variation in macroparasite infection outcomes on the basis of resource flows within hosts. Resource flows realize the interactions between parasites and host immunity and metabolism. When host metabolism is modulated by parasites, we find a positive feedback of parasites on their own resources. While this positive feedback results in parasites improving their resource availability at high burdens, giving rise to chronic infections, it also results in a threshold biomass required for parasites to establish in the host, giving rise to acute infections when biomass fails to clear the threshold. Our finding of chronic and acute outcomes in bistability contrasts with classic theory, yet is congruent with the variation in helminth burdens observed in human and wildlife populations.
Collapse
Affiliation(s)
- Anieke van Leeuwen
- 1 Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University , PO Box 59, 1790 AB Den Burg, Texel , The Netherlands.,2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA
| | - Sarah A Budischak
- 2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA.,3 W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges , Claremont, CA , USA
| | - Andrea L Graham
- 2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA
| | - Clayton E Cressler
- 4 Department of Biological Sciences, University of Nebraska , Lincoln, NE , USA
| |
Collapse
|
23
|
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020; 9:cells9010161. [PMID: 31936570 PMCID: PMC7017145 DOI: 10.3390/cells9010161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.
Collapse
|
24
|
Gestal MC, Howard LK, Dewan K, Johnson HM, Barbier M, Bryant C, Soumana IH, Rivera I, Linz B, Blas-Machado U, Harvill ET. Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Sci Rep 2019; 9:20261. [PMID: 31889098 PMCID: PMC6937331 DOI: 10.1038/s41598-019-56652-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Well-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| | - Laura K Howard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, United States of America
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Uriel Blas-Machado
- Department of Pathology, Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| |
Collapse
|
25
|
Abstract
Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector’s MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects. Many symbionts supplement their host’s diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly’s salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is “hijacked” by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission.
Collapse
|
26
|
Wensveen FM, Šestan M, Turk Wensveen T, Polić B. 'Beauty and the beast' in infection: How immune-endocrine interactions regulate systemic metabolism in the context of infection. Eur J Immunol 2019; 49:982-995. [PMID: 31106860 DOI: 10.1002/eji.201847895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The immune and endocrine systems ensure two vital functions in the body. The immune system protects us from lethal pathogens, whereas the endocrine system ensures proper metabolic function of peripheral organs by regulating systemic homeostasis. These two systems were long thought to operate independently. The immune system uses cytokines and immune receptors, whereas the endocrine system uses hormones to regulate metabolism. However, recent findings show that the immune and endocrine systems closely interact, especially regarding regulation of glucose metabolism. In response to pathogen encounter, cytokines modify responsiveness of peripheral organs to endocrine signals, resulting in altered levels of blood hormones such as insulin, which promotes the ability of the body to fight infection. Here we provide an overview of recent literature describing various mechanisms, which the immune system utilizes to modify endocrine regulation of systemic metabolism. Moreover, we will describe how these immune-endocrine interactions derail in the context of obesity. From a clinical perspective we will elaborate how infection and obesity aggravate the development of metabolic diseases such as diabetes mellitus type 2 in humans. In summary, this review provides a comprehensive overview of immune-induced changes in systemic metabolism following infection, with a focus on regulation of glucose metabolism.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Marko Šestan
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Tamara Turk Wensveen
- Department of Endocrinology, Diabetes and Metabolic Diseases, Clinical hospital center Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| |
Collapse
|
27
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
28
|
Abstract
Viruses depend on the host cells they infect to provide the machinery and substrates for replication. Host cells are highly dynamic systems that can alter their intracellular environment and metabolic behavior, which may be helpful or inhibitory for an infecting virus. In this study, we show that macrophages, a target cell of murine norovirus (MNV), increase glycolysis upon viral infection, which is important for early steps in MNV infection. Human noroviruses (hNoV) are a major cause of gastroenteritis globally, causing enormous morbidity and economic burden. Currently, no effective antivirals or vaccines exist for hNoV, mainly due to the lack of high-efficiency in vitro culture models for their study. Thus, insights gained from the MNV model may reveal aspects of host cell metabolism that can be targeted for improving hNoV cell culture systems and for developing effective antiviral therapies. The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems.
Collapse
|
29
|
Pinaud L, Sansonetti PJ, Phalipon A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 2018; 26:266-283. [DOI: 10.1016/j.tim.2018.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
|