1
|
Purohit SK, Stern L, Corbett AJ, Mak JYW, Fairlie DP, Slobedman B, Abendroth A. Varicella Zoster Virus disrupts MAIT cell polyfunctional effector responses. PLoS Pathog 2024; 20:e1012372. [PMID: 39110717 PMCID: PMC11305569 DOI: 10.1371/journal.ppat.1012372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that respond to riboflavin biosynthesis and cytokines through TCR-dependent and -independent pathways, respectively. MAIT cell activation plays an immunoprotective role against several pathogens, however the functional capacity of MAIT cells following direct infection or exposure to infectious agents remains poorly defined. We investigated the impact of Varicella Zoster Virus (VZV) on blood-derived MAIT cells and report virus-mediated impairment of activation, cytokine production, and altered transcription factor expression by VZV infected (antigen+) and VZV exposed (antigen-) MAIT cells in response to TCR-dependent and -independent stimulation. Furthermore, we reveal that suppression of VZV exposed (antigen-) MAIT cells is not mediated by a soluble factor from neighbouring VZV infected (antigen+) MAIT cells. Finally, we demonstrate that VZV impairs the cytolytic potential of MAIT cells in response to riboflavin synthesising bacteria. In summary, we report a virus-mediated immune-evasion strategy that disarms MAIT cell responses.
Collapse
Affiliation(s)
- Shivam. K. Purohit
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Lauren Stern
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jeffrey Y. W. Mak
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Doratt BM, Malherbe DC, Messaoudi I. Transcriptional and functional remodeling of lung-resident T cells and macrophages by Simian varicella virus infection. Front Immunol 2024; 15:1408212. [PMID: 38887303 PMCID: PMC11180879 DOI: 10.3389/fimmu.2024.1408212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Varicella zoster virus (VZV) causes varicella and can reactivate as herpes zoster, and both diseases present a significant burden worldwide. However, the mechanisms by which VZV establishes latency in the sensory ganglia and disseminates to these sites remain unclear. Methods We combined a single-cell sequencing approach and a well-established rhesus macaque experimental model using Simian varicella virus (SVV), which recapitulates the VZV infection in humans, to define the acute immune response to SVV in the lung as well as compare the transcriptome of infected and bystander lung-resident T cells and macrophages. Results and discussion Our analysis showed a decrease in the frequency of alveolar macrophages concomitant with an increase in that of infiltrating macrophages expressing antiviral genes as well as proliferating T cells, effector CD8 T cells, and T cells expressing granzyme A (GZMA) shortly after infection. Moreover, infected T cells harbored higher numbers of viral transcripts compared to infected macrophages. Furthermore, genes associated with cellular metabolism (glycolysis and oxidative phosphorylation) showed differential expression in infected cells, suggesting adaptations to support viral replication. Overall, these data suggest that SVV infection remodels the transcriptome of bystander and infected lung-resident T cells and macrophages.
Collapse
Affiliation(s)
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
4
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
5
|
Arvin AM. Creating the "Dew Drop on a Rose Petal": the Molecular Pathogenesis of Varicella-Zoster Virus Skin Lesions. Microbiol Mol Biol Rev 2023; 87:e0011622. [PMID: 37354037 PMCID: PMC10521358 DOI: 10.1128/mmbr.00116-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.
Collapse
Affiliation(s)
- Ann M. Arvin
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Van Breedam E, Buyle-Huybrecht T, Govaerts J, Meysman P, Bours A, Boeren M, Di Stefano J, Caers T, De Reu H, Dirkx L, Schippers J, Bartholomeus E, Lebrun M, Sadzot-Delvaux C, Rybakowska P, Alarcón-Riquelme ME, Marañón C, Laukens K, Delputte P, Ogunjimi B, Ponsaerts P. Lack of strong innate immune reactivity renders macrophages alone unable to control productive Varicella-Zoster Virus infection in an isogenic human iPSC-derived neuronal co-culture model. Front Immunol 2023; 14:1177245. [PMID: 37287975 PMCID: PMC10241998 DOI: 10.3389/fimmu.2023.1177245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
With Varicella-Zoster Virus (VZV) being an exclusive human pathogen, human induced pluripotent stem cell (hiPSC)-derived neural cell culture models are an emerging tool to investigate VZV neuro-immune interactions. Using a compartmentalized hiPSC-derived neuronal model allowing axonal VZV infection, we previously demonstrated that paracrine interferon (IFN)-α2 signalling is required to activate a broad spectrum of interferon-stimulated genes able to counteract a productive VZV infection in hiPSC-neurons. In this new study, we now investigated whether innate immune signalling by VZV-challenged macrophages was able to orchestrate an antiviral immune response in VZV-infected hiPSC-neurons. In order to establish an isogenic hiPSC-neuron/hiPSC-macrophage co-culture model, hiPSC-macrophages were generated and characterised for phenotype, gene expression, cytokine production and phagocytic capacity. Even though immunological competence of hiPSC-macrophages was shown following stimulation with the poly(dA:dT) or treatment with IFN-α2, hiPSC-macrophages in co-culture with VZV-infected hiPSC-neurons were unable to mount an antiviral immune response capable of suppressing a productive neuronal VZV infection. Subsequently, a comprehensive RNA-Seq analysis confirmed the lack of strong immune responsiveness by hiPSC-neurons and hiPSC-macrophages upon, respectively, VZV infection or challenge. This may suggest the need of other cell types, like T-cells or other innate immune cells, to (co-)orchestrate an efficient antiviral immune response against VZV-infected neurons.
Collapse
Affiliation(s)
- Elise Van Breedam
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Jonas Govaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Andrea Bours
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Thalissa Caers
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Jolien Schippers
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Esther Bartholomeus
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, Interdisciplinary Research Institute in the Biomedical Sciences GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, Interdisciplinary Research Institute in the Biomedical Sciences GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Paulina Rybakowska
- Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Marta E. Alarcón-Riquelme
- Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Concepción Marañón
- Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Junta de Andalucía, Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
- Infla-Med, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Purohit SK, Corbett AJ, Slobedman B, Abendroth A. Varicella Zoster Virus infects mucosal associated Invariant T cells. Front Immunol 2023; 14:1121714. [PMID: 37006246 PMCID: PMC10063790 DOI: 10.3389/fimmu.2023.1121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionMucosal Associated Invariant T (MAIT) cells are innate-like T cells that respond to conserved pathogen-derived vitamin B metabolites presented by the MHC class I related-1 molecule (MR1) antigen presentation pathway. Whilst viruses do not synthesize these metabolites, we have reported that varicella zoster virus (VZV) profoundly suppresses MR1 expression, implicating this virus in manipulation of the MR1:MAIT cell axis. During primary infection, the lymphotropism of VZV is likely to be instrumental in hematogenous dissemination of virus to gain access to cutaneous sites where it clinically manifests as varicella (chickenpox). However, MAIT cells, which are found in the blood and at mucosal and other organ sites, have yet to be examined in the context of VZV infection. The goal of this study was to examine any direct impact of VZV on MAIT cells.MethodsUsing flow cytometry, we interrogated whether primary blood derived MAIT cells are permissive to infection by VZV whilst further analysing differential levels of infection between various MAIT cell subpopulations. Changes in cell surface extravasation, skin homing, activation and proliferation markers after VZV infection of MAIT cells was also assessed via flow cytometry. Finally the capacity of MAIT cells to transfer infectious virus was tested through an infectious center assay and imaged via fluorescence microscopy.ResultsWe identify primary blood-derived MAIT cells as being permissive to VZV infection. A consequence of VZV infection of MAIT cells was their capacity to transfer infectious virus to other permissive cells, consistent with MAIT cells supporting productive infection. When subgrouping MAIT cells by their co- expression of a variety cell surface markers, there was a higher proportion of VZV infected MAIT cells co-expressing CD4+ and CD4+/CD8+ MAIT cells compared to the more phenotypically dominant CD8+ MAIT cells, whereas infection was not associated with differences in co-expression of CD56 (MAIT cell subset with enhanced responsiveness to innate cytokine stimulation), CD27 (co-stimulatory) or PD-1 (immune checkpoint). Infected MAIT cells retained high expression of CCR2, CCR5, CCR6, CLA and CCR4, indicating a potentially intact capacity for transendothelial migration, extravasation and trafficking to skin sites. Infected MAIT cells also displayed increased expression of CD69 (early activation) and CD71 (proliferation) markers.DiscussionThese data identify MAIT cells as being permissive to VZV infection and identify impacts of such infection on co- expressed functional markers.
