1
|
Wright SW, Sengyee S, Ekchariyawat P, Phunpang R, Dulsuk A, Rerolle G, Bashmail A, Chantratita N, Gharib SA, West TE. γδ T Cells Mediate Protection against Neutrophil-associated Lung Inflammation in Pulmonary Melioidosis. Am J Respir Cell Mol Biol 2024; 71:546-558. [PMID: 38935886 DOI: 10.1165/rcmb.2024-0072oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Pulmonary melioidosis is a severe tropical infection caused by Burkholderia pseudomallei and is associated with high mortality, despite early antibiotic treatment. γδ T cells have been increasingly implicated as drivers of the host neutrophil response during bacterial pneumonia, but their role in pulmonary melioidosis is unknown. Here, we report that in patients with melioidosis, a lower peripheral blood γδ T-cell concentration is associated with higher mortality, even when adjusting for severity of illness. γδ T cells were also enriched in the lung and protected against mortality in a mouse model of pulmonary melioidosis. γδ T-cell deficiency in infected mice induced an early recruitment of neutrophils to the lung, independent of bacterial burden. Subsequently, γδ T-cell deficiency resulted in increased neutrophil-associated inflammation in the lung as well as impaired bacterial clearance. In addition, γδ T cells influenced neutrophil function and subset diversity in the lung after infection. Our results indicate that γδ T cells serve a novel protective role in the lung during severe bacterial pneumonia by regulating excessive neutrophil-associated inflammation.
Collapse
MESH Headings
- Melioidosis/immunology
- Melioidosis/pathology
- Melioidosis/microbiology
- Animals
- Neutrophils/immunology
- Neutrophils/metabolism
- Humans
- Lung/immunology
- Lung/pathology
- Lung/microbiology
- Mice, Inbred C57BL
- Burkholderia pseudomallei/immunology
- Female
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Pneumonia/immunology
- Pneumonia/microbiology
- Pneumonia/pathology
- Male
- Disease Models, Animal
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/pathology
- Neutrophil Infiltration
- T-Lymphocytes/immunology
- Intraepithelial Lymphocytes/immunology
Collapse
Affiliation(s)
- Shelton W Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada; and
| | | | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Guilhem Rerolle
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Abdullah Bashmail
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Center for Lung Biology, and
| | - T Eoin West
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
2
|
Liu S, Li Z, Lan S, Hao H, Baz AA, Yan X, Gao P, Chen S, Chu Y. The Dual Roles of Activating Transcription Factor 3 (ATF3) in Inflammation, Apoptosis, Ferroptosis, and Pathogen Infection Responses. Int J Mol Sci 2024; 25:824. [PMID: 38255898 PMCID: PMC10815024 DOI: 10.3390/ijms25020824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Transcription factors are pivotal regulators in the cellular life process. Activating transcription factor 3 (ATF3), a member of the ATF/CREB (cAMP response element-binding protein) family, plays a crucial role as cells respond to various stresses and damage. As a transcription factor, ATF3 significantly influences signal transduction regulation, orchestrating a variety of signaling pathways, including apoptosis, ferroptosis, and cellular differentiation. In addition, ATF3 serves as an essential link between inflammation, oxidative stress, and immune responses. This review summarizes the recent advances in research on ATF3 activation and its role in regulating inflammatory responses, cell apoptosis, and ferroptosis while exploring the dual functions of ATF3 in these processes. Additionally, this article discusses the role of ATF3 in diseases related to pathogenic microbial infections. Our review may be helpful to better understand the role of ATF3 in cellular responses and disease progression, thus promoting advancements in clinical treatments for inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| |
Collapse
|
3
|
