1
|
Hubal A, Vendhoti A, Shaffer CN, Vos S, Corcino YL, Subauste CS. Inhibition of Src signaling induces autophagic killing of Toxoplasma gondii via PTEN-mediated deactivation of Akt. PLoS Pathog 2025; 21:e1012907. [PMID: 39869638 PMCID: PMC11801697 DOI: 10.1371/journal.ppat.1012907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/06/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis. This raises the possibility that T. gondii activates a signaling mechanism independently of EGFR to avoid autophagic targeting. We report T. gondii activates Src to promote parasite survival even in cells that lack EGFR. Blockade of Src triggered LC3 and LAMP-1 recruitment around the parasitophorous vacuole (PV) and parasite killing dependent on the autophagy protein, ULK1, and lysosomal enzymes. Src promoted PI3K activation and recruitment of activated Akt to the PV membrane. T. gondii promoted Src association with PTEN, and PTEN phosphorylation at Y240, S380, T382, and T383, hallmarks of an inactive PTEN conformation known to maintain Akt activation. Blockade of parasite killing was dependent of activated Akt. Src knockdown or treatment with the Src family kinase inhibitor, Saracatinib, impaired these events, leading to PTEN accumulation around the PV and a reduction in activated Akt recruitment at this site. Saracatinib treatment in mice with pre-established cerebral and ocular toxoplasmosis promoted PTEN recruitment around tachyzoites in neural tissue impairing recruitment of activated Akt, profoundly reducing parasite load and neural histopathology that were dependent of the autophagy protein, Beclin 1. Our studies uncovered an EGFR-independent pathway activated by T. gondii that enables its survival and is central to the development of neural toxoplasmosis.
Collapse
Affiliation(s)
- Alyssa Hubal
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anusha Vendhoti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Charles N. Shaffer
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yalitza Lopez Corcino
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Carlos S. Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
2
|
Silva RCMC, Ribeiro JS, Farias TSDMD, Travassos LH. The role of host autophagy in intracellular protozoan parasites diseases. Arch Biochem Biophys 2024; 761:110186. [PMID: 39455040 DOI: 10.1016/j.abb.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Intracellular protozoan parasites are the etiologic agents of important human diseases, like malaria, Chagas disease, toxoplasmosis, and leishmaniasis. Inside host cells, these parasites manipulate the host metabolism and intracellular trafficking for their own benefits and, inevitably, induce several stress response mechanisms. In this review, we discuss autophagy as a stress response mechanism that can be both (i) explored by these intracellular parasites to acquire nutrients and (ii) to restrict parasite proliferation and survival within host cells. We also discuss the immunomodulatory role of autophagy as a strategy to reduce inflammatory-mediated damage, an essential player in the pathophysiology of these parasitic diseases. At last, we propose and discuss several known autophagy modulators as possible pharmaceuticals for adjunctive therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; State University of Rio de Janeiro, Faculty of Medical Sciences, Campus Cabo Frio, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thalita Santos de Moraes de Farias
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Shang M, Gong Y, Luo H, Chen W, Wu Y, Hu B, Dong H, Li X. Potential role of host autophagy in Clonorchis sinensis infection. Parasitol Res 2024; 123:359. [PMID: 39441249 DOI: 10.1007/s00436-024-08382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
An in vivo mouse model of Clonorchis sinensis (C. sinensis) infection with or without the administration of autophagy inhibitor chloroquine (CQ) stimulation was established to assess the possible involvement of autophagic response during C. sinensis infection. Abnormal liver function was observed at 4, 6, and 8 weeks post-infection, as indicated by elevated levels of ALT/GPT, AST/GOT, TBIL, and α-SMA in the infected groups. These findings indicated that C. sinensis infection activated autophagy, as shown by a decreased LC3II/I ratio and accumulated P62 expression in infected mice. Interestingly, CQ administration exhibited dual and opposing effects during the infection. In the early stage of infection, the engagement of CQ appeared to mitigate symptoms by reducing inflammation and fibrotic responses. However, in the later stage of infection, CQ might contribute to parasite survival by evading autophagic targeting, thereby exacerbating hepatic impairment and worsening liver fibrosis. Autophagy in liver was suppressed throughout the infection. These observations attested that C. sinensis infection triggered autophagy, and highlighted a complex role for CQ, with both protective and detrimental effects, in the in vivo process of C. sinensis infection.
Collapse
Affiliation(s)
- Mei Shang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Yu Gong
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hui Luo
- Department of Clinical Laboratory, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Wenjun Chen
- Department of Clinical Laboratory, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Bo Hu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.
| | - Huimin Dong
- Department of Clinical Laboratory, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China.
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
4
|
Wang D, Liu Y, Yang B, Zhang Z, El-Ashram S, Liu X, Li B. Toxoplasma gondii surface antigen 1 (SAG1) interacts in vitro with host cell receptor for activated C kinase 1 (RACK1). Acta Trop 2024; 251:107112. [PMID: 38157925 DOI: 10.1016/j.actatropica.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Toxoplasma gondii (T. gondii) surface antigen 1 (SAG1) is crucial for tachyzoite invasion into host cells. However, the role of SAG1 in interaction with host cells remains unknown. The primary objective of this study was to analyze and validate the interaction between SAG1 and host cells. RACK1, an intracellular multifunctional protein, was identified as a SAG1 binding partner in host cells. Furthermore, the expression of RACK1 is manipulated by SAG1, and depletion of RACK1 negatively regulated host cell viability. These results imply that through interaction with RACK1, SAG1 preserves the viability of host cells to satisfy the survival needs of T. gondii. Our findings suggest a novel role for SAG1 in intracellular parasitism.
Collapse
Affiliation(s)
- Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuming Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zixuan Zhang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Xiaogang Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Bing Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| |
Collapse
|
5
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
6
|
Guo Z, Ma Y, Jia Z, Wang L, Lu X, Chen Y, Wang Y, Hao H, Yu S, Wang Z. Crosstalk between integrin/FAK and Crk/Vps25 governs invasion of bovine mammary epithelial cells by S. agalactiae. iScience 2023; 26:107884. [PMID: 37766995 PMCID: PMC10520442 DOI: 10.1016/j.isci.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin β2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuixing Yu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Doghish AS, Ali MA, Elrebehy MA, Mohamed HH, Mansour R, Ghanem A, Hassan A, Elballal MS, Elazazy O, Elesawy AE, Abdel Mageed SS, Nassar YA, Mohammed OA, Abulsoud AI. The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathol Res Pract 2023; 250:154790. [PMID: 37683390 DOI: 10.1016/j.prp.2023.154790] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Toxoplasmosis is one of the highly prevalent zoonotic diseases worldwide caused by the parasite Toxoplasma gondii (T. gondii). The infection with T. gondii could pass unidentified in immunocompetent individuals; however, latent cysts remain dormant in their digestive tract, but they could be shed and excreted with feces infesting the environment. However, active toxoplasmosis can create serious consequences, particularly in newborns and infected persons with compromised immunity. These complications include ocular toxoplasmosis, in which most cases cannot be treated. Additionally, it caused many stillbirths and miscarriages. Circulating miRNAs are important regulatory molecules ensuring that the normal physiological role of various organs is harmonious. Upon infection with T. gondii, the tightly regulated miRNA profile is disrupted to favor the parasite's survival and further participate in the disease pathogenesis. Interestingly, this dysregulated profile could be useful in acute and chronic disease discrimination and in providing insights into the pathomechanisms of the disease. Thus, this review sheds light on the various roles of miRNAs in signaling pathways regulation involved in the pathogenesis of T. gondii and provides insights into the application of miRNAs clinically for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Hassan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