Collapse
Affiliation(s)
- Shivam K. Purohit
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Allison Abendroth, ; Barry Slobedman,
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Allison Abendroth, ; Barry Slobedman,
| |
Collapse
|
8
|
Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022; 10:microorganisms10091754. [PMID: 36144356 PMCID: PMC9503318 DOI: 10.3390/microorganisms10091754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Herpesviruses are double-stranded DNA viruses occurring at a high prevalence in the human population and are responsible for a wide array of clinical manifestations and diseases, from mild to severe. These viruses are classified in three subfamilies (Alpha-, Beta- and Gammaherpesvirinae), with eight members currently known to infect humans. Importantly, all herpesviruses can establish lifelong latent infections with symptomatic or asymptomatic lytic reactivations. Accumulating evidence suggest that chemical modifications of viral RNA and DNA during the lytic and latent phases of the infections caused by these viruses, are likely to play relevant roles in key aspects of the life cycle of these viruses by modulating and regulating their replication, establishment of latency and evasion of the host antiviral response. Here, we review and discuss current evidence regarding epitranscriptomic and epigenetic modifications of herpesviruses and how these can influence their life cycles. While epitranscriptomic modifications such as m6A are the most studied to date and relate to positive effects over the replication of herpesviruses, epigenetic modifications of the viral genome are generally associated with defense mechanisms of the host cells to suppress viral gene transcription. However, herpesviruses can modulate these modifications to their own benefit to persist in the host, undergo latency and sporadically reactivate.
Collapse
|
9
|
Hertzog J, Zhou W, Fowler G, Rigby RE, Bridgeman A, Blest HTW, Cursi C, Chauveau L, Davenne T, Warner BE, Kinchington PR, Kranzusch PJ, Rehwinkel J. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO J 2022; 41:e109217. [PMID: 35670106 PMCID: PMC9289529 DOI: 10.15252/embj.2021109217] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.
Collapse
Affiliation(s)
- Jonny Hertzog
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Clinical Cooperation Unit VirotherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Wen Zhou
- Department of MicrobiologyHarvard Medical SchoolBostonMAUSA
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
- Present address:
School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Gerissa Fowler
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Rachel E Rigby
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Anne Bridgeman
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Henry TW Blest
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Chiara Cursi
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Lise Chauveau
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Tamara Davenne
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | - Paul R Kinchington
- Department of OphthalmologyUniversity of PittsburghPittsburghPAUSA
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghPAUSA
| | - Philip J Kranzusch
- Department of MicrobiologyHarvard Medical SchoolBostonMAUSA
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMAUSA
- Parker Institute for Cancer ImmunotherapyDana‐Farber Cancer InstituteBostonMAUSA
| | - Jan Rehwinkel
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Suenaga T, Mori Y, Suzutani T, Arase H. Regulation of Siglec-7-mediated varicella-zoster virus infection of primary monocytes by cis-ligands. Biochem Biophys Res Commun 2022; 613:41-46. [DOI: 10.1016/j.bbrc.2022.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
|
11
|
Suenaga T, Mori Y, Suzutani T, Arase H. Siglec-7 mediates varicella-zoster virus infection by associating with glycoprotein B. Biochem Biophys Res Commun 2022; 607:67-72. [DOI: 10.1016/j.bbrc.2022.03.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
|
12
|
Tommasi C, Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses 2022; 14:982. [PMID: 35632723 PMCID: PMC9147561 DOI: 10.3390/v14050982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
The replication of varicella-zoster virus (VZV) in skin is critical to its pathogenesis and spread. Primary infection causes chickenpox, which is characterised by centrally distributed skin blistering lesions that are rich in infectious virus. Cell-free virus in the cutaneous blistering lesions not only spreads to cause further cases, but infects sensory nerve endings, leading to the establishment of lifelong latency in sensory and autonomic ganglia. The reactivation of virus to cause herpes zoster is again characterised by localised painful skin blistering rash containing infectious virus. The development of in vitro and in vivo models of VZV skin replication has revealed aspects of VZV replication and pathogenesis in this important target organ and improved our understanding of the vaccine strain vOKa attenuation. In this review, we outline the current knowledge on VZV interaction with host signalling pathways, the viral association with proteins associated with epidermal terminal differentiation, and how these interconnect with the VZV life cycle to facilitate viral replication and shedding.
Collapse
Affiliation(s)
- Cristina Tommasi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Judith Breuer
- Department of Infection, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
13
|
Rahangdale RR, Tender T, Balireddy S, Pasupuleti M, Hariharapura RC. The Interplay Between Stress and Immunity Triggers Herpes Zoster Infection in COVID-19 Patients: A Review. Can J Microbiol 2022; 68:303-314. [PMID: 35167378 DOI: 10.1139/cjm-2021-0242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a potential health threat in the highly mobile society of the world. Also, there are concerns regarding the co-infections occurring in COVID-19 patients. Herpes zoster (HZ) is now being reported as a co-infection in COVID-19 patients. It is a varicella-zoster virus induced viral infection affecting older people and immunocompromised individuals. Reactivation of HZ infection in COVID-19 patients are emerging and the mechanism of reactivation is still unknown. A most convincing argument would be, increased psychological and immunological stress leading to HZ in COVID-19 patients, and this review justifies this argument.