Navaeiseddighi Z, Tripathi JK, Guo K, Wang Z, Schmit T, Brooks DR, Allen RA, Hur J, Mathur R, Jurivich D, Khan N. IL-17RA promotes pathologic epithelial inflammation in a mouse model of upper respiratory influenza infection. PLoS Pathog 2023; 19:e1011847. [PMID: 38060620 PMCID: PMC10729944 DOI: 10.1371/journal.ppat.1011847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/19/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The upper respiratory tract (nasopharynx or NP) is the first site of influenza replication, allowing the virus to disseminate to the lower respiratory tract or promoting community transmission. The host response in the NP regulates an intricate balance between viral control and tissue pathology. The hyper-inflammatory responses promote epithelial injury, allowing for increased viral dissemination and susceptibility to secondary bacterial infections. However, the pathologic contributors to influenza upper respiratory tissue pathology are incompletely understood. In this study, we investigated the role of interleukin IL-17 recetor A (IL-17RA) as a modulator of influenza host response and inflammation in the upper respiratory tract. We used a combined experimental approach involving IL-17RA-/- mice and an air-liquid interface (ALI) epithelial culture model to investigate the role of IL-17 response in epithelial inflammation, barrier function, and tissue pathology. Our data show that IL-17RA-/- mice exhibited significantly reduced neutrophilia, epithelial injury, and viral load. The reduced NP inflammation and epithelial injury in IL-17RA-/- mice correlated with increased resistance against co-infection by Streptococcus pneumoniae (Spn). IL-17A treatment, while potentiating the apoptosis of IAV-infected epithelial cells, caused bystander cell death and disrupted the barrier function in ALI epithelial model, supporting the in vivo findings.
Collapse
Affiliation(s)
- Zahrasadat Navaeiseddighi
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Jitendra Kumar Tripathi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Delano R. Brooks
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Reese A. Allen
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Nadeem Khan
- Dept of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
4
|
Jin H, Wei W, Zhao Y, Ma A, Sun K, Lin X, Liu Q, Shou S, Zhang Y. The roles of interleukin-17A in risk stratification and prognosis of patients with sepsis-associated acute kidney injury. Kidney Res Clin Pract 2023; 42:742-750. [PMID: 37448288 DOI: 10.23876/j.krcp.22.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/01/2022] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the roles of interleukin (IL)-17A in risk stratification and prognosis of patients with sepsis-associated acute kidney injury (SAKI). METHODS We enrolled 146 sepsis patients (84 non-SAKI and 62 SAKI patients) admitted to the emergency department from November 2020 to November 2021. Patients with SAKI were differentiated based on the severity of acute kidney injury. All clinical parameters were evaluated upon admission before administering antibiotic treatment. Inflammatory cytokines were assessed using flow cytometry and the Pylon 3D automated immunoassay system (ET Healthcare). In addition, a receiver operating characteristic (ROC) curve was utilized to determine the prognostic values of IL-17A in SAKI. RESULTS The levels of creatinine, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor alpha, C-reactive protein, and procalcitonin (PCT) were significantly higher in the SAKI group than in the non-SAKI group (p < 0.05). The level of IL-17A revealed significant differences among stages 1, 2, and 3 in SAKI patients (p < 0.05). The mean levels of PCT, IL-4, and IL-17A were significantly higher in the non-survival group than in the survival group in SAKI patients (p < 0.05). In addition, the area under the ROC curve of IL-17A was 0.811. Moreover, the IL-17A cutoff for differentiating survivors from non-survivors was 4.7 pg/mL, of which the sensitivity and specificity were 77.4% and 71.0%, respectively. CONCLUSION Elevated levels of IL-17A could predict that SAKI patients are significantly prone to worsening kidney injury with higher mortality. The usefulness of IL-17A in treating SAKI requires further research.