8
|
Diez AF, Leroux LP, Chagneau S, Plouffe A, Gold M, Chaparro V, Jaramillo M. Toxoplasma gondii inhibits the expression of autophagy-related genes through AKT-dependent inactivation of the transcription factor FOXO3a. mBio 2023; 14:e0079523. [PMID: 37387601 PMCID: PMC10470550 DOI: 10.1128/mbio.00795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii induces host AKT activation to prevent autophagy-mediated clearance; however, the molecular underpinnings are not fully understood. Autophagy can be negatively regulated through AKT-sensitive phosphorylation and nuclear export of the transcription factor Forkhead box O3a (FOXO3a). Using a combination of pharmacological and genetic approaches, herein we investigated whether T. gondii hinders host autophagy through AKT-dependent inactivation of FOXO3a. We found that infection by type I and II strains of T. gondii promotes gradual and sustained AKT-dependent phosphorylation of FOXO3a at residues S253 and T32 in human foreskin fibroblasts (HFF) and murine 3T3 fibroblasts. Mechanistically, AKT-sensitive phosphorylation of FOXO3a by T. gondii required live infection and the activity of PI3K but was independent of the plasma membrane receptor EGFR and the kinase PKCα. Phosphorylation of FOXO3a at AKT-sensitive residues was paralleled by its nuclear exclusion in T. gondii-infected HFF. Importantly, the parasite was unable to drive cytoplasmic localization of FOXO3a upon pharmacological blockade of AKT or overexpression of an AKT-insensitive mutant form of FOXO3a. Transcription of a subset of bona fide autophagy-related targets of FOXO3a was reduced during T. gondii infection in an AKT-dependent fashion. However, parasite-directed repression of autophagy-related genes was AKT-resistant in cells deficient in FOXO3a. Consistent with this, T. gondii failed to inhibit the recruitment of acidic organelles and LC3, an autophagy marker, to the parasitophorous vacuole upon chemically or genetically induced nuclear retention of FOXO3a. In all, we provide evidence that T. gondii suppresses FOXO3a-regulated transcriptional programs to prevent autophagy-mediated killing. IMPORTANCE The parasite Toxoplasma gondii is the etiological agent of toxoplasmosis, an opportunistic infection commonly transmitted by ingestion of contaminated food or water. To date, no effective vaccines in humans have been developed and no promising drugs are available to treat chronic infection or prevent congenital infection. T. gondii targets numerous host cell processes to establish a favorable replicative niche. Of note, T. gondii activates the host AKT signaling pathway to prevent autophagy-mediated killing. Herein, we report that T. gondii inhibits FOXO3a, a transcription factor that regulates the expression of autophagy-related genes, through AKT-dependent phosphorylation. The parasite's ability to block the recruitment of the autophagy machinery to the parasitophorous vacuole is impeded upon pharmacological inhibition of AKT or overexpression of an AKT-insensitive form of FOXO3a. Thus, our study provides greater granularity in the role of FOXO3a during infection and reinforces the potential of targeting autophagy as a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- Andres Felipe Diez
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Sophie Chagneau
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Mackenzie Gold
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| |
Collapse
|
9
|
Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells. Pathogens 2023; 12:pathogens12020253. [PMID: 36839525 PMCID: PMC9966443 DOI: 10.3390/pathogens12020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite. During the parasitic invasion, T. gondii creates a parasitophorous vacuole, which enables the modulation of cell functions, allowing its replication and host infection. It has effective strategies to escape the immune response and reach privileged immune sites and remain inactive in a controlled environment in tissue cysts. This current review presents the factors that affect host cells and the parasite, as well as changes in the immune system during host cell infection. The secretory organelles of T. gondii (dense granules, micronemes, and rhoptries) are responsible for these processes. They are involved with proteins secreted by micronemes and rhoptries (MIC, AMA, and RONs) that mediate the recognition and entry into host cells. Effector proteins (ROP and GRA) that modify the STAT signal or GTPases in immune cells determine their toxicity. Interference byhost autonomous cells during parasitic infection, gene expression, and production of microbicidal molecules such as reactive oxygen species (ROS) and nitric oxide (NO), result in the regulation of cell death. The high level of complexity in host cell mechanisms prevents cell death in its various pathways. Many of these abilities play an important role in escaping host immune responses, particularly by manipulating the expression of genes involved in apoptosis, necrosis, autophagy, and inflammation. Here we present recent works that define the mechanisms by which T. gondii interacts with these processes in infected host cells.
Collapse
|
10
|
Mead JR. Early immune and host cell responses to Cryptosporidium infection. FRONTIERS IN PARASITOLOGY 2023; 2:1113950. [PMID: 37325809 PMCID: PMC10269812 DOI: 10.3389/fpara.2023.1113950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells of the small intestine and cause diarrheal illness in both immunocompetent and immunodeficient individuals. These infections may be more severe in immunocompromised individuals and young children, especially in children under 2 in developing countries. The parasite has a global distribution and is an important cause of childhood diarrhea where it may result in cognitive impairment and growth deficits. Current therapies are limited with nitazoxanide being the only FDA-approved drug. However, it is not efficacious in immunocompromised patients. Additionally, there are no vaccines for cryptosporidiosis available. While acquired immunity is needed to clear Cryptosporidium parasites completely, innate immunity and early responses to infection are important in keeping the infection in check so that adaptive responses have time to develop. Infection is localized to the epithelial cells of the gut. Therefore, host cell defenses are important in the early response to infection and may be triggered through toll receptors or inflammasomes which induce a number of signal pathways, interferons, cytokines, and other immune mediators. Chemokines and chemokine receptors are upregulated which recruit immune cells such neutrophils, NK cells, and macrophages to the infection site to help in host cell defense as well as dendritic cells that are an important bridge between innate and adaptive responses. This review will focus on the host cell responses and the immune responses that are important in the early stages of infection.
Collapse
Affiliation(s)
- Jan R. Mead
- Department of Pediatrics, Children’s Healthcare Organization of Atlanta, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
11
|
Cheng A, Zhang H, Chen B, Zheng S, Wang H, Shi Y, You S, Li M, Jiang L. Modulation of autophagy as a therapeutic strategy for Toxoplasma gondii infection. Front Cell Infect Microbiol 2022; 12:902428. [PMID: 36093185 PMCID: PMC9448867 DOI: 10.3389/fcimb.2022.902428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Toxoplasma gondii infection is a severe health threat that endangers billions of people worldwide. T. gondii utilizes the host cell membrane to form a parasitophorous vacuole (PV), thereby fully isolating itself from the host cell cytoplasm and making intracellular clearance difficult. PV can be targeted and destroyed by autophagy. Autophagic targeting results in T. gondii killing via the fusion of autophagosomes and lysosomes. However, T. gondii has developed many strategies to suppress autophagic targeting. Accordingly, the interplay between host cell autophagy and T. gondii is an emerging area with important practical implications. By promoting the canonical autophagy pathway or attenuating the suppression of autophagic targeting, autophagy can be effectively utilized in the development of novel therapeutic strategies against T gondii. Here, we have illustrated the complex interplay between host cell mediated autophagy and T. gondii. Different strategies to promote autophagy in order to target the parasite have been elucidated. Besides, we have analyzed some potential new drug molecules from the DrugBank database using bioinformatics tools, which can modulate autophagy. Various challenges and opportunities focusing autophagy mediated T. gondii clearance have been discussed, which will provide new insights for the development of novel drugs against the parasite.