Collapse
Affiliation(s)
- Rakesh Ravishankar Rahangdale
- Manipal Academy of Higher Education, 76793, Manipal College of Pharmaceutical Sciences, Department of Pharmaceutical Biotechnology, Manipal, India;
| | - Tenzin Tender
- Manipal Academy of Higher Education, 76793, Manipal College of Pharmaceutical Sciences, Department of Pharmaceutical Biotechnology, Manipal, India;
| | - Sridevi Balireddy
- Manipal Academy of Higher Education, 76793, Manipal College of Pharmaceutical Sciences, Department of Pharmaceutical Biotechnology, Manipal, India;
| | - Mukesh Pasupuleti
- Central Drug Research Institute, 30082, Microbiology Division, Lucknow, India;
| | | |
Collapse
|
14
|
Herrera L, Martin‐Inaraja M, Santos S, Inglés‐Ferrándiz M, Azkarate A, Perez‐Vaquero MA, Vesga MA, Vicario JL, Soria B, Solano C, De Paz R, Marcos A, Ferreras C, Perez‐Martinez A, Eguizabal C. Identifying SARS-CoV-2 'memory' NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022; 165:234-249. [PMID: 34775592 PMCID: PMC8652867 DOI: 10.1111/imm.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease is the manifestation of syndrome coronavirus 2 (SARS-CoV-2) infection, which is causing a worldwide pandemic. This disease can lead to multiple and different symptoms, being lymphopenia associated with severity one of the most persistent. Natural killer cells (NK cells) are part of the innate immune system, being fighting against virus-infected cells one of their key roles. In this study, we determined the phenotype of NK cells after COVID-19 and the main characteristic of SARS-CoV-2-specific-like NK population in the blood of convalescent donors. CD57+ NKG2C+ phenotype in SARS-CoV-2 convalescent donors indicates the presence of 'memory'/activated NK cells as it has been shown for cytomegalovirus infections. Although the existence of this population is donor dependent, its expression may be crucial for the specific response against SARS-CoV-2, so that, it gives us a tool for selecting the best donors to produce off-the-shelf living drug for cell therapy to treat COVID-19 patients under the RELEASE clinical trial (NCT04578210).
Collapse
Affiliation(s)
- Lara Herrera
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Myriam Martin‐Inaraja
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Silvia Santos
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Marta Inglés‐Ferrándiz
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Aida Azkarate
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Perez‐Vaquero
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Vesga
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Jose L. Vicario
- HistocompatibilityCentro de Transfusión de MadridMadridSpain
| | - Bernat Soria
- Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAlicanteSpain
- Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL)AlicanteSpain
| | - Carlos Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVAValenciaSpain
- School of MedicineUniversity of ValenciaSpain
| | - Raquel De Paz
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Antonio Marcos
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Cristina Ferreras
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
| | - Antonio Perez‐Martinez
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
- Pediatric Hemato‐Oncology DepartmentUniversity Hospital La PazMadridSpain
- Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Cristina Eguizabal
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| |
Collapse
|
15
|
Abendroth A, Slobedman B. Modulation of MHC and MHC-Like Molecules by Varicella Zoster Virus. Curr Top Microbiol Immunol 2022; 438:85-102. [DOI: 10.1007/82_2022_254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Casado JL, Moraga E, Vizcarra P, Velasco H, Martín-Hondarza A, Haemmerle J, Gómez S, Quereda C, Vallejo A. Expansion of CD56 dimCD16 neg NK Cell Subset and Increased Inhibitory KIRs in Hospitalized COVID-19 Patients. Viruses 2021; 14:v14010046. [PMID: 35062250 PMCID: PMC8780522 DOI: 10.3390/v14010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) infection induces elevated levels of inflammatory cytokines, which are mainly produced by the innate response to the virus. The role of NK cells, which are potent producers of IFN-γ and cytotoxicity, has not been sufficiently studied in the setting of SARS-CoV-2 infection. We confirmed a different distribution of NK cell subsets in hospitalized COVID-19 patients despite their NK cell deficiency. The impairment of this innate defense is mainly focused on the cytotoxic capacity of the CD56dim NK cells. On the one hand, we found an expansion of the CD56dimCD16neg NK subset, lower cytotoxic capacities, and high frequencies of inhibitory 2DL1 and 2DL1/S1 KIR receptors in COVID-19 patients. On the other hand, the depletion of CD56dimCD16dim/bright NK cell subsets, high cytotoxic capacities, and high frequencies of inhibitory 2DL1 KIR receptors were found in COVID-19 patients. In contrast, no differences in the distribution of CD56bright NK cell subsets were found in this study. These alterations in the distribution and phenotype of NK cells might enhance the impairment of this crucial innate line of defense during COVID-19 infection.
Collapse
Affiliation(s)
- José L. Casado
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
- Correspondence: (J.L.C.); (A.V.)
| | - Elisa Moraga
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
- Laboratory of Immunovirology, Ramón y Cajal Institute for Health Research, University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
| | - Héctor Velasco
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
- Laboratory of Immunovirology, Ramón y Cajal Institute for Health Research, University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Adrián Martín-Hondarza
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
- Laboratory of Immunovirology, Ramón y Cajal Institute for Health Research, University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Johannes Haemmerle
- Department of Prevention of Occupational Risks, University Hospital Ramón y Cajal, 28034 Madrid, Spain;
| | - Sandra Gómez
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
| | - Carmen Quereda
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
| | - Alejandro Vallejo
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Research (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain; (E.M.); (P.V.); (H.V.); (A.M.-H.); (S.G.); (C.Q.)
- Laboratory of Immunovirology, Ramón y Cajal Institute for Health Research, University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Correspondence: (J.L.C.); (A.V.)