Collapse
Affiliation(s)
- Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yibo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ai Ma
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxi Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qihui Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Fadanni GP, Calixto JB. Recent progress and prospects for anti-cytokine therapy in preclinical and clinical acute lung injury. Cytokine Growth Factor Rev 2023; 71-72:13-25. [PMID: 37481378 DOI: 10.1016/j.cytogfr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous cause of respiratory failure that has a rapid onset, a high mortality rate, and for which there is no effective pharmacological treatment. Current evidence supports a critical role of excessive inflammation in ARDS, resulting in several cytokines, cytokine receptors, and proteins within their downstream signalling pathways being putative therapeutic targets. However, unsuccessful trials of anti-inflammatory drugs have thus far hindered progress in the field. In recent years, the prospects of precision medicine and therapeutic targeting of cytokines coevolving into effective treatments have gained notoriety. There is an optimistic and growing understanding of ARDS subphenotypes as well as advances in treatment strategies and clinical trial design. Furthermore, large trials of anti-cytokine drugs in patients with COVID-19 have provided an unprecedented amount of information that could pave the way for therapeutic breakthroughs. While current clinical and nonclinical ARDS research suggest relatively limited potential in monotherapy with anti-cytokine drugs, combination therapy has emerged as an appealing strategy and may provide new perspectives on finding safe and effective treatments. Accurate evaluation of these drugs, however, also relies on well-founded experimental research and the implementation of biomarker-guided stratification in future trials. In this review, we provide an overview of anti-cytokine therapy for acute lung injury and ARDS, highlighting the current preclinical and clinical evidence for targeting the main cytokines individually and the therapeutic prospects for combination therapy.
Collapse
Affiliation(s)
- Guilherme Pasetto Fadanni
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| | - João Batista Calixto
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Bartlett B, Lee S, Ludewick HP, Siew T, Verma S, Waterer G, Corrales-Medina VF, Dwivedi G. A multiple comorbidities mouse lung infection model in ApoE‑deficient mice. Biomed Rep 2023; 18:21. [PMID: 36846615 PMCID: PMC9944256 DOI: 10.3892/br.2023.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023] Open
Abstract
Acute pneumonia is characterised by a period of intense inflammation. Inflammation is now considered to be a key step in atherosclerosis progression. In addition, pre-existing atherosclerotic inflammation is considered to play a role in pneumonia progression and risk. In the present study, a multiple comorbidities murine model was used to study respiratory and systemic inflammation that results from pneumonia in the setting of atherosclerosis. Firstly, a minimal infectious dose of Streptococcus pneumoniae (TIGR4 strain) to produce clinical pneumonia with a low mortality rate (20%) was established. C57Bl/6 ApoE -/- mice were fed a high-fat diet prior to administering intranasally 105 colony forming units of TIGR4 or phosphate-buffered saline (PBS). At days 2, 7 and 28 post inoculation (PI), the lungs of mice were imaged by magnetic resonance imaging (MRI) and positron emission tomography (PET). Mice were euthanised and investigated for changes in lung morphology and changes in systemic inflammation using ELISA, Luminex assay and real-time PCR. TIGR4-inoculated mice presented with varying degrees of lung infiltrate, pleural effusion and consolidation on MRI at all time points up to 28 days PI. Moreover, PET scans identified significantly higher FDG uptake in the lungs of TIGR4-inoculated mice up to 28 days PI. The majority (90%) TIGR4-inoculated mice developed pneumococcal-specific IgG antibody response at 28 days PI. Consistent with these observations, TIGR4-inoculated mice displayed significantly increased inflammatory gene expression [interleukin (IL)-1β and IL-6] in the lungs and significantly increased levels of circulating inflammatory protein (CCL3) at 7 and 28 days PI respectively. The mouse model developed by the authors presents a discovery tool to understand the link between inflammation related to acute infection such as pneumonia and increased risk of cardiovascular disease observed in humans.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Heart and Lung Research Institute, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
| | - Teck Siew
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Shipra Verma
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Department of Geriatric Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Grant Waterer
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Vicente F. Corrales-Medina
- Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| |
Collapse
|
7
|