Collapse
Affiliation(s)
- Ao Cheng
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Huanan Zhang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Baike Chen
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengyao Zheng
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyi Wang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yijia Shi
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Siyao You
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Li
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Liping Jiang, ; Ming Li,
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Liping Jiang, ; Ming Li,
| |
Collapse
|
12
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
13
|
Wu M, An R, Zhou N, Chen Y, Cai H, Yan Q, Wang R, Luo Q, Yu L, Chen L, Du J. Toxoplasma gondii CDPK3 Controls the Intracellular Proliferation of Parasites in Macrophages. Front Immunol 2022; 13:905142. [PMID: 35757711 PMCID: PMC9226670 DOI: 10.3389/fimmu.2022.905142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Interferon-γ (IFN-γ)-activated macrophages restrain the replication of intracellular parasites and disrupt the integrity of vacuolar pathogens. The growth of the less virulent type II strain of Toxoplasma gondii (such as ME49) was strongly inhibited by IFN-γ-activated murine macrophages. However, the mechanism of resistance is poorly understood. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Previous studies showed the cassette of autophagy-related proteins including Atg7, Atg3, and Atg12-Atg5-Atg16L1 complex, plays crucial roles in the proper targeting of IFN-γ effectors onto the parasitophorous vacuole (PV) membrane of Toxoplasma gondii and subsequent control of parasites. TgCDPK3 is a calcium dependent protein kinase, located on the parasite periphery, plays a crucial role in parasite egress. Herein, we show that the less virulent strain CDPK3 (ME49, type II) can enhance autophagy activation and interacts with host autophagy proteins Atg3 and Atg5. Infection with CDPK3-deficient ME49 strain resulted in decreased localization of IRGs and GBPs around PV membrane. In vitro proliferation and plaque assays showed that CDPK3-deficient ME49 strain replicated significantly more quickly than wild-type parasites. These data suggested that TgCDPK3 interacts with the host Atg3 and Atg5 to promote the localization of IRGs and GBPs around PV membrane and inhibits the intracellular proliferation of parasites, which is beneficial to the less virulent strain of Toxoplasma gondii long-term latency in host cells.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Nan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ying Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,School of Nursing, Anhui Medical University, Hefei, China
| | - Haijian Cai
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Qingli Luo
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
15
|
Sun X, Xie H, Zhang H, Li Z, Qi H, Yang C, Liu X, Ren L, Jiang Y, Hu X. B7-H4 reduction induced by Toxoplasma gondii infection results in dysfunction of decidual dendritic cells by regulating the JAK2/STAT3 pathway. Parasit Vectors 2022; 15:157. [PMID: 35505420 PMCID: PMC9066748 DOI: 10.1186/s13071-022-05263-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Background Primary infection of Toxoplasma gondii can cause serious abnormal pregnancy outcomes such as miscarriage and stillbirth. Inhibitory molecule B7-H4 is abundantly expressed in dendritic cells (DCs) and plays an important role in maintaining immune tolerance. However, the role of B7-H4 in decidual DCs (dDCs) in T. gondii-induced abnormal pregnancy outcomes is not clear. Methods We established T. gondii-infected abnormal pregnancy model in wild-type (WT) and B7-H4 knockout (B7-H4−/−) pregnant mice in vivo and cultured primary human dDCs in vitro. The abnormal pregnancy outcomes were observed and the expression of B7-H4, functional molecules (CD80, CD86, and MHC-II or HLA-DR), indoleamine 2,3-dioxygenase (IDO), cytokines (IL-10 and IL-12), and signaling molecules JAK2/STAT3 in dDCs was detected by flow cytometry and Western blot. Results Our results showed that T. gondii infection significantly decreased B7-H4 expression in dDCs. In addition, B7-H4−/− infected pregnant mice showed much more severe abnormal pregnancy outcomes than their counterparts. Importantly, B7-H4−/− infection further regulated the expression of molecules (CD80, CD86, and MHC-II or HLA-DR), enzyme IDO, and cytokines (IL-10 and IL-12) in dDCs. We further discovered that B7-H4−/− infection impairs the JAK2/STAT3 pathway, contributing to dDC dysfunction. Conclusions Taken together, the results show that reduction of B7-H4 by T. gondii infection significantly modulates the decrease in cytokine IL-10 and enzyme IDO and the increase in cytokine IL-12, contributing to dDC dysfunction. Moreover, the JAK2/STAT3 pathway is involved in the regulation of B7-H4 by T. gondii infection and in the subsequent IDO and cytokine production, which ultimately contributes to abnormal pregnancy outcomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05263-1.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Hongbing Xie
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Houbao Qi
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Chunyan Yang
- Department of Oral Biology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Liqin Ren
- Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Tiffney EA, Coombes JL, Legembre P, Flynn RJ. Cleaved CD95L perturbs in vitro macrophages responses to Toxoplasma gondii. Microbes Infect 2022; 24:104952. [PMID: 35240289 DOI: 10.1016/j.micinf.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/13/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022]
Abstract
Toxoplasma gondii infects approximately 1-2 billion people, and manipulation of the macrophage response is critical to host and parasite survival. A cleaved (cl)-CD95L form can promote cellular migration and we have previously shown that cl-CD95L aggravates inflammation and pathology in systemic lupus erythematosus (SLE). Findings have shown that CD95L is upregulated during human infection, therefore we examined the effect of cl-CD95L on the macrophage response to T. gondii. . We find that cl-CD95L promotes parasite replication in macrophages, associated with increased arginase-1 levels, mediated by signal transducer and activator of transcription (STAT)6. Inhibition of both arginase-1 and STAT6 reversed the effects of cl-CD95L. Phospho-kinase array showed that cl-CD95L alters Janus Kinases (JAK)/STAT, mammalian target of rapamycin (mTOR), and Src kinase signals. By triggering changes in JAK/STAT cl-CD95L may limit anti-parasite effectors.
Collapse
Affiliation(s)
- Ellen A Tiffney
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF
| | - Janine L Coombes
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF
| | - Patrick Legembre
- Centre Eugène Marquis, Université Rennes-1, INSERM U1242, Rennes, France
| | - Robin J Flynn
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF; Graduate Studies Office, Department of Research, Innovation and Graduate Studies, Waterford Institute of Technology, Ireland, X91 K0EK.
| |
Collapse
|
17
|
Ross EC, Olivera GC, Barragan A. Early passage of Toxoplasma gondii across the blood–brain barrier. Trends Parasitol 2022; 38:450-461. [DOI: 10.1016/j.pt.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/29/2022]
|
18
|
Olivera GC, Ross EC, Peuckert C, Barragan A. Blood-brain barrier-restricted translocation of Toxoplasma gondii from cortical capillaries. eLife 2021; 10:e69182. [PMID: 34877929 PMCID: PMC8700292 DOI: 10.7554/elife.69182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
The cellular barriers of the central nervous system proficiently protect the brain parenchyma from infectious insults. Yet, the single-celled parasite Toxoplasma gondii commonly causes latent cerebral infection in humans and other vertebrates. Here, we addressed the role of the cerebral vasculature in the passage of T. gondii to the brain parenchyma. Shortly after inoculation in mice, parasites mainly localized to cortical capillaries, in preference over post-capillary venules, cortical arterioles or meningeal and choroidal vessels. Early invasion to the parenchyma (days 1-5) occurred in absence of a measurable increase in blood-brain barrier (BBB) permeability, perivascular leukocyte cuffs or hemorrhage. However, sparse focalized permeability elevations were detected adjacently to replicative parasite foci. Further, T. gondii triggered inflammatory responses in cortical microvessels and endothelium. Pro- and anti-inflammatory treatments of mice with LPS and hydrocortisone, respectively, impacted BBB permeability and parasite loads in the brain parenchyma. Finally, pharmacological inhibition or Cre/loxP conditional knockout of endothelial focal adhesion kinase (FAK), a BBB intercellular junction regulator, facilitated parasite translocation to the brain parenchyma. The data reveal that the initial passage of T. gondii to the central nervous system occurs principally across cortical capillaries. The integrity of the microvascular BBB restricts parasite transit, which conversely is exacerbated by the inflammatory response.
Collapse
Affiliation(s)
- Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Emily C Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Christiane Peuckert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| |
Collapse
|
19
|
Frickel EM, Hunter CA. Lessons from Toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med 2021; 218:212714. [PMID: 34670268 PMCID: PMC8532566 DOI: 10.1084/jem.20201314] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Infratentorial Stereotactic Biopsy of Brainstem and Cerebellar Lesions. Brain Sci 2021; 11:brainsci11111432. [PMID: 34827431 PMCID: PMC8615913 DOI: 10.3390/brainsci11111432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Stereotactic biopsy of posterior fossa lesions is often regarded as hazardous due to the critical structures in that area. Therefore, the aim of the study was to evaluate the diagnostic accuracy and safety of infratentorial stereotactic biopsy of brainstem or cerebellar lesions and its associations with other clinical, laboratory, and radiological parameters. From January 2000 to May 2021, 190 infratentorial stereotactic biopsies of posterior fossa tumors, including 108 biopsies of brainstem lesions, were performed. Moreover, 63 supratentorial biopsies of cerebral peduncle lesions were analyzed to compare the safety and efficacy of both approaches. Additionally, the presence of antibodies against Toxoplasma gondii and Epstein–Barr Virus (EBV) were documented in 67 and 66 patients, respectively, and magnetic resonance imaging (MRI) scans were evaluated in 114 patients. Only 4% of patients had minor complications and 1.5% had major complications, including one patient who died from intracranial bleeding. Nine (4.7%) biopsies were non-diagnostic. Isocitrate dehydrogenase 1 (IDH1) mutation, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status were assessed in 29 patients, and were non-diagnostic in only 3 (10.3%) cases. Patients with high-grade gliomas (HGG) were more frequently seropositive for T. gondii than individuals with low-grade gliomas (LGG; p < 0.001). A total of 27% of HGG and 41% of LGG were non-enhancing on MRI. The infratentorial approach is generally safe and reliable for biopsy of brainstem and cerebellar lesions. In our study, the safety and efficacy of supratentorial biopsy of the cerebral peduncle and infratentorial biopsy of lesions below the cerebral peduncle were comparably high. Moreover, patients with HGG were more frequently seropositive for T. gondii than patients with LGG, and the relationship between toxoplasmosis and gliomagenesis requires further investigation.