| |
Collapse
|
17
|
Salehi Z, Beheshti M, Nomanpour B, Khosravani P, Naseri M, Sahraian MA, Izad M. The Association of EBV and HHV-6 Viral Load with Different NK and CD8 + T Cell Subsets in The Acute Phase of Relapsing-Remitting Multiple Sclerosis. CELL JOURNAL 2021; 23:626-632. [PMID: 34939755 PMCID: PMC8665980 DOI: 10.22074/cellj.2021.7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/23/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Epstein-Barr virus (EBV) and Human Herpes virus 6 (HHV-6) are believed to involve in multiple sclerosis (MS) pathogenesis. Natural killer (NK) and CD8+ T cells have essential roles in handling viral infections and their phenotypic and functional properties may be influenced following exposure to viral infections. Here, we investigated the association of NK and CD8+ T cells subpopulations frequency with EBV and HHV-6 viral load in MS patients. MATERIALS AND METHODS In this case-control study, EBV and HHV-6 viral load were evaluated in plasma of newly diagnosed relapsing-remitting MS (RRMS) patients at relapse phase (n=23), who were not on disease-modifying therapy (DMT), and sex- and age-matched healthy controls (n=19) using real-time polymerase chain reaction (PCR). The frequency of NK and CD8+ T cells subsets were assessed by CD27, CD28, CD45RO, CD56, and CD57 markers using flow cytometry. RESULTS Despite the increased level of EBV viral load in RRMS patients compared to the control group, there was no statistically significant difference in EBV and HHV-6 copy numbers between the studied groups. In addition, a significant decrease was observed in the percentages of CD56bright CD57- and CD56dim CD57+ CD8low CD45RO- NK cells in RRMS patients in comparison to healthy controls. Analysis of CD8+ T cell subsets showed a substantially high proportion of CD27+ CD28+ CD45RO+ CD57- CD8hi T cells in patients at relapse phase compared to controls. The frequency of NK and T cells subtypes was not associated with EBV and HHV6 plasma viral loads. CONCLUSION These findings further highlight the variation of NK and CD8+ T cells subsets frequency in clinically active RRMS patients. Since the composition of cells was not associated with EBV and HHV-6 viral load, perhaps other viral infections may be involved in altered NK and CD8+ T cells subpopulation. Larger cohort studies are needed to confirm these results.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Beheshti
- Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Bizhan Nomanpour
- Microbiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Naseri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Department of Immunology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Lassen J, Stürner KH, Gierthmühlen J, Dargvainiene J, Kixmüller D, Leypoldt F, Baron R, Hüllemann P. Protective role of natural killer cells in neuropathic pain conditions. Pain 2021; 162:2366-2375. [PMID: 33769361 DOI: 10.1097/j.pain.0000000000002274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT During the past few years, the research of chronic neuropathic pain has focused on neuroinflammation within the central nervous system and its impact on pain chronicity. As part of the ERA-Net NEURON consortium, we aimed to identify immune cell patterns in the cerebrospinal fluid (CSF) of patients with herpes zoster neuralgia and patients with polyneuropathy (PNP), which may contribute to pain chronicity in these neuropathic pain conditions. Cerebrospinal fluid of 41 patients (10 herpes zoster and 31 PNP) was analyzed by flow cytometry identifying lymphocyte subsets: CD4+ (T-helper cells), CD8+ (cytotoxic T cells), CD19+ (B cells), and CD56+ (natural killer [NK]) cells. At baseline and at follow-up, the somatosensory phenotype was assessed with quantitative sensory testing. In addition, the patients answered epidemiological questionnaires and the PainDETECT questionnaire. Immune cell profiles and somatosensory profiles, as well as painDETECT questionnaire scores, were analyzed and correlated to determine specific immune cell patterns, which contribute to chronic pain. We found a negative correlation (P = 0.004, r = -0.596) between the frequency of NK cells and mechanical pain sensitivity (MPS), one of the most relevant quantitative sensory testing markers for central sensitization; a high frequency of NK cells correlated with low MPS. The analysis of the individual follow-up showed a worsening of the pain condition if NK-cell frequency was low. Low NK-cell frequency is associated with signs of central sensitization (MPS), whereas high NK-cell frequency might prevent central sensitization. Therefore, NK cells seem to play a protective role within the neuroinflammatory cascade and may be used as a marker for pain chronicity.
Collapse
Affiliation(s)
- Josephine Lassen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Klarissa Hanja Stürner
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Dorthe Kixmüller
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| |
Collapse
|
19
|
Jeyaraman M, Muthu S, Bapat A, Jain R, Sushmitha E, Gulati A, Channaiah Anudeep T, Dilip SJ, Jha NK, Kumar D, Kesari KK, Ojha S, Dholpuria S, Gupta G, Dureja H, Chellappan DK, Singh SK, Dua K, Jha SK. Bracing NK cell based therapy to relegate pulmonary inflammation in COVID-19. Heliyon 2021; 7:e07635. [PMID: 34312598 PMCID: PMC8294777 DOI: 10.1016/j.heliyon.2021.e07635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The contagiosity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has startled mankind and has brought our lives to a standstill. The treatment focused mainly on repurposed immunomodulatory and antiviral agents along with the availability of a few vaccines for prophylaxis to vanquish COVID-19. This seemingly mandates a deeper understanding of the disease pathogenesis. This necessitates a plausible extrapolation of cell-based therapy to COVID-19 and is regarded equivalently significant. Recently, correlative pieces of clinical evidence reported a robust decline in lymphocyte count in severe COVID-19 patients that suggest dysregulated immune responses as a key element contributing to the pathophysiological alterations. The large granular lymphocytes also known as natural killer (NK) cells play a heterogeneous role in biological functioning wherein their frontline action defends the body against a wide array of infections and tumors. They prominently play a critical role in viral clearance and executing immuno-modulatory activities. Accumulated clinical evidence demonstrate a decrease in the number of NK cells in circulation with or without phenotypical exhaustion. These plausibly contribute to the progression of pulmonary inflammation in COVID-19 pneumonia and result in acute lung injury. In this review, we have outlined the present understanding of the immunological response of NK cells in COVID-19 infection. We have also discussed the possible use of these powerful biological cells as a therapeutic agent in view of preventing immunological harms of SARS-CoV-2 and the current challenges in advocating NK cell therapy for the same.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Orthopedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Asawari Bapat
- Quality and Regulatory Affairs, Infohealth FZE, United Arab Emirates
| | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - E.S. Sushmitha
- Department of Dermatology, Raja Rajeswari Medical College & Hospital, Bengaluru, Karnataka
| | - Arun Gulati
- Department of Orthopedics, Kalpana Chawla Government Medical College & Hospital, Karnal, Haryana, India
| | - Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering &Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sunny Dholpuria
- Indian Scientific Education and Technology Foundation, Lucknow, 226002, UP, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kamal Dua
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering &Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
20
|
Anagnostouli MC, Velonakis G, Dalakas MC. Aggressive Herpes Zoster in Young Patients With Multiple Sclerosis Under Dimethyl Fumarate: Significance of CD8 + and Natural Killer Cells. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/4/e1017. [PMID: 34049996 PMCID: PMC8168045 DOI: 10.1212/nxi.0000000000001017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/22/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Maria C Anagnostouli
- From the Multiple Sclerosis and Demyelinating Diseases Unit and Immunogenetics Laboratory (M.C.A.), 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition University Hospital, Athens, Greece; Research Unit of Radiology (G.V.), 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Greece; Neuroimmunology Unit (M.C.D.), Department of Pathophysiology, National and Kapodistrian University of Athens, Greece; and Department of Neurology (M.C.D.), Thomas Jefferson University, Philadelphia, PA.