Zhou Y, Xiang C, Wang N, Zhang X, Xie Y, Yang H, Guo G, Liu K, Li Y, Shi Y. Acinetobacter baumannii reinforces the pathogenesis by promoting IL-17 production in a mouse pneumonia model. Med Microbiol Immunol 2023; 212:65-73. [PMID: 36463365 DOI: 10.1007/s00430-022-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Interleukin-17 (IL-17) is involved in host defense against bacterial infection. Little is known about the role of IL-17 in A. baumannii-infected pneumonia. Our objective was to investigate the role of IL-17 in pulmonary A. baumannii infection in a mouse model. We infected C57BL/6 mice intra-tracheally (i.t.) with A. baumannii to establish pneumonia model and found A. baumannii infection elevated IL-17 expression in lungs. IL-17-deficient (Il17-/-) mice were resistant to pulmonary A. baumannii infection, showing improved mice survival, reduced bacteria burdens, and alleviated lung inflammation. Further, treatment of A. baumannii-infected Il17-/- mice with IL-17 exacerbated the severity of pneumonia. These data suggest a pathogenic role of IL-17 in pulmonary A. baumannii infection. Further, the infiltration and phagocytic function of neutrophils in broncho-alveolar lavage fluid were detected by flow cytometry. The results showed that Il17-/- mice had increased neutrophil infiltration and enhanced phagocytosis in neutrophils at the early time of infection. Treatment of mice with IL-17 suppressed phagocytic function of neutrophils. All data suggest that IL-17 promotes susceptibility of mice to pulmonary A. baumannii infection by suppressing neutrophil phagocytosis at early time of infection. Targeting IL-17 might be a potential therapeutic strategy in controlling the outcome of A. baumannii pneumonia.
Collapse
Affiliation(s)
- Yangyang Zhou
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanying Xiang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Xie
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Yang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gang Guo
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kaiyun Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Li
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Singh G, Martin Rumende C, Sharma SK, Rengganis I, Amin Z, Loho T, Hermiyanti E, Harimurti K, Wibowo H. Low BALF CD4 T cells count is associated with extubation failure and mortality in critically ill covid-19 pneumonia. Ann Med 2022; 54:1894-1905. [PMID: 35786088 PMCID: PMC9258432 DOI: 10.1080/07853890.2022.2095012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Critically ill COVID-19 pneumonia is one of the main causes of extubation failure and mortality. Understanding clinical characteristics, laboratory profiles and bronchoalveolar lavage fluid (BALF) immunopathology may help improve outcomes in critically ill COVID-19 pneumonia. We aimed to describe clinical characteristics, laboratory profiles and BALF immunopathology based on lung severity in critically ill COVID-19 pneumonia patients. MATERIALS AND METHODS Forty critically ill severe pneumonia patients requiring invasive mechanical ventilation in Cipto Mangunkusumo General (National Tertiary Referral Hospital), Indonesia within November 2020-January 2021 were enrolled in this study. Early BALF collection was performed after patients' intubation. Clinical characteristics, laboratory profiles and BALF biomarkers (sTREM-1, alveolar macrophage amount and function, IL-6, IL-17, CD4 T-cells, Tregs, SP-A and Caspase-3) were observed and analysed. Outcomes were measured based on extubation failure (within 19 days) and 28-days mortality. Univariate and bivariate analyses were performed. RESULTS Early bronchoscopy was performed in an average of 4 h (SD = 0.82) after patients' intubation. Twenty-three and twenty-two patients had extubation failure (within 19 days) and 28-days mortality, respectively. In the baseline clinical characteristics of critically ill COVID-19 patients, we found no significant differences in the extubation and mortality status groups. In the laboratory profiles of critically ill COVID-19 patients, we found no significant differences in the extubation status groups. In critically ill COVID-19 pneumonia patients, there was a significant high D-dimer levels in survived group (p = .027), a significant low BALF CD4 T-cells count in the right lung (p = .001) and a significant low BALF CD4 T-cells count (p = .010 and p = .018) in severely affected lung with extubation failure and mortality. CONCLUSIONS BALF CD4 T-cells count evaluation of severely affected lung is associated with early extubation failure and mortality in critically ill COVID-19 pneumonia patients. KEY MESSAGEFew studies have been conducted during the peak COVID-19 period analysing combined bronchoalveolar lavage fluid (BALF) immunopathology biomarkers within four hours of intubation to assess extubation failure and mortality. In this study, we reported eight BALF immunopathology biomarkers (sTREM-1, alveolar macrophage, IL-6, IL-17, CD4 T-cells, Tregs, SP-A and Caspase-3).We found significantly low BALF CD4 T-cells count in the right lung, and low BALF CD4 T-cells count in severely affected lung of critically ill COVID-19 pneumonia patients in extubation failure and mortality.