Collapse
|
21
|
Guo M, Sun J, Wang WT, Liu HY, Liu YH, Qin KR, Hu JR, Li XY, Liu HL, Wang W, Chen ZY, Wang CF, Wang HL. Toxoplasma gondii ROP17 promotes autophagy via the Bcl-2-Beclin 1 pathway. Folia Parasitol (Praha) 2021; 68. [PMID: 34180401 DOI: 10.14411/fp.2021.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/07/2021] [Indexed: 02/04/2023]
Abstract
The apicomplexan Toxoplasma gondii (Nicolle et Manceaux, 1908) secretes a group of serine/threonine kinases from rhoptries, which play vital roles in boosting intracellular infection. Toxoplasma gondii rhoptry organelle protein 17 (ROP17) is one of these important kinase proteins. Nevertheless, its function remains unclear. Here, we showed that ROP17 induced autophagy in vitro and in vivo. The autophagy of small intestine tissues of T. gondii tachyzoite (RH strain)-infected mice was detected by the immunohistochemistry staining of LC3B, Beclin 1 and P62. ROP17 overexpression augmented starvation-induced autophagy in HEK 293T cells as measured by MDC staining, transmission electron microscopy (TEM), fluorescence microscopy and Western blot analysis. Moreover, the interaction of ROP17 and Bcl-2 was confirmed using co-immunoprecipitation analysis, and the data demonstrated that ROP17 had an autophagic role dependent on the Beclin 1-Bcl-2 pathway, which was also revealed in an in vivo model through immunohistochemical staining. Pearson coefficient analysis showed that there existed strong positive correlations between the expression of ROP17 and LC3B, Beclin 1 and phosphorylation of Bcl-2, while strong negative correlations between the expression of ROP17 and p62 and Bcl-2. Collectively, our findings indicate that ROP17 plays a pivotal role in maintaining T. gondii proliferation in host cells via the promotion of autophagy-dependent survival.
Collapse
Affiliation(s)
- Min Guo
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China.,Labratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan,Shanxi, China.,Min Guo, Jia Sun and Wen-tao Wang contributed equally to this work *Address for correspondence: Hai-long Wang, ; Chun-fang Wang, ; Zhao-yang Chen, ; Address: School of Basic Medicine, Shanxi Medical University, No. 55, Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Jia Sun
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China.,Min Guo, Jia Sun and Wen-tao Wang contributed equally to this work *Address for correspondence: Hai-long Wang, ; Chun-fang Wang, ; Zhao-yang Chen, ; Address: School of Basic Medicine, Shanxi Medical University, No. 55, Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Wen-Tao Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China.,Min Guo, Jia Sun and Wen-tao Wang contributed equally to this work *Address for correspondence: Hai-long Wang, ; Chun-fang Wang, ; Zhao-yang Chen, ; Address: School of Basic Medicine, Shanxi Medical University, No. 55, Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Hong-Yan Liu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China.,Eugenics and Molecular Medicine Testing Center, Ulanqab Central Hospital, Wulanchabu, Neimenggu, China
| | - Yue-Hua Liu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Ke-Ru Qin
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jin-Rui Hu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Xin-Yang Li
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Hong-Li Liu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Wei Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Zhao-Yang Chen
- Labratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan,Shanxi, China
| | - Chun-Fang Wang
- Labratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan,Shanxi, China
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, Shanxi, China
| |
Collapse
|
22
|
Subauste CS. Recent Advances in the Roles of Autophagy and Autophagy Proteins in Host Cells During Toxoplasma gondii Infection and Potential Therapeutic Implications. Front Cell Dev Biol 2021; 9:673813. [PMID: 34179003 PMCID: PMC8220159 DOI: 10.3389/fcell.2021.673813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that can cause encephalitis and retinitis in humans. The success of T. gondii as a pathogen depends in part on its ability to form an intracellular niche (parasitophorous vacuole) that allows protection from lysosomal degradation and parasite replication. The parasitophorous vacuole can be targeted by autophagy or by autophagosome-independent processes triggered by autophagy proteins. However, T. gondii has developed many strategies to preserve the integrity of the parasitophorous vacuole. Here, we review the interaction between T. gondii, autophagy, and autophagy proteins and expand on recent advances in the field, including the importance of autophagy in the regulation of invasion of the brain and retina by the parasite. We discuss studies that have begun to explore the potential therapeutic applications of the knowledge gained thus far.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
23
|
Tweedie A, Nissan T. Hiding in Plain Sight: Formation and Function of Stress Granules During Microbial Infection of Mammalian Cells. Front Mol Biosci 2021; 8:647884. [PMID: 33996904 PMCID: PMC8116797 DOI: 10.3389/fmolb.2021.647884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/21/2023] Open
Abstract
Stress granule (SG) formation is a host cell response to stress-induced translational repression. SGs assemble with RNA-binding proteins and translationally silent mRNA. SGs have been demonstrated to be both inhibitory to viruses, as well as being subverted for viral roles. In contrast, the function of SGs during non-viral microbial infections remains largely unexplored. A handful of microbial infections have been shown to result in host SG assembly. Nevertheless, a large body of evidence suggests SG formation in hosts is a widespread response to microbial infection. Diverse stresses caused by microbes and their products can activate the integrated stress response in order to inhibit translation initiation through phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). This translational response in other contexts results in SG assembly, suggesting that SG assembly can be a general phenomenon during microbial infection. This review explores evidence for host SG formation in response to bacterial, fungal, and protozoan infection and potential functions of SGs in the host and for adaptations of the pathogen.
Collapse
Affiliation(s)
- Alistair Tweedie
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tracy Nissan
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
24
|
Priyamvada S, Jayawardena D, Bhalala J, Kumar A, Anbazhagan AN, Alrefai WA, Borthakur A, Dudeja PK. Cryptosporidium parvum infection induces autophagy in intestinal epithelial cells. Cell Microbiol 2021; 23:e13298. [PMID: 33237610 PMCID: PMC9045210 DOI: 10.1111/cmi.13298] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Autophagy, a process of degradation and recycling of macromolecules and organelles to maintain cellular homeostasis, has also been shown to help eliminate invading pathogens. Conversely, various pathogens including parasites have been shown to modulate/exploit host autophagy facilitating their intracellular infectious cycle. In this regard, Cryptosporidium parvum (CP), a protozoan parasite of small intestine is emerging as a major global health challenge. However, the pathophysiology of cryptosporidiosis is mostly unknown. We have recently demonstrated CP-induced epithelial barrier disruption via decreasing the expression of specific tight junction (TJ) and adherens junction (AJ) proteins such as occludin, claudin-4 and E-cadherin. Therefore, we utilised confluent Caco-2 cell monolayers as in vitro model of intestinal epithelial cells (IECs) to investigate the potential role of autophagy in the pathophysiology of cryptosporidiosis. Autophagy was assessed by increase in the ratio of LC3II (microtubule associated protein 1 light chain 3) to LC3I protein and decrease in p62/SQSTM1 protein levels. CP treatment of Caco-2 cells for 24 hr induced autophagy with a maximum effect observed with 0.5 × 106 oocyst/well. CP decreased mTOR (mammalian target of rapamycin, a suppressor of autophagy) phosphorylation, suggesting autophagy induction via mTOR inactivation. Measurement of autophagic flux utilizing the lysosomal inhibitor chloroquine (CQ) showed more pronounced increase in LC3II level in cells co-treated with CP + CQ as compared to CP or CQ alone, suggesting that CP-induced increase in LC3II was due to enhanced autophagosome formation rather than impaired lysosomal clearance. CP infection did not alter ATG7, a key autophagy protein. However, the decrease in occludin, claudin-4 and E-cadherin by CP was partially blocked following siRNA silencing of ATG7, suggesting the role of autophagy in CP-induced decrease in these TJ/AJ proteins. Our results provide novel evidence of autophagy induction by CP in host IECs that could alter important host cell processes contributing to the pathophysiology of cryptosporidiosis.
Collapse
Affiliation(s)
- Shubha Priyamvada
- Division of Gastroenterology & Hepatology, Department of Medicine; University of Illinois at Chicago
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, Department of Medicine; University of Illinois at Chicago
| | - Jeet Bhalala
- Division of Gastroenterology & Hepatology, Department of Medicine; University of Illinois at Chicago
| | - Anoop Kumar
- Division of Gastroenterology & Hepatology, Department of Medicine; University of Illinois at Chicago
| | - Arivarasu N. Anbazhagan
- Division of Gastroenterology & Hepatology, Department of Medicine; University of Illinois at Chicago
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine; University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago IL 60612
| | - Alip Borthakur
- Department of Clinical and Translational Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25755
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine; University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago IL 60612
| |
Collapse
|
25
|
Deng B, Jiang XL, Tan ZB, Cai M, Deng SH, Ding WJ, Xu YC, Wu YT, Zhang SW, Chen RX, Kan J, Zhang EX, Liu B, Zhang JZ. Dauricine inhibits proliferation and promotes death of melanoma cells via inhibition of Src/STAT3 signaling. Phytother Res 2021; 35:3836-3847. [PMID: 33792976 DOI: 10.1002/ptr.7089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is the most common type of skin cancer. Signal transducer and activator of transcription 3 (STAT3) signaling has been demonstrated to be a therapeutic target for melanoma. Dauricine (Dau), an alkaloid compound isolated from the root of Menispermum dauricum DC., has shown tumor-suppressing effects in multiple human cancers, but its potential in melanoma remains unexplored. In this study, we demonstrated that Dau significantly inhibited the viability and proliferation of A375 and A2058 melanoma cells. Death of melanoma cells was also markedly promoted by Dau. Moreover, Dau inhibited phosphorylation-mediated activation of STAT3 and Src in a dose-dependent manner. Notably, constitutive activation of Src partially abolished the antiproliferative and cytotoxic activities of Dau on melanoma cells. Molecular docking showed that Dau could dock on the kinase domain of Src with a binding energy of -10.42 kcal/mol. Molecular dynamics simulations showed that Src-Dau binding was stable. Surface plasmon resonance imaging analysis also showed that Dau has a strong binding affinity to Src. In addition, Dau suppressed the growth of melanoma cells and downregulated the activation of Src/STAT3 in a xenograft model in vivo. These data demonstrated that Dau inhibits proliferation and promotes cell death in melanoma cells by inhibiting the Src/STAT3 pathways.