| | - Georgios Velonakis
- From the Multiple Sclerosis and Demyelinating Diseases Unit and Immunogenetics Laboratory (M.C.A.), 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition University Hospital, Athens, Greece; Research Unit of Radiology (G.V.), 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Greece; Neuroimmunology Unit (M.C.D.), Department of Pathophysiology, National and Kapodistrian University of Athens, Greece; and Department of Neurology (M.C.D.), Thomas Jefferson University, Philadelphia, PA
| | - Marinos C Dalakas
- From the Multiple Sclerosis and Demyelinating Diseases Unit and Immunogenetics Laboratory (M.C.A.), 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, NKUA, Aeginition University Hospital, Athens, Greece; Research Unit of Radiology (G.V.), 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Greece; Neuroimmunology Unit (M.C.D.), Department of Pathophysiology, National and Kapodistrian University of Athens, Greece; and Department of Neurology (M.C.D.), Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
21
|
Lenart M, Kluczewska A, Szaflarska A, Rutkowska-Zapała M, Wąsik M, Ziemiańska-Pięta A, Kobylarz K, Pituch-Noworolska A, Siedlar M. Selective downregulation of natural killer activating receptors on NK cells and upregulation of PD-1 expression on T cells in children with severe and/or recurrent Herpes simplex virus infections. Immunobiology 2021; 226:152097. [PMID: 34015527 DOI: 10.1016/j.imbio.2021.152097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Severe, recurrent or atypical Herpes simplex virus (HSV) infections are still posing clinical and diagnostic problem in clinical immunology facilities. However, the molecular background of this disorder is still unclear. The aim of this study was to investigate the expression of activating receptors on NK cells (CD16, NKp46, NKG2D, NKp80, 2B4, CD48 and NTB-A) and checkpoint molecule PD-1 on T lymphocytes and NK cells, in patients with severe and/or recurrent infections with HSV and age-matched healthy control subjects. As a result, we noticed that patients with severe and/or recurrent infection with HSV had significantly lower percentage of CD16brightCD56dim and higher percentage of CD16dimCD56bright NK cell subsets, when compared to control subjects, which may be associated with abnormal NK cell maturation during chronic HSV infection. Patients had also significantly downregulated expression of CD16 receptor on CD16bright NK cells. The expression of activating receptors was significantly reduced on patients' NK cells - either both the percentage of NK cells expressing the receptor and MFI of its expression (NKp46, NKp80 and 2B4 on CD16brightCD56dim cells and NKp46 on CD16dimCD56bright cells) or only MFI (NKG2D on both NK cell subsets). It should be noted that the reduction of receptor expression was limited to NK cells, since there was no differences in the percentage of receptor-positive cells or MFI on T cells. However, NTB-A receptor was the only one which expression was not only simultaneously changed in patients' NK and T cells, but also significantly upregulated on CD16dimCD56bright NK cell and CD8+ cell subsets. Patients had also upregulated proportion of CD4+ T cells expressing PD-1. Thus, we suggest that an increased percentage of PD-1+ cells may represent an independent indirect mechanism of downregulation of antiviral response, separate from the reduction of NK cell activating receptors expression. Altogether, our studies indicate two possible mechanisms which may promote perpetuation of HSV infection: 1) selective inhibition of activating receptors on NK cells, but not on T cells, and 2) upregulation of checkpoint molecule PD-1 on CD4+ T cells.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Magdalena Wąsik
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Ziemiańska-Pięta
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Krzysztof Kobylarz
- Department of Anesthesiology and Intensive Care, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow, Poland.
| |
Collapse
|
22
|
Liang F, Glans H, Enoksson SL, Kolios AGA, Loré K, Nilsson J. Recurrent Herpes Zoster Ophthalmicus in a Patient With a Novel Toll-Like Receptor 3 Variant Linked to Compromised Activation Capacity in Fibroblasts. J Infect Dis 2021; 221:1295-1303. [PMID: 31268141 DOI: 10.1093/infdis/jiz229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Herpes zoster ophthalmicus occurs primarily in elderly or immunocompromised individuals after reactivation of varicella zoster virus (VZV). Recurrences of zoster ophthalmicus are uncommon because the reactivation efficiently boosts anti-VZV immunity. A 28-year-old female presented to our clinic with a history of multiple recurrences of zoster ophthalmicus. METHODS Whole-exome sequencing (WES), analyses of VZV T-cell immunity, and pathogen recognition receptor function in primary antigen-presenting cells (APCs) and fibroblasts were performed. RESULTS Normal VZV-specific T-cell immunity and antibody response were detected. Whole-exome sequencing identified a heterozygous nonsynonymous variant (c.2324C > T) in the Toll-like receptor 3 (TLR3) gene resulting in formation of a premature stop-codon. This alteration could potentially undermine TLR3 signaling in a dominant-negative fashion. Therefore, we investigated TLR3 signaling responses in APCs and fibroblasts from the patient. The APCs responded efficiently to stimulation with TLR3 ligands, whereas the responses from the fibroblasts were compromised. CONCLUSIONS We report a novel TLR3 variant associated with recurrent zoster ophthalmicus. Toll-like receptor 3 responses that were unaffected in APCs but diminished in fibroblasts are in line with previous reports linking TLR3 deficiency with herpes simplex virus encephalitis. Mechanisms involving compromised viral sensing in infected cells may thus be central to the described immunodeficiency.
Collapse
Affiliation(s)
- Frank Liang
- Division of Immunology and Allergy, Department of Medicine Solna.,Center for Molecular Medicine
| | - Hedvig Glans
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Lind Enoksson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology, Karolinska University Hospital, Huddinge, Sweden
| | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna.,Center for Molecular Medicine
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Switzerland
| |
Collapse
|
23
|
Goodier MR, Riley EM. Regulation of the human NK cell compartment by pathogens and vaccines. Clin Transl Immunology 2021; 10:e1244. [PMID: 33505682 PMCID: PMC7813579 DOI: 10.1002/cti2.1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self‐MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine‐induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen‐, tumor‐ or stress‐induced innate pathways and from antigen‐specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen‐ and vaccine‐derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology London School of Hygiene and Tropical Medicine London UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
24
|
Modulation of Apoptosis and Cell Death Pathways by Varicella-Zoster Virus. Curr Top Microbiol Immunol 2021; 438:59-73. [DOI: 10.1007/82_2021_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Abstract
Purpose of review Varicella zoster virus (VZV) is a highly contagious, neurotropic alpha herpes virus that causes varicella (chickenpox). VZV establishes lifelong latency in the sensory ganglia from which it can reactivate to induce herpes zoster (HZ), a painful disease that primarily affects older individuals and those who are immune-suppressed. Given that VZV infection is highly specific to humans, developing a reliable in vivo model that recapitulates the hallmarks of VZV infection has been challenging. Simian Varicella Virus (SVV) infection in nonhuman primates reproduces the cardinal features of VZV infections in humans and allows the study of varicella virus pathogenesis in the natural host. In this review, we summarize our current knowledge about genomic and virion structure of varicelloviruses as well as viral pathogenesis and antiviral immune responses during acute infection, latency and reactivation. We also examine the immune evasion mechanisms developed by varicelloviruses to escape the host immune responses and the current vaccines available for protecting individuals against chickenpox and herpes zoster. Recent findings Data from recent studies suggest that infected T cells are important for viral dissemination to the cutaneous sites of infection as well as site of latency and that a viral latency-associated transcript might play a role in the transition from lytic infection to latency and then reactivation. Summary Recent studies have provided exciting insights into mechanisms of varicelloviruses pathogenesis such as the critical role of T cells in VZV/SVV dissemination from the respiratory mucosa to the skin and the sensory ganglia; the ability of VZV/SVV to interfere with host defense; and the identification of VLT transcripts in latently infected ganglia. However, our understanding of these phenomena remains poorly understood. Therefore, it is critical that we continue to investigate host-pathogen interactions during varicelloviruses infection. These studies will lead to a deeper understanding of VZV biology as well as novel aspects of cell biology.