Collapse
Affiliation(s)
- Gurmeet Singh
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Cleopas Martin Rumende
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Surendra K Sharma
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Hamdard University, New Delhi, India.,Department of General Medicine & Pulmonary Medicine, JNMC, Datta Meghe Institute of Medical Science, New Delhi, India
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, Division of Allergy and Clinical Immunology, Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Zulkifli Amin
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Tonny Loho
- Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Emmy Hermiyanti
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Padjadjaran, Dr Hasan Sadikin Hospital Bandung, Bandung, Indonesia
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Division of Geriatrics, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Heri Wibowo
- Head of Integrated Laboratory, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
9
|
Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022; 11:2132. [PMID: 35883573 PMCID: PMC9318387 DOI: 10.3390/cells11142132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Lars Peter Lunding
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
| |
Collapse
|
10
|
Kennedy II DE, Mody P, Gout JF, Tan W, Seo KS, Olivier AK, Rosch JW, Thornton JA. Contribution of Puma to Inflammatory Resolution During Early Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:886901. [PMID: 35694536 PMCID: PMC9177954 DOI: 10.3389/fcimb.2022.886901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis of cells at the site of infection is a requirement for shutdown of inflammatory signaling, avoiding tissue damage, and preventing progression of sepsis. Puma+/+ and Puma-/- mice were challenged with TIGR4 strain pneumococcus and cytokines were quantitated from lungs and blood using a magnetic bead panel analysis. Puma-/- mice exhibited higher lung and blood cytokine levels of several major inflammatory cytokines, including IL-6, G-CSF, RANTES, IL-12, IFN-ϒ, and IP-10. Puma-/- mice were more susceptible to bacterial dissemination and exhibited more weight loss than their wild-type counterparts. RNA sequencing analysis of whole pulmonary tissue revealed Puma-dependent regulation of Nrxn2, Adam19, and Eln. Enrichment of gene ontology groups differentially expressed in Puma-/- tissues were strongly correlated to IFN-β and -ϒ signaling. Here, we demonstrate for the first time the role of Puma in prohibition of the cytokine storm during bacterial pneumonia. These findings further suggest a role for targeting immunomodulation of IFN signaling during pulmonary inflammation. Additionally, our findings suggest previously undemonstrated roles for genes encoding regulatory and binding proteins during the early phase of the innate immune response of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Daniel E. Kennedy II
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Perceus Mody
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Alicia K. Olivier
- Department of Population and Pathobiology, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Justin A. Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- *Correspondence: Justin A. Thornton,
| |
Collapse
|
11
|
Palmer CS, Kimmey JM. Neutrophil Recruitment in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:894644. [PMID: 35646729 PMCID: PMC9136017 DOI: 10.3389/fcimb.2022.894644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is the primary agent of community-acquired pneumonia. Neutrophils are innate immune cells that are essential for bacterial clearance during pneumococcal pneumonia but can also do harm to host tissue. Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of host disease outcomes. During Spn infection, detection of the bacterium leads to an increase in proinflammatory signals and subsequent expression of integrins and ligands on both the neutrophil as well as endothelial and epithelial cells. These integrins and ligands mediate the tethering and migration of the neutrophil from the bloodstream to the site of infection. A gradient of host-derived and bacterial-derived chemoattractants contribute to targeted movement of neutrophils. During pneumococcal pneumonia, neutrophils are rapidly recruited to the pulmonary space, but studies show that some of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil migration is necessary for us to understand the dynamics of pneumococcal infection. Here, we summarize what is known about the pathways that lead to migration of the neutrophil from the capillaries to the lung during pneumococcal infection.