Collapse
Affiliation(s)
- Bo Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Li Jiang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Min Cai
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Sui-Hui Deng
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Ding
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - You-Cai Xu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu-Ting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rui-Xue Chen
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jun Kan
- Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - En-Xin Zhang
- Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Kochanowsky JA, Thomas KK, Koshy AA. ROP16-Mediated Activation of STAT6 Suppresses Host Cell Reactive Oxygen Species Production, Facilitating Type III Toxoplasma gondii Growth and Survival. mBio 2021; 12:e03305-20. [PMID: 33653884 PMCID: PMC8092286 DOI: 10.1128/mbio.03305-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polymorphic effector proteins determine the susceptibility of Toxoplasma gondii strains to IFN-γ-mediated clearance mechanisms deployed by murine host cells. However, less is known about the influence of these polymorphic effector proteins on IFN-γ-independent clearance mechanisms. Here, we show that deletion of one such polymorphic effector protein, ROP16, from a type III background leads to a defect in parasite growth and survival in unstimulated human fibroblasts and murine macrophages. Rescue of these defects requires a ROP16 with a functional kinase domain and the ability to activate a specific family of host cell transcription factors (STAT3, 5a, and 6). The growth and survival defects correlate with an accumulation of host cell reactive oxygen species (ROS) and are prevented by treatment with an ROS inhibitor. Exogenous activation of STAT3 and 6 suppresses host cell ROS production during infection with ROP16-deficient parasites and depletion of STAT6, but not STAT3 or 5a, causes an accumulation of ROS in cells infected with wild-type parasites. Pharmacological inhibition of NOX2 and mitochondrially derived ROS also rescues growth and survival of ROP16-deficient parasites. Collectively, these findings reveal an IFN-γ-independent mechanism of parasite restriction in human cells that is subverted by injection of ROP16 by type III parasites.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that infects up to one-third of the world's population. Control of the parasite is largely accomplished by IFN-γ-dependent mechanisms that stimulate innate and adaptive immune responses. Parasite suppression of IFN-γ-stimulated responses has been linked to proteins that the parasite secretes into its host cell. These secreted proteins vary by T. gondii strain and determine strain-specific lethality in mice. How these strain-specific polymorphic effector proteins affect IFN-γ-independent parasite control mechanisms in human and murine cells is not well known. This study shows that one such secreted protein, ROP16, enables efficient parasite growth and survival by suppressing IFN-γ-independent production of ROS by human and mouse cells.
Collapse
Affiliation(s)
| | | | - Anita A Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Wu M, Cudjoe O, Shen J, Chen Y, Du J. The Host Autophagy During Toxoplasma Infection. Front Microbiol 2020; 11:589604. [PMID: 33193253 PMCID: PMC7642512 DOI: 10.3389/fmicb.2020.589604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important homeostatic mechanism, in which lysosomes degrade and recycle cytosolic components. As a key defense mechanism against infections, autophagy is involved in the capture and elimination of intracellular parasites. However, intracellular parasites, such as Toxoplasma gondii, have developed several evasion mechanisms to manipulate the host cell autophagy for their growth and establish a chronic infection. This review provides an insight into the autophagy mechanism used by the host cells in the control of T. gondii and the host exploitation by the parasite. First, we summarize the mechanism of autophagy, xenophagy, and LC3-associated phagocytosis. Then, we illustrate the process of autophagy proteins-mediated T. gondii clearance. Furthermore, we discuss how the parasite blocks and exploits this process for its survival.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| | - Obed Cudjoe
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ying Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China.,School of Nursing, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Ranjan A, Kaushik I, Srivastava SK. Pimozide Suppresses the Growth of Brain Tumors by Targeting STAT3-Mediated Autophagy. Cells 2020; 9:cells9092141. [PMID: 32971907 PMCID: PMC7563195 DOI: 10.3390/cells9092141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Brain tumors are considered as one of the most aggressive and incurable forms of cancer. The majority of the patients with brain tumors have a median survival rate of 12%. Brain tumors are lethal despite the availability of advanced treatment options such as surgical removal, chemotherapy, and radiotherapy. In this study, we have evaluated the anti-cancer effects of pimozide, which is a neuroleptic drug used for the treatment of schizophrenia and chronic psychosis. Pimozide significantly reduced the proliferation of U-87MG, Daoy, GBM 28, and U-251MG brain cancer cell lines by inducing apoptosis with IC50 (Inhibitory concentration 50) ranging from 12 to 16 μM after 48 h of treatment. Our Western blotting analysis indicated that pimozide suppressed the phosphorylation of STAT3 at Tyr705 and Src at Tyr416, and it inhibited the expression of anti-apoptotic markers c-Myc, Mcl-1, and Bcl-2. Significant autophagy induction was observed with pimozide treatment. LC3B, Beclin-1, and ATG5 up-regulation along with autolysosome formation confirmed the induction of autophagy with pimozide treatment. Inhibiting autophagy using 3-methyladenine or LC3B siRNA significantly blocked the apoptosis-inducing effects of pimozide, suggesting that pimozide mediated its apoptotic effects by inducing autophagy. Oral administration of 25 mg/kg pimozide suppressed the intracranially implanted U-87MG tumor growth by 45% in athymic nude mice. The chronic administration of pimozide showed no general signs of toxicity, and the behavioral activity of the mice remained unchanged. Taken together, these results indicate that pimozide inhibits the growth of brain cancer by autophagy-mediated apoptosis.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
| | - Itishree Kaushik
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Science, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (A.R.); (I.K.)