Collapse
|
26
|
Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death. PLoS Pathog 2020; 16:e1008473. [PMID: 32649716 PMCID: PMC7375649 DOI: 10.1371/journal.ppat.1008473] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/22/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses are known to encode a number of inhibitors of host cell death, including RIP Homotypic Interaction Motif (RHIM)-containing proteins. Varicella zoster virus (VZV) is a member of the alphaherpesvirus subfamily and is responsible for causing chickenpox and shingles. We have identified a novel viral RHIM in the VZV capsid triplex protein, open reading frame (ORF) 20, that acts as a host cell death inhibitor. Like the human cellular RHIMs in RIPK1 and RIPK3 that stabilise the necrosome in TNF-induced necroptosis, and the viral RHIM in M45 from murine cytomegalovirus that inhibits cell death, the ORF20 RHIM is capable of forming fibrillar functional amyloid complexes. Notably, the ORF20 RHIM forms hybrid amyloid complexes with human ZBP1, a cytoplasmic sensor of viral nucleic acid. Although VZV can inhibit TNF-induced necroptosis, the ORF20 RHIM does not appear to be responsible for this inhibition. In contrast, the ZBP1 pathway is identified as important for VZV infection. Mutation of the ORF20 RHIM renders the virus incapable of efficient spread in ZBP1-expressing HT-29 cells, an effect which can be reversed by the inhibition of caspases. Therefore we conclude that the VZV ORF20 RHIM is important for preventing ZBP1-driven apoptosis during VZV infection, and propose that it mediates this effect by sequestering ZBP1 into decoy amyloid assemblies. RIP homotypic interaction motifs (RHIMs) are found in host proteins that can signal for programmed cell death and in viral proteins that can prevent it. Complexes stabilized by intermolecular interactions involving RHIMs have a fibrillar amyloid structure. We have identified a novel RHIM within the ORF20 protein expressed by Varicella zoster virus (VZV) that forms amyloid-based complexes with human cellular RHIMs. Whereas other herpesvirus RHIMs inhibit necroptosis, this new VZV RHIM targets the host RHIM-containing protein ZBP1 to inhibit apoptosis during infection. This is the first study to demonstrate the importance of the ZBP1 pathway in VZV infection and to identify the role of a viral RHIM in apoptosis inhibition. It broadens our understanding of host defense pathways and demonstrates how a decoy amyloid strategy is employed by pathogens to circumvent the host response.
Collapse
|
27
|
Abstract
The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada;,
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
28
|
Gerada C, Campbell TM, Kennedy JJ, McSharry BP, Steain M, Slobedman B, Abendroth A. Manipulation of the Innate Immune Response by Varicella Zoster Virus. Front Immunol 2020; 11:1. [PMID: 32038653 PMCID: PMC6992605 DOI: 10.3389/fimmu.2020.00001] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox (varicella) and shingles (herpes zoster). VZV and other members of the herpesvirus family are distinguished by their ability to establish a latent infection, with the potential to reactivate and spread virus to other susceptible individuals. This lifelong relationship continually subjects VZV to the host immune system and as such VZV has evolved a plethora of strategies to evade and manipulate the immune response. This review will focus on our current understanding of the innate anti-viral control mechanisms faced by VZV. We will also discuss the diverse array of strategies employed by VZV to regulate these innate immune responses and highlight new knowledge on the interactions between VZV and human innate immune cells.
Collapse
Affiliation(s)
- Chelsea Gerada
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Tessa M Campbell
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jarrod J Kennedy
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Brian P McSharry
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Barry Slobedman
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Allison Abendroth
- Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Granzyme B Cleaves Multiple Herpes Simplex Virus 1 and Varicella-Zoster Virus (VZV) Gene Products, and VZV ORF4 Inhibits Natural Killer Cell Cytotoxicity. J Virol 2019; 93:JVI.01140-19. [PMID: 31462576 DOI: 10.1128/jvi.01140-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Immune regulation of alphaherpesvirus latency and reactivation is critical for the control of virus pathogenesis. This is evident for herpes simplex virus 1 (HSV-1), where cytotoxic T lymphocytes (CTLs) prevent viral reactivation independent of apoptosis induction. This inhibition of HSV-1 reactivation has been attributed to granzyme B cleavage of HSV infected cell protein 4 (ICP4); however, it is unknown whether granzyme B cleavage of ICP4 can directly protect cells from CTL cytotoxicity. Varicella zoster virus (VZV) is closely related to HSV-1; however, it is unknown whether VZV proteins contain granzyme B cleavage sites. Natural killer (NK) cells play a central role in VZV and HSV-1 pathogenesis and, like CTLs, utilize granzyme B to kill virally infected target cells. However, whether alphaherpesvirus granzyme B cleavage sites could modulate NK cell-mediated cytotoxicity has yet to be established. This study aimed to identify novel HSV-1 and VZV gene products with granzyme B cleavage sites and assess whether they could protect cells from NK cell-mediated cytotoxicity. We have demonstrated that HSV ICP27, VZV open reading frame 62 (ORF62), and VZV ORF4 are cleaved by granzyme B. However, in an NK cell cytotoxicity assay, only VZV ORF4 conferred protection from NK cell-mediated cytotoxicity. The granzyme B cleavage site in ORF4 was identified via site-directed mutagenesis and, surprisingly, the mutation of this cleavage site did not alter the ability of ORF4 to modulate NK cell cytotoxicity, suggesting that ORF4 has a novel immunoevasive function that is independent from the granzyme B cleavage site.IMPORTANCE HSV-1 causes oral and genital herpes and establishes life-long latency in sensory ganglia. HSV-1 reactivates multiple times in a person's life and can cause life-threatening disease in immunocompromised patients. VZV is closely related to HSV-1, causes chickenpox during primary infection, and establishes life-long latency in ganglia, from where it can reactivate to cause herpes zoster (shingles). Unlike HSV-1, VZV only infects humans, and there are limited model systems; thus, little is known concerning how VZV maintains latency and why VZV reactivates. Through studying the link between immune cell cytotoxic functions, granzyme B, and viral gene products, an increased understanding of viral pathogenesis will be achieved.
Collapse
|
30
|
Ebert G, Paradkar PN, Londrigan SL. Virology Downunder, a meeting commentary from the 2019 Lorne Infection and Immunity Conference, Australia. Virol J 2019; 16:109. [PMID: 31477134 PMCID: PMC6720860 DOI: 10.1186/s12985-019-1217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/21/2019] [Indexed: 11/10/2022] Open
Abstract
The aim of this article is to summarise the virology content presented at the 9th Lorne Infection and Immunity Conference, Australia, in February 2019. The broad program included virology as a key theme, and the commentary herein highlights several key virology presentations at the meeting.