Collapse
Affiliation(s)
| | - Jacqueline M. Kimmey
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
12
|
Jung BG, Samten B, Dean K, Wallace RJ, Brown-Elliott BA, Tucker T, Idell S, Philley JV, Vankayalapati R. Early IL-17A production helps establish Mycobacterium intracellulare infection in mice. PLoS Pathog 2022; 18:e1010454. [PMID: 35363832 PMCID: PMC9007361 DOI: 10.1371/journal.ppat.1010454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) infection is common in patients with structural lung damage. To address how NTM infection is established and causes lung damage, we established an NTM mouse model by intranasal inoculation of clinical isolates of M. intracellulare. During the 39-week course of infection, the bacteria persistently grew in the lung and caused progressive granulomatous and fibrotic lung damage with mortality exceeding 50%. Lung neutrophils were significantly increased at 1 week postinfection, reduced at 2 weeks postinfection and increased again at 39 weeks postinfection. IL-17A was increased in the lungs at 1-2 weeks of infection and reduced at 3 weeks postinfection. Depletion of neutrophils during early (0-2 weeks) and late (32-34 weeks) infection had no effect on mortality or lung damage in chronically infected mice. However, neutralization of IL-17A during early infection significantly reduced bacterial burden, fibrotic lung damage, and mortality in chronically infected mice. Since it is known that IL-17A regulates matrix metalloproteinases (MMPs) and that MMPs contribute to the pathogenesis of pulmonary fibrosis, we determined the levels of MMPs in the lungs of M. intracellulare-infected mice. Interestingly, MMP-3 was significantly reduced by anti-IL-17A neutralizing antibody. Moreover, in vitro data showed that exogenous IL-17A exaggerated the production of MMP-3 by lung epithelial cells upon M. intracellulare infection. Collectively, our findings suggest that early IL-17A production precedes and promotes organized pulmonary M. intracellulare infection in mice, at least in part through MMP-3 production.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Kristin Dean
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Richard J. Wallace
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Barbara A. Brown-Elliott
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Torry Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
- The Texas Lung Injury Institute, Tyler, Texas, United States of America
| | - Julie V. Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| |
Collapse
|
13
|
Liao X, Zhang W, Dai H, Jing R, Ye M, Ge W, Pei S, Pan L. Neutrophil-Derived IL-17 Promotes Ventilator-Induced Lung Injury via p38 MAPK/MCP-1 Pathway Activation. Front Immunol 2022; 12:768813. [PMID: 34975857 PMCID: PMC8714799 DOI: 10.3389/fimmu.2021.768813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation and can severely affect health. VILI appears to involve excessive inflammatory responses, but its pathogenesis has not yet been clarified. Since interleukin-17 (IL-17) plays a critical role in the immune system and the development of infectious and inflammatory diseases, we investigated here whether it plays a role in VILI. In a mouse model of VILI, mechanical ventilation with high tidal volume promoted the accumulation of lung neutrophils, leading to increased IL-17 levels in the lung, which in turn upregulated macrophage chemoattractant protein-1 via p38 mitogen-activated protein kinase. Depletion of neutrophils decreases the production IL-17 in mice and inhibition of IL-17 significantly reduced HTV-induced lung injury and inflammatory response. These results were confirmed in vitro using RAW264.7 macrophage cultures. Our results suggest that IL-17 plays a pro-inflammatory role in VILI and could serve as a new target for its treatment.