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Abilene, TX 79601, USA
- Correspondence: ; Tel.: +325-696-0464; Fax: +325-676-3875
| |
Collapse
|
29
|
Ghartey-Kwansah G, Adu-Nti F, Aboagye B, Ankobil A, Essuman EE, Opoku YK, Abokyi S, Abu EK, Boampong JN. Autophagy in the control and pathogenesis of parasitic infections. Cell Biosci 2020; 10:101. [PMID: 32944216 PMCID: PMC7487832 DOI: 10.1186/s13578-020-00464-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy has a crucial role in the defense against parasites. The interplay existing between host autophagy and parasites has varied outcomes due to the kind of host cell and microorganism. The presence of autophagic compartments disrupt a significant number of pathogens and are further cleared by xenophagy in an autolysosome. Another section of pathogens have the capacity to outwit the autophagic pathway to their own advantage. Result To comprehend the interaction between pathogens and the host cells, it is significant to distinguish between starvation-induced autophagy and other autophagic pathways. Subversion of host autophagy by parasites is likely due to differences in cellular pathways from those of ‘classical’ autophagy and that they are controlled by parasites in a peculiar way. In xenophagy clearance at the intracellular level, the pathogens are first ubiquitinated before autophagy receptors acknowledgement, followed by labeling with light chain 3 (LC3) protein. The LC3 in LC3-associated phagocytosis (LAP) is added directly into vacuole membrane and functions regardless of the ULK, an initiation complex. The activation of the ULK complex composed of ATG13, FIP200 and ATG101causes the initiation of host autophagic response. Again, the recognition of PAMPs by conserved PRRs marks the first line of defense against pathogens, involving Toll-like receptors (TLRs). These all important immune-related receptors have been reported recently to regulate autophagy. Conclusion In this review, we sum up recent advances in autophagy to acknowledge and understand the interplay between host and parasites, focusing on target proteins for the design of therapeutic drugs. The target host proteins on the initiation of the ULK complex and PRRs-mediated recognition of PAMPs may provide strong potential for the design of therapeutic drugs against parasitic infections.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Frank Adu-Nti
- Department of Medical Laboratory Science, Radford University College, Accra, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Amandus Ankobil
- School of Nursing and Midwifery, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Epidemiology and Biostatistics, State University of New York at Albany, New York, USA
| | - Edward Eyipe Essuman
- US Food and Drugs Administration CBER, OBRR, DETTD 10903 New Hampshire Avenue, White Oak, USA
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science, University of Education, Winneba, Ghana
| | - Samuel Abokyi
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Emmanuel Kwasi Abu
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
30
|
Integrin α5β1, as a Receptor of Fibronectin, Binds the FbaA Protein of Group A Streptococcus To Initiate Autophagy during Infection. mBio 2020; 11:mBio.00771-20. [PMID: 32518187 PMCID: PMC7371361 DOI: 10.1128/mbio.00771-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is generally considered a strategy used by the innate immune system to eliminate invasive pathogens through capturing and transferring them to lysosomes. Currently, researchers pay more attention to how virulence factors secreted by GAS regulate the autophagic process. Here, we provide the first evidence that the structural protein FbaA of M1 GAS strain SF370 is a potent inducer of autophagy in epithelial cells. Furthermore, we demonstrate that integrin α5β1 in epithelial cells in vitro and in vivo acts as a receptor to initiate the signaling for inducing autophagy by binding to FbaA of M1 GAS strain SF370 via Fn. Our study reveals the underlying mechanisms by which pathogens induce Fn-integrin α5β1 to trigger autophagy in a conserved pattern in epithelial cells. Group A Streptococcus (GAS), one of the most common extracellular pathogens, has been reported to invade epithelial and endothelial cells. Our results reveal that M1 GAS strain SF370 can be effectively eliminated by respiratory epithelial cells. Emerging evidence indicates that autophagy is an important strategy for nonphagocytes to eliminate intracellular bacteria. Upon pathogen recognition, cell surface receptors can directly trigger autophagy, which is a critical step in controlling infection. However, the mechanisms of how cells sense invading bacteria and use this information specifically to trigger autophagy remain unclear. In this study, we stimulated cells and infected mice with M and FbaA mutants of M1 GAS strain SF370 or with purified M and FbaA proteins (two critical surface structural proteins of GAS), and found that only FbaA protein was involved in autophagy induction. Furthermore, the FbaA protein induced autophagy independent of common pattern recognition receptors (such as Toll-like receptors); rather, it relies on binding to integrin α5β1 expressed on the cell surface, which is mediated by extracellular matrix protein fibronectin (Fn). The FbaA-Fn-integrin α5β1 complex activates Beclin-1 through the mTOR-ULK1–Beclin-1 pathway, which enables the Beclin-1/Vps34 complex to recruit Rab7 and, ultimately, to promote the formation of autophagosomes. By knocking down integrin α5β1, Fn, Atg5, Beclin-1, and ULK1 in Hep2 cells and deleting Atg5 or integrin α5β1 in mice, we reveal a novel role for integrin α5β1 in inducing autophagy. Our study demonstrates that integrin α5β1, through interacting with pathogen components, initiates effective host innate immunity against invading intracellular pathogens.
Collapse
|
31
|
Li ZY, Guo HT, Calderón-Mantilla G, He JJ, Wang JL, Bonev BB, Zhu XQ, Elsheikha HM. Immunostimulatory efficacy and protective potential of putative TgERK7 protein in mice experimentally infected by Toxoplasma gondii. Int J Med Microbiol 2020; 310:151432. [PMID: 32654774 DOI: 10.1016/j.ijmm.2020.151432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/10/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) serve as important determinants of cellular signal transduction pathways, and hence may play important roles during infections. Previous work suggested that putative ERK7 of Toxoplasma gondii is required for efficient intracellular replication of the parasite. However, the antigenic and immunostimulatory properties of TgERK7 protein remain unknown. The objective of this study was to produce a recombinant TgERK7 protein in vitro and to evaluate its effect on the induction of humoral and T cell-mediated immune responses against T. gondii infection in BALB/c mice. Immunization using TgERK7 mixed with Freund's adjuvants significantly increased the ratio of CD3e+CD4+ T/CD3e+CD8a+ T lymphocytes in spleen and elevated serum cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-12p70, IL-23, MCP-1, and TNF-α) in immunized mice compared to control mice. On the contrary, immunization did not induce high levels of serum IgG antibodies. Five predicted peptides of TgERK7 were synthesized and conjugated with KLH and used to analyze the antibody specificity in the sera of immunized mice. We detected a progressive increase in the antibody level only against TgERK7 peptide A (DEVDKHVLRKYD). Antibody raised against this peptide significantly decreased intracellular proliferation of T. gondii in vitro, suggesting that peptide A can potentially induce a protective antibody response. We also showed that immunization improved the survival rate of mice challenged with a virulent strain and significantly reduced the parasite cyst burden within the brains of chronically infected mice. Our data show that TgERK7-based immunization induced TgERK7 peptide A-specific immune responses that can impart protective immunity against T. gondii infection. The therapeutic potential of targeting ERK7 signaling pathway for future toxoplasmosis treatment is warranted.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541199, China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hai-Ting Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Guillermo Calderón-Mantilla
- Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Boyan B Bonev
- School of life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
32
|
Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16:e1008572. [PMID: 32413093 PMCID: PMC7255617 DOI: 10.1371/journal.ppat.1008572] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
The apicomplexan Toxoplasma gondii induces strong protective immunity dependent upon recognition by Toll-like receptors (TLR)11 and 12 operating in conjunction with MyD88 in the murine host. However, TLR11 and 12 proteins are not present in humans, inspiring us to investigate MyD88-independent pathways of resistance. Using bicistronic IL-12-YFP reporter mice on MyD88+/+ and MyD88-/- genetic backgrounds, we show that CD11c+MHCII+F4/80- dendritic cells, F4/80+ macrophages, and Ly6G+ neutrophils were the dominant cellular sources of IL-12 in both wild type and MyD88 deficient mice after parasite challenge. Parasite dense granule protein GRA24 induces p38 MAPK activation and subsequent IL-12 production in host macrophages. We show that Toxoplasma triggers an early and late p38 MAPK phosphorylation response in MyD88+/+ and MyD88-/- bone marrow-derived macrophages. Using the uracil auxotrophic Type I T. gondii strain cps1-1, we demonstrate that the late response does not require active parasite proliferation, but strictly depends upon GRA24. By i. p. inoculation with cps1-1 and cps1-1:Δgra24, we identified unique subsets of chemokines and cytokines that were up and downregulated by GRA24. Finally, we demonstrate that cps1-1 triggers a strong host-protective GRA24-dependent Th1 response in the absence of MyD88. Our data identify GRA24 as a major mediator of p38 MAPK activation, IL-12 induction and protective immunity that operates independently of the TLR/MyD88 cascade.
Collapse
Affiliation(s)
- Heather L. Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lindsay M. Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
33
|
The Messenger Apps of the cell: Extracellular Vesicles as Regulatory Messengers of Microglial Function in the CNS. J Neuroimmune Pharmacol 2020; 15:473-486. [PMID: 32337651 DOI: 10.1007/s11481-020-09916-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
The intense effort of investigators, in particular during the past decade, has highlighted the importance of extracellular vesicles (EVs) such as exosomes in regulating both innate and adaptive immunity in the course of a variety of infections, with clear implications for development of novel vaccines, therapeutics, and diagnostics. Current and future efforts now need to focus strongly on teasing apart the intricate and complex molecular mechanisms that operate during EV regulation of immunity. In this review, we discuss recent advances that bear on our current understanding of how EVs, including exosomes, can contribute to the innate immune functions of microglia within the central nervous system (CNS), and we also highlight future important mechanistic questions that need to be addressed. In particular, recent findings that highlight the crosstalk between autophagy and exosome pathways and their implications for innate immune functions of microglia will be presented. Microglial activation has been shown to play a key role in neuroAIDS, a neuro-infectious disease for which the importance of exosome functions, including exosome-autophagy interplay, has been reported. The importance of exosomes and exosome-autophagy crosstalk involving microglia has also been shown for the Parkinson's disease (PD), a neurodegenerative disease that is thought to be linked with immune dysfunction and involve infectious agents as trigger. Considering the accumulation of recent findings and the vibrancy of the EV field, we anticipate that future studies will continue to have a deep impact on our understanding of the CNS pathologies that are influenced by the functions of microglia and of the infectious disease mechanisms in general. Graphical Abstract.