Collapse
Affiliation(s)
- Gregor Ebert
- Infectious Disease and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, 3220, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
31
|
Haredy AM, Takei M, Iwamoto SI, Ohno M, Kosaka M, Hirota K, Koketsu R, Okuno T, Ikuta K, Yamanishi K, Ebina H. Quantification of a cell-mediated immune response against varicella zoster virus by assessing responder CD4 high memory cell proliferation in activated whole blood cultures. Vaccine 2019; 37:5225-5232. [PMID: 31358406 DOI: 10.1016/j.vaccine.2019.07.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Herpes zoster (HZ) is caused by reactivation of a latent varicella zoster virus (VZV). The potential to develop HZ increases with age due to waning of memory cell-mediated immunity (CMI), mainly the CD4 response. Therefore, VZV-CD4-memory T cells (CD4-M) count in blood could serve as a barometer for HZ protection. However, direct quantification of these cells is known to be difficult because they are few in number in the blood. We thus developed a method to measure the proliferation level of CD4-M cells responding to VZV antigen in whole blood culture. METHODS Blood samples were collected from 32 children (2-15 years old) with or without a history of varicella infection, 18 young adults (28-45 years old), and 80 elderly (50-86 years old) with a history of varicella infection. The elderly group was vaccinated, and blood samples were taken 2 months and 1 year after VZV vaccination. Then, 1 mL of blood was mixed with VZV, diluted 1/10 in medium, and cultured. CD4-M cells were identified and measured by flow cytometry. RESULTS There was distinct proliferation of CD3+CD4highCD45RA-RO+ (CD4high-M) cells specific to VZV antigen at day 9. The majority of CD4high-M cells had the effector memory phenotype CCR7- and was granzyme B-positive. CD4high-M cells were detected in blood culture from varicella-immune but not varicella-non-immune children. Meanwhile, a higher level of CD4high-M proliferation was observed in young adults than in the elderly. The CD4high-M proliferation level was boosted 2 months after VZV vaccination and maintained for at least 1 year in the elderly. CONCLUSION Quantifying VZV responder CD4high -M cell proliferation is a convenient way to measure VZV CMI using small blood volumes. Our method can be applied to measure VZV vaccine-induced CMI in the elderly. Clinical study registry numbers: (www.clinicaltrials.jp) 173532 and 183985.
Collapse
Affiliation(s)
- Ahmad M Haredy
- Biken Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan.
| | | | | | | | - Mitsuyo Kosaka
- Biken Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Kazue Hirota
- Biken Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Ritsuko Koketsu
- Biken Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Toshiomi Okuno
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazuyoshi Ikuta
- Biken Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Koichi Yamanishi
- Biken Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Hirotaka Ebina
- Biken Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| |
Collapse
|
32
|
Campbell TM, McSharry BP, Steain M, Russell TA, Tscharke DC, Kennedy JJ, Slobedman B, Abendroth A. Functional paralysis of human natural killer cells by alphaherpesviruses. PLoS Pathog 2019; 15:e1007784. [PMID: 31194857 PMCID: PMC6564036 DOI: 10.1371/journal.ppat.1007784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are implicated as important anti-viral immune effectors in varicella zoster virus (VZV) infection. VZV can productively infect human NK cells, yet it is unknown how, or if, VZV can directly affect NK cell function. Here we demonstrate that VZV potently impairs the ability of NK cells to respond to target cell stimulation in vitro, leading to a loss of both cytotoxic and cytokine responses. Remarkably, not only were VZV infected NK cells affected, but VZV antigen negative NK cells that were exposed to virus in culture were also inhibited. This powerful impairment of function was dependent on direct contact between NK cells and VZV infected inoculum cells. Profiling of the NK cell surface receptor phenotype by multiparameter flow cytometry revealed that functional receptor expression is predominantly stable. Furthermore, inhibited NK cells were still capable of releasing cytotoxic granules when the stimulation signal bypassed receptor/ligand interactions and early signalling, suggesting that VZV paralyses NK cells from responding. Phosflow examination of key components in the degranulation signalling cascade also demonstrated perturbation following culture with VZV. In addition to inhibiting degranulation, IFN-γ and TNF production were also repressed by VZV co-culture, which was most strongly regulated in VZV infected NK cells. Interestingly, the closely related virus, herpes simplex virus type 1 (HSV-1), was also capable of efficiently infecting NK cells in a cell-associated manner, and demonstrated a similar capacity to render NK cells unresponsive to target cell stimulation–however HSV-1 differentially targeted cytokine production compared to VZV. Our findings progress a growing understanding of pathogen inhibition of NK cell function, and reveal a previously unreported strategy for VZV to manipulate the immune response. Natural killer (NK) cells–as their name implies–are the immune system’s ready to respond ‘killers’, being able to help control viral infection by cytolytic killing of infected cells and secretion of pro-inflammatory cytokines to activate and direct the immune response. In retaliation, viruses like varicella zoster virus (VZV; the cause of chickenpox and shingles) work to dampen the immune system in order to establish infection in human hosts. We have identified a previously uncharacterised ability of VZV to render NK cells unresponsive to target cells, hindering NK cells from both cytotoxic function and cytokine production. NK cells still maintained predominantly stable expression of functional surface receptors, and were capable of releasing cytotoxic granules when given a receptor-independent stimulus. In this way, VZV paralyses NK cells from functionally responding to target cells, essentially taking the ‘killer’ out of natural killer cells.
Collapse
Affiliation(s)
- Tessa Mollie Campbell
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Brian Patrick McSharry
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Megan Steain
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Tiffany Ann Russell
- Department of Microbial Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - David Carl Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jarrod John Kennedy
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
33
|
Chattopadhyay PK, Winters AF, Lomas WE, Laino AS, Woods DM. High-Parameter Single-Cell Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:411-430. [PMID: 30699035 DOI: 10.1146/annurev-anchem-061417-125927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thousands of transcripts and proteins confer function and discriminate cell types in the body. Using high-parameter technologies, we can now measure many of these markers at once, and multiple platforms are now capable of analysis on a cell-by-cell basis. Three high-parameter single-cell technologies have particular potential for discovering new biomarkers, revealing disease mechanisms, and increasing our fundamental understanding of cell biology. We review these three platforms (high-parameter flow cytometry, mass cytometry, and a new class of technologies called integrated molecular cytometry platforms) in this article. We describe the underlying hardware and instrumentation, the reagents involved, and the limitations and advantages of each platform. We also highlight the emerging field of high-parameter single-cell data analysis, providing an accessible overview of the data analysis process and choice of tools.
Collapse
Affiliation(s)
- Pratip K Chattopadhyay
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - Aidan F Winters
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - Woodrow E Lomas
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - Andressa S Laino
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| | - David M Woods
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA;
| |
Collapse
|
34
|
Ali A, Gyurova IE, Waggoner SN. Mutually assured destruction: the cold war between viruses and natural killer cells. Curr Opin Virol 2019; 34:130-139. [PMID: 30877885 DOI: 10.1016/j.coviro.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a multitude of antiviral roles that are significant enough to provoke viral counterefforts to subvert their activity. As innate lymphocytes, NK cells provide a rapid source of pro-inflammatory antiviral cytokines and bring to bear cytolytic activities that are collectively meant to constrain viral replication and dissemination. Additionally, NK cells participate in adaptive immunity both by shaping virus-specific T-cell responses and by developing adaptive features themselves, including enhanced antibody-dependent effector functions. The relative importance of different functional activities of NK cells are poorly understood, thereby obfuscating clinical use of these cells. Here we focus on opposing efforts of NK cells and viruses to gain tactical superiority during infection.