Collapse
Affiliation(s)
- Xiaoting Liao
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weikang Zhang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengling Ye
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wanyun Ge
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shenglin Pei
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
14
|
Murray MP, Crosby CM, Marcovecchio P, Hartmann N, Chandra S, Zhao M, Khurana A, Zahner SP, Clausen BE, Coleman FT, Mizgerd JP, Mikulski Z, Kronenberg M. Stimulation of a subset of natural killer T cells by CD103 + DC is required for GM-CSF and protection from pneumococcal infection. Cell Rep 2022; 38:110209. [PMID: 35021099 DOI: 10.1016/j.celrep.2021.110209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Innate-like T cells, including invariant natural killer T cells, mucosal-associated invariant T cells, and γδ T cells, are present in various barrier tissues, including the lung, where they carry out protective responses during infections. Here, we investigate their roles during pulmonary pneumococcal infection. Following infection, innate-like T cells rapidly increase in lung tissue, in part through recruitment, but T cell antigen receptor activation and cytokine production occur mostly in interleukin-17-producing NKT17 and γδ T cells. NKT17 cells are preferentially located within lung tissue prior to infection, as are CD103+ dendritic cells, which are important both for antigen presentation to NKT17 cells and γδ T cell activation. Whereas interleukin-17-producing γδ T cells are numerous, granulocyte-macrophage colony-stimulating factor is exclusive to NKT17 cells and is required for optimal protection. These studies demonstrate how particular cellular interactions and responses of functional subsets of innate-like T cells contribute to protection from pathogenic lung infection.
Collapse
Affiliation(s)
- Mallory Paynich Murray
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine M Crosby
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paola Marcovecchio
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nadine Hartmann
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sonja P Zahner
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fadie T Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Novel Immunomodulatory Therapies for Respiratory Pathologies. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8238403 DOI: 10.1016/b978-0-12-820472-6.00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Neutrophil-Derived Extracellular Vesicles Activate Platelets after Pneumolysin Exposure. Cells 2021; 10:cells10123581. [PMID: 34944089 PMCID: PMC8700313 DOI: 10.3390/cells10123581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin of Streptococcus pneumoniae that contributes substantially to the inflammatory processes underlying pneumococcal pneumonia and lung injury. Host responses against S. pneumoniae are regulated in part by neutrophils and platelets, both individually and in cooperative interaction. Previous studies have shown that PLY can target both neutrophils and platelets, however, the mechanisms by which PLY directly affects these cells and alters their interactions are not completely understood. In this study, we characterize the effects of PLY on neutrophils and platelets and explore the mechanisms by which PLY may induce neutrophil–platelet interactions. In vitro studies demonstrated that PLY causes the formation of neutrophil extracellular traps (NETs) and the release of extracellular vesicles (EVs) from both human and murine neutrophils. In vivo, neutrophil EV (nEV) levels were increased in mice infected with S. pneumoniae. In platelets, treatment with PLY induced the cell surface expression of P-selectin (CD62P) and binding to annexin V and caused a significant release of platelet EVs (pl-EVs). Moreover, PLY-induced nEVs but not NETs promoted platelet activation. The pretreatment of nEVs with proteinase K inhibited platelet activation, indicating that the surface proteins of nEVs play a role in this process. Our findings demonstrate that PLY activates neutrophils and platelets to release EVs and support an important role for neutrophil EVs in modulating platelet functions in pneumococcal infections.
Collapse
|
17
|
Intranasal vaccination with protein bodies elicit strong protection against Streptococcus pneumoniae colonization. Vaccine 2021; 39:6920-6929. [PMID: 34696934 DOI: 10.1016/j.vaccine.2021.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Protein bodies (PBs) are particles consisting of insoluble, aggregated proteins with potential as a vaccine formulation. PBs can contain high concentrations of antigen, are stable and relatively resistant to proteases, release antigen slowly and are cost-effective to manufacture. Yet, the capacity of PBs to provoke immune responses and protection in the upper respiratory tract, a major entry route of respiratory pathogens, is largely unknown. In this study, we vaccinated mice intranasally with PBs comprising antigens from Streptococcus pneumoniae and evaluated the level of protection against nasopharyngeal colonization. PBs composed of the α-helical domain of pneumococcal surface protein A (PspAα) provided superior protection against colonization with S. pneumoniae compared to soluble PspAα. Immunization with soluble protein or PBs induced differences in antibody binding to pneumococci as well as a highly distinct antigen-specific nasal cytokine profile upon in vivo stimulation with inactivated S. pneumoniae. Moreover, immunization with PBs composed of conserved putative pneumococcal antigens reduced colonization by S. pneumoniae in mice, both as a single- and as a multi-antigen formulation. In conclusion, PBs represent a vaccine formulation that elicits strong mucosal immune responses and protection. The versatility of this platform offers opportunities for development of next-generation vaccine formulations.
Collapse
|
18
|
Heightened Local T h17 Cell Inflammation Is Associated with Severe Community-Acquired Pneumonia in Children under the Age of 1 Year. Mediators Inflamm 2021; 2021:9955168. [PMID: 34602860 PMCID: PMC8482031 DOI: 10.1155/2021/9955168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022] Open
Abstract
Severe community-acquired pneumonia (sCAP) early in life is a leading cause of morbidity, mortality, and irreversible sequelae. Herein, we report the clinical, etiological, and immunological characteristics of 62 children age < 1 year. We measured 27 cytokines in plasma and bronchoalveolar lavage (BAL) from 62 children age < 1 year who were diagnosed with CAP, and then, we analyzed correlations among disease severity, clinical parameters, and etiology. Of the entire cohort, three cytokines associated with interleukin-17- (IL-17-) producing helper T cells (Th17 cells), IL-1β, IL-6, and IL-17, were significantly elevated in sCAP patients with high fold changes (FCs); in BAL, these cytokines were intercorrelated and associated with blood neutrophil counts, Hb levels, and mixed bacterial-viral infections. BAL IL-1β (area under the curve (AUC) 0.820), BAL IL-17 (AUC 0.779), and plasma IL-6 (AUC 0.778) had remarkable predictive power for sCAP. Our findings revealed that increased local Th17 cell immunity played a critical role in the development of sCAP in children age < 1 year. Th17 cell-related cytokines could serve as local and systemic inflammatory indicators of sCAP in this age group.
Collapse
|
19
|
Kaneko F, Kono M, Sunose H, Hotomi M. Neutrophil infiltration in co-housed littermates plays a key role in nasal transmission of Streptococcus pneumoniae in an infant mouse model. Folia Microbiol (Praha) 2021; 67:45-54. [PMID: 34480257 DOI: 10.1007/s12223-021-00901-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Transmission plays an important role in establishing pneumococcal colonization. It comprises three key events: shedding to transmit, entering into a susceptible new host, and adhering to the mucosal surface. Shedding of pneumococci from the respiratory tract of a colonized host is a pivotal step in transmission. Using a co-housed littermate mouse model, we evaluated the importance of the susceptibility to colonization of Streptococcus pneumoniae TIGR4 strain shed from index pups to non-colonized naïve contact pups. Despite sufficient pneumococcal shedding from the colonized host, S. pneumoniae was not contagious between littermates. Neutrophils infiltrated the nasal mucosa of contact pups and contributed to susceptibility of pneumococcal colonization during the course of transmission. Rejection of pneumococcal colonization in the contact pups was associated with accumulation of neutrophils in the nasal mucosa. Inflammation, characterized by neutrophil infiltration, prevents newly entering pneumococci from adhering to the respiratory epithelium in contact mice, suggesting that it plays an important role in reducing the rate of transmission in the initial response of naïve susceptible hosts to pneumococcal acquisition. The initial response of contact mice may regulate neutrophil and/or macrophage infiltration and control the acquisition of existing pneumococci.
Collapse
Affiliation(s)
- Fumie Kaneko
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama, 640-8501, Japan.,Department of Otorhinolaryngology, Tokyo Women's Medical University Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-0011, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama, 640-8501, Japan
| | - Hiroshi Sunose
- Department of Otorhinolaryngology, Tokyo Women's Medical University Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo, 116-0011, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama, 640-8501, Japan.
| |
Collapse
|
20
|
Hall SC, Smith DR, Dyavar SR, Wyatt TA, Samuelson DR, Bailey KL, Knoell DL. Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1357-1370. [PMID: 34380651 PMCID: PMC10575710 DOI: 10.4049/jimmunol