Collapse
|
34
|
Cao F, Wang Z, Feng Y, Zhu H, Yang M, Zhang S, Wang X. lncRNA TPTEP1 competitively sponges miR‑328‑5p to inhibit the proliferation of non‑small cell lung cancer cells. Oncol Rep 2020; 43:1606-1618. [PMID: 32323798 PMCID: PMC7108057 DOI: 10.3892/or.2020.7522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that lncRNAs are involved in almost all normal physiological processes and that aberrant expression of lncRNAs may be involved in the development of diseases, including non‑small cell lung cancer (NSCLC). However, the roles of lncRNA‑TPTE pseudogene 1 (TPTEP1) in lung cancer and the underlying molecular mechanisms have remained elusive. In the present study, significant downregulation of TPTEP1 in tumors compared with normal tissues from patients with NSCLC was observed. Overexpression of TPTEP1 inhibited cell proliferation and induced apoptosis in NSCLC cells. A bioinformatics analysis based on miRDB predicted microRNA (miR)‑328‑5p as a potential binding miRNA for TPTEP1. Using a dual‑luciferase reporter assay and western blot analysis, it was further validated that TPTEP1 sponged miR‑328‑5p to upregulate Src kinase signaling inhibitor 1 (SRCIN1) in NSCLC cells. Through regulation of SRCIN1, TPTEP1 was indicated to inactivate the Src and STAT3 pathways in NSCLC cells. Notably, silencing of SRCIN1 reversed the TPTEP1 overexpression‑induced inhibition of cell proliferation and increase of the apoptotic rate in NSCLC cells. Pearson correlation analysis revealed a significant positive correlation between TPTEP1 and SRCIN1 mRNA levels in NSCLC tumors. The present results provided insight into the roles of TPTEP1 in NSCLC and the underlying mechanisms.
Collapse
Affiliation(s)
- Feng Cao
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhiguo Wang
- Department of Radiation Oncology, Xinle Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050700, P.R. China
| | - Yong Feng
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongjun Zhu
- Department of Thoracic Surgery, Shangqiu First People's Hospital, Shangqiu, Henan 476100, P.R. China
| | - Meiju Yang
- Department of Respiratory Medicine, Shangqiu First People's Hospital, Shangqiu, Henan 476100, P.R. China
| | - Shuanglin Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
35
|
Keller MD, Torres VJ, Cadwell K. Autophagy and microbial pathogenesis. Cell Death Differ 2020; 27:872-886. [PMID: 31896796 DOI: 10.1038/s41418-019-0481-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a cell biological process that promotes resilience in the face of environmental perturbations. Given that infectious agents represent a major type of environmental threat, it follows that the autophagy pathway is central to the outcome of host-microbe interactions. Detailed molecular studies have revealed intricate ways in which autophagy suppresses or enhances the fitness of infectious agents, particularly intracellular pathogens such as viruses that require the host cell machinery for replication. Findings in animal models have reinforced the importance of these events that occur within individual cells and have extended the role of autophagy to extracellular microbes and immunity at the whole organism level. These functions impact adaptation to bacteria that are part of the gut microbiota, which has implications for the etiology of chronic disorders such as inflammatory bowel disease. Despite major advances in how autophagy regulates inflammatory reactions toward microbes, many challenges remain, including distinguishing autophagy from closely related pathways such as LC3-associated phagocytosis. Here, we review the role of autophagy in microbial pathogenesis at the level of organismal biology. In addition to providing an overview of the prominent function of autophagy proteins in host-microbe interactions, we highlight how observations at the cellular level are informing pathogenesis studies and offer our perspective on the future directions of the field.
Collapse
Affiliation(s)
- Matthew D Keller
- Kimmel Center for Biology and Medicine, Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine, Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA. .,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
36
|
Hernández-de-Los-Ríos A, Murillo-Leon M, Mantilla-Muriel LE, Arenas AF, Vargas-Montes M, Cardona N, de-la-Torre A, Sepúlveda-Arias JC, Gómez-Marín JE. Influence of Two Major Toxoplasma Gondii Virulence Factors (ROP16 and ROP18) on the Immune Response of Peripheral Blood Mononuclear Cells to Human Toxoplasmosis Infection. Front Cell Infect Microbiol 2019; 9:413. [PMID: 31867288 PMCID: PMC6904310 DOI: 10.3389/fcimb.2019.00413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii ROP16 and ROP18 proteins have been identified as important virulence factors for this parasite. Here, we describe the effect of ROP16 and ROP18 proteins on peripheral blood mononuclear cells (PBMCs) from individuals with different clinical status of infection. We evaluated IFN-γ, IL-10, and IL-1β levels in supernatants from PBMCs cultures infected with tachyzoites of the T. gondii wild-type RH strain or with knock-out mutants of the rop16 and rop18 encoding genes (RHΔrop16 and RHΔrop18). Cytokine secretion was compared between PBMCs obtained from seronegative individuals (n = 10), with those with chronic asymptomatic (n = 8), or ocular infection (n = 12). We also evaluated if polymorphisms in the genes encoding for IFN-γ, IL-10, IL-1β, Toll-like receptor 9 (TLR9), and purinoreceptor P2RX7 influenced the production of the encoded proteins after ex vivo stimulation. In individuals with chronic asymptomatic infection, only a moderate effect on IL-10 levels was observed when PBMCs were infected with RHΔrop16, whereas a significant difference in the levels of inflammatory cytokines IFN-γ and IL-1β was observed in seronegative individuals, but this was also dependent on the host's cytokine gene polymorphisms. Infection with ROP16-deficient parasites had a significant effect on IFN-γ production in previously non-infected individuals, suggesting that ROP16 which is considered as a virulence factor plays a role during the primary infection in humans, but not in the secondary immune response.
Collapse
Affiliation(s)
- Alejandro Hernández-de-Los-Ríos
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Mateo Murillo-Leon
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Luz Eliana Mantilla-Muriel
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Ailan Farid Arenas
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Mónica Vargas-Montes
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Néstor Cardona
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia.,Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.,Universidad Antonio Nariño, Armenia, Colombia
| | - Alejandra de-la-Torre
- Grupo NeURos, Unidad de Inmunología, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Jorge Enrique Gómez-Marín
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
37
|
Lopez Corcino Y, Gonzalez Ferrer S, Mantilla LE, Trikeriotis S, Yu JS, Kim S, Hansen S, Portillo JAC, Subauste CS. Toxoplasma gondii induces prolonged host epidermal growth factor receptor signalling to prevent parasite elimination by autophagy: Perspectives for in vivo control of the parasite. Cell Microbiol 2019; 21:e13084. [PMID: 31290228 PMCID: PMC6771541 DOI: 10.1111/cmi.13084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ➔ Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP-1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ➔ Src, and inhibition of EGFR controls pre-established toxoplasmosis.
Collapse
Affiliation(s)
| | - Shekina Gonzalez Ferrer
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Sophia Trikeriotis
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jin-Sang Yu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven Kim
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Samuel Hansen
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Carlos S Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
38
|
Ross EC, Olivera GC, Barragan A. Dysregulation of focal adhesion kinase upon
Toxoplasma gondii
infection facilitates parasite translocation across polarised primary brain endothelial cell monolayers. Cell Microbiol 2019; 21:e13048. [DOI: 10.1111/cmi.13048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| | - Gabriela C. Olivera
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| |
Collapse
|
39
|
Subauste CS. Interplay Between Toxoplasma gondii, Autophagy, and Autophagy Proteins. Front Cell Infect Microbiol 2019; 9:139. [PMID: 31119109 PMCID: PMC6506789 DOI: 10.3389/fcimb.2019.00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Survival of Toxoplasma gondii within host cells depends on its ability of reside in a vacuole that avoids lysosomal degradation and enables parasite replication. The interplay between immune-mediated responses that lead to either autophagy-driven lysosomal degradation or disruption of the vacuole and the strategies used by the parasite to avoid these responses are major determinants of the outcome of infection. This article provides an overview of this interplay with an emphasis on autophagy.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
40
|
Zhu W, Li J, Pappoe F, Shen J, Yu L. Strategies Developed by Toxoplasma gondii to Survive in the Host. Front Microbiol 2019; 10:899. [PMID: 31080445 PMCID: PMC6497798 DOI: 10.3389/fmicb.2019.00899] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
One of the most successful intracellular parasites, Toxoplasma gondii has developed several strategies to avoid destruction by the host. These include approaches such as rapid and efficient cell invasion to avoid phagocytic engulfment, negative regulation of the canonical CD40-CD40L-mediated autophagy pathway, impairment of the noncanonical IFN-γ-dependent autophagy pathway, and modulation of host cell survival and death to obtain lifelong parasite survival. Different virulent strains have even evolved different ways to cope with and evade destruction by the host. This review aims to illustrate every aspect of the game between the host and Toxoplasma during the process of infection. A better understanding of all aspects of the battle between Toxoplasma and its hosts will be useful for the development of better strategies and drugs to control the parasite.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,Graduate School of Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Jingyang Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,The Clinical Laboratory of the Third People's Hospital of Heifei, Hefei, China
| | - Faustina Pappoe
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Epidermal growth factor receptor promotes cerebral and retinal invasion by Toxoplasma gondii. Sci Rep 2019; 9:669. [PMID: 30679495 PMCID: PMC6345933 DOI: 10.1038/s41598-018-36724-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022] Open
Abstract
Little is known about strategies used by pathogens to facilitate CNS invasion. Toxoplasma gondii reaches the CNS by circulating in blood within leukocytes or as extracellular tachyzoites. T. gondii induces EGFR signaling in vitro during invasion of mammalian cells. We examined the effects of endothelial cell EGFR on CNS invasion. Transgenic mice whose endothelial cells expressed a dominant negative (DN) EGFR (inhibits EGFR signaling) exhibited diminished parasite load and histopathology in the brain and retina after T. gondii infection. I.V. administration of infected leukocytes or extracellular tachyzoites led to reduced parasite loads in mice with DN EGFR. This was not explained by enhanced immunity or reduced leukocyte recruitment. Endothelial cell infection is key for CNS invasion. Parasite foci in brain endothelial cells were reduced by DN EGFR. DN EGFR in these cells led to recruitment of the autophagy protein LC3 around T. gondii and spontaneous parasite killing dependent on the autophagy protein ULK1 and lysosomal enzymes. The autophagy inhibitor 3-MA prevented DN EGFR mice from exhibiting reduced CNS invasion. Altogether, EGFR is a novel regulator of T. gondii invasion of neural tissue, enhancing invasion likely by promoting survival of the parasite within endothelial cells.