Collapse
Affiliation(s)
- Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| |
Collapse
|
35
|
Viral Infection of Human Natural Killer Cells. Viruses 2019; 11:v11030243. [PMID: 30870969 PMCID: PMC6466310 DOI: 10.3390/v11030243] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are essential in the early immune response against viral infections, in particular through clearance of virus-infected cells. In return, viruses have evolved multiple mechanisms to evade NK cell-mediated viral clearance. Several unrelated viruses, including influenza virus, respiratory syncytial virus, and human immunodeficiency virus, can directly interfere with NK cell functioning through infection of these cells. Viral infection can lead to immune suppression, either by downregulation of the cytotoxic function or by triggering apoptosis, leading to depletion of NK cells. In contrast, some viruses induce proliferation or changes in the morphology of NK cells. In this review article, we provide a comprehensive overview of the viruses that have been reported to infect NK cells, we discuss their mechanisms of entry, and describe the interference with NK cell effector function and phenotype. Finally, we discuss the contribution of virus-infected NK cells to viral load. The development of specific therapeutics, such as viral entry inhibitors, could benefit from an enhanced understanding of viral infection of NK cells, opening up possibilities for the prevention of NK cell infection.
Collapse
|
36
|
Jones D, Como CN, Jing L, Blackmon A, Neff CP, Krueger O, Bubak AN, Palmer BE, Koelle DM, Nagel MA. Varicella zoster virus productively infects human peripheral blood mononuclear cells to modulate expression of immunoinhibitory proteins and blocking PD-L1 enhances virus-specific CD8+ T cell effector function. PLoS Pathog 2019; 15:e1007650. [PMID: 30870532 PMCID: PMC6435197 DOI: 10.1371/journal.ppat.1007650] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/26/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
Varicella zoster virus (VZV) is a lymphotropic alpha-herpesvirinae subfamily member that produces varicella on primary infection and causes zoster, vascular disease and vision loss upon reactivation from latency. VZV-infected peripheral blood mononuclear cells (PBMCs) disseminate virus to distal organs to produce clinical disease. To assess immune evasion strategies elicited by VZV that may contribute to dissemination of infection, human PBMCs and VZV-specific CD8+ T cells (V-CD8+) were mock- or VZV-infected and analyzed for immunoinhibitory protein PD-1, PD-L1, PD-L2, CTLA-4, LAG-3 and TIM-3 expression using flow cytometry. All VZV-infected PBMCs (monocytes, NK, NKT, B cells, CD4+ and CD8+ T cells) and V-CD8+ showed significant elevations in PD-L1 expression compared to uninfected cells. VZV induced PD-L2 expression in B cells and V-CD8+. Only VZV-infected CD8+ T cells, NKT cells and V-CD8+ upregulated PD-1 expression, the immunoinhibitory receptor for PD-L1/PD-L2. VZV induced CTLA-4 expression only in V-CD8+ and no significant changes in LAG-3 or TIM-3 expression were observed in V-CD8+ or PBMC T cells. To test whether PD-L1, PD-L2 or CTLA-4 regulates V-CD8+ effector function, autologous PBMCs were VZV-infected and co-cultured with V-CD8+ cells in the presence of blocking antibodies against PD-L1, PD-L2 or CTLA-4; ELISAs revealed significant elevations in IFNγ only upon blocking of PD-L1. Together, these results identified additional immune cells that are permissive to VZV infection (monocytes, B cells and NKT cells); along with a novel mechanism for inhibiting CD8+ T cell effector function through induction of PD-L1 expression.
Collapse
Affiliation(s)
- Dallas Jones
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Christina N. Como
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Anna Blackmon
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles Preston Neff
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Owen Krueger
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Andrew N. Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Brent E. Palmer
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Maria A. Nagel
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
37
|
Nabatanzi R, Bayigga L, Cose S, Rowland-Jones S, Canderan G, Joloba M, Nakanjako D. Aberrant natural killer (NK) cell activation and dysfunction among ART-treated HIV-infected adults in an African cohort. Clin Immunol 2019; 201:55-60. [PMID: 30817998 PMCID: PMC6448528 DOI: 10.1016/j.clim.2019.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND We examined NK cell phenotypes and functions after seven years of ART and undetectable viral loads (<50 copies/ml) with restored CD4 T-cell counts (≥500 cells/μl) and age-matched healthy-HIV-uninfected individuals from the same community. METHODS Using flow-cytometry, NK cell phenotypes were described using lineage markers (CD56+/-CD16+/-). NK cell activation was determined by expression of activation receptors (NKG2D, NKp44 and NKp46) and activation marker CD69. NK cell function was determined by CD107a, granzyme-b, and IFN-gamma production. RESULTS CD56 dim and CD56 bright NK cells were lower among ART-treated-HIV-infected than among age-matched-HIV-negative individuals; p = 0.0016 and p = 0.05 respectively. Production of CD107a (P = 0.004) and Granzyme-B (P = 0.005) was lower among ART-treated-HIV-infected relative to the healthy-HIV-uninfected individuals. NKG2D and NKp46 were lower, while CD69 expression was higher among ART-treated-HIV-infected than healthy-HIV-uninfected individuals. CONCLUSION NK cell activation and dysfunction persisted despite seven years of suppressive ART with "normalization" of peripheral CD4 counts.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lois Bayigga
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen Cose
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, LSHTM, London, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Moses Joloba
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Damalie Nakanjako
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda; Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| |
Collapse
|
38
|
Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus. J Virol 2019; 93:JVI.01887-18. [PMID: 30404793 DOI: 10.1128/jvi.01887-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 02/08/2023] Open
Abstract
Varicella-zoster virus (VZV) is associated with viremia during primary infection that is presumed to stem from infection of circulating immune cells. While VZV has been shown to be capable of infecting a number of different subsets of circulating immune cells, such as T cells, dendritic cells, and NK cells, less is known about the interaction between VZV and monocytes. Here, we demonstrate that blood-derived human monocytes are permissive to VZV replication in vitro VZV-infected monocytes exhibited each temporal class of VZV gene expression, as evidenced by immunofluorescent staining. VZV virions were observed on the cell surface and viral nucleocapsids were observed in the nucleus of VZV-infected monocytes by scanning electron microscopy. In addition, VZV-infected monocytes were able to transfer infectious virus to human fibroblasts. Infected monocytes displayed impaired dextran-mediated endocytosis, and cell surface immunophenotyping revealed the downregulation of CD14, HLA-DR, CD11b, and the macrophage colony-stimulating factor (M-CSF) receptor. Analysis of the impact of VZV infection on M-CSF-stimulated monocyte-to-macrophage differentiation demonstrated the loss of cell viability, indicating that VZV-infected monocytes were unable to differentiate into viable macrophages. In contrast, macrophages differentiated from monocytes prior to exposure to VZV were highly permissive to infection. This study defines the permissiveness of these myeloid cell types to productive VZV infection and identifies the functional impairment of VZV-infected monocytes.IMPORTANCE Primary VZV infection results in the widespread dissemination of the virus throughout the host. Viral transportation is known to be directly influenced by susceptible immune cells in the circulation. Moreover, infection of immune cells by VZV results in attenuation of the antiviral mechanisms used to control infection and limit spread. Here, we provide evidence that human monocytes, which are highly abundant in the circulation, are permissive to productive VZV infection. Furthermore, monocyte-derived macrophages were also highly permissive to VZV infection, although VZV-infected monocytes were unable to differentiate into macrophages. Exploring the relationships between VZV and permissive immune cells, such as human monocytes and macrophages, elucidates novel immune evasion strategies and provides further insight into the control that VZV has over the immune system.
Collapse
|