Collapse
|
42
|
Abstract
Toxoplasma gondii is an obligate intracellular parasitic protist that infects a wide range of warm-blooded vertebrates. Although this parasite can cause serious complications, infections are often asymptomatic, allowing T. gondii to persist in its host and possibly enhancing the chances of its transmission. T. gondii has thus evolved multiple mechanisms of host manipulation to establish chronic infection. This persistence involves a balance between host immunity and parasite evasion of this immune response. This review highlights recent investigations that have demonstrated the important role played by the autophagy machinery in this balance, both in parasite control by the host, and in host exploitation by the parasite.
Collapse
Affiliation(s)
- Sébastien Besteiro
- a DIMNP, UMR5235 CNRS , Université de Montpellier , Montpellier , France
| |
Collapse
|
43
|
Evans RJ, Sundaramurthy V, Frickel EM. The Interplay of Host Autophagy and Eukaryotic Pathogens. Front Cell Dev Biol 2018; 6:118. [PMID: 30271774 PMCID: PMC6146372 DOI: 10.3389/fcell.2018.00118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
For intracellular pathogens, host cells provide a replicative niche, but are also armed with innate defense mechanisms to combat the intruder. Co-evolution of host and pathogens has produced a complex interplay of host-pathogen interactions during infection, with autophagy emerging as a key player in the recent years. Host autophagy as a degradative process is a significant hindrance to intracellular growth of the pathogens, but also can be subverted by the pathogens to provide support such as nutrients. While the role of host cell autophagy in the pathogenesis mechanisms of several bacterial and viral pathogens have been extensively studied, less is known for eukaryotic pathogens. In this review, we focus on the interplay of host autophagy with the eukaryotic pathogens Plasmodium spp, Toxoplasma, Leishmania spp and the fungal pathogens Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. The differences between these eukaryotic pathogens in terms of the host cell types they infect, infective strategies and the host responses required to defend against them provide an interesting insight into how they respond to and interact with host cell autophagy. Due to the ability to infect multiple host species and cell types during the course of their usually complex lifestyles, autophagy plays divergent roles even for the same pathogen. The scenario is further compounded since many of the eukaryotic pathogens have their own sets of either complete or partial autophagy machinery. Eukaryotic pathogen-autophagy interplay is thus a complex relationship with many novel insights for the basic understanding of autophagy, and potential for clinical relevance.
Collapse
Affiliation(s)
- Robert J. Evans
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
44
|
Mei J, Zhou WJ, Zhu XY, Lu H, Wu K, Yang HL, Fu Q, Wei CY, Chang KK, Jin LP, Wang J, Wang YM, Li DJ, Li MQ. Suppression of autophagy and HCK signaling promotes PTGS2 high FCGR3 - NK cell differentiation triggered by ectopic endometrial stromal cells. Autophagy 2018; 14:1376-1397. [PMID: 29962266 DOI: 10.1080/15548627.2018.1476809] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Impaired NK cell cytotoxic activity contributes to the local dysfunctional immune environment in endometriosis (EMS), which is an estrogen-dependent gynecological disease that affects the function of ectopic endometrial tissue clearance. The reason for the impaired cytotoxic activity of NK cells in an ectopic lesion microenvironment (ELM) is largely unknown. In this study, we show that the macroautophagy/autophagy level of endometrial stromal cells (ESCs) from EMS decreased under negative regulation of estrogen. The ratio of peritoneal FCGR3- NK to FCGR3+ NK cells increases as EMS progresses. Moreover, the autophagy suppression results in the downregulation of HCK (hematopoietic cellular kinase) by inactivating STAT3 (signal transducer and activator of transcription 3), as well as the increased secretion of the downstream molecules CXCL8/IL8 and IL23A by ESCs, and this increase induced the upregulation of FCGR3- NK cells and decline of cytotoxic activity in ELM. This process is mediated through the depression of microRNA MIR1185-1-3p, which is associated with the activation of the target gene PTGS2 in NK cells. FCGR3- NK with a phenotype of PTGS2/COX2high IFNGlow PRF1low GZMBlow induced by hck knockout (hck-/-) or 3-methyladenine (3-MA, an autophagy inhibitor)-stimulated ESCs accelerates ESC's growth both in vitro and in vivo. These results suggest that the estrogen-autophagy-STAT3-HCK axis participates in the differentiation of PTGS2high IFNGlow PRF1low GZMBlow FCGR3- NK cells in ELM and contributes to the development of EMS. This result provides a scientific basis for potential therapeutic strategies to treat diseases related to impaired NK cell cytotoxic activity. ABBREVIATIONS anti-FCGR3: anti-FCGR3 with neutralizing antibody; Ctrl-ESC: untreated ESCs; CXCL8: C-X-C motif chemokine ligand 8; ectoESC: ESCs from ectopic lesion; ELM: ectopic lesion microenvironment; EMS: endometriosis; ESCs: endometrial stromal cells; eutoESC:eutopic ESCs; HCK: hematopoietic cellular kinase; HCK(OE): overexpression of HCK; IFNG: interferon gamma; IL23A (OE): overexpression of IL23A; KLRK1: Killer cell lectin like receptor K1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3 -MA: 3-methyladenine; 3-MA-ESC: 3-MA-treated ESCs; MIR1185-1-3p+: overexpression of HsMIR1185-1-3p; NK: natural killer; normESCs: normal ESCs; Rap-ESC:rapamycin-treated ESCs; PCNA: proliferating cell nuclear antigen; PF: peritoneal fluid; SFKs: SRC family of cytoplasmic tyrosine kinases; si-HCK: silencing of HCK; siIL23A: silencing of IL23A; USCs: uterus stromal cells.
Collapse
Affiliation(s)
- Jie Mei
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China.,b Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medicine School , Nanjing , People's Republic of China
| | - Wen-Jie Zhou
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Xiao-Yong Zhu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China.,c Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School , Fudan University , Shanghai , People's Republic of China
| | - Han Lu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Ke Wu
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Hui-Li Yang
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Qiang Fu
- d Department of Immunology , Binzhou Medical College , Yantai , People's Republic of China
| | - Chun-Yan Wei
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Kai-Kai Chang
- b Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medicine School , Nanjing , People's Republic of China
| | - Li-Ping Jin
- e Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Jian Wang
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Yong-Ming Wang
- f State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences , Fudan University , Shanghai , People's Republic of China
| | - Da-Jin Li
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| | - Ming-Qing Li
- a Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology , Fudan University Shanghai Medical College , Shanghai , People's Republic of China
| |
Collapse
|
45
|
Zhang L, Ouyang L, Guo Y, Zhang J, Liu B. UNC-51-like Kinase 1: From an Autophagic Initiator to Multifunctional Drug Target. J Med Chem 2018; 61:6491-6500. [PMID: 29509411 DOI: 10.1021/acs.jmedchem.7b01684] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNC-51-like kinase 1 (ULK1), known as an ortholog of the yeast Atg1, is the serine-threonine kinase and the autophagic initiator in mammals. Accumulating evidence has recently revealed the kinase domain structure of ULK1 and its post-translational modifications, as well as further elucidated its regulatory autophagic pathways and associations with diverse human diseases. Interestingly, a series of small molecules have been recently reported to target ULK1 or ULK1-modulating autophagy, which may provide a clue on exploiting them as novel candidate drugs. Taken together, this review discusses how ULK1 acts as an autophagic initiator for modulation of its intricate mechanisms, as well as how ULK1 becomes a multifunctional target for potential therapeutic applications.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China
| | - Yongzhi Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China
| |
Collapse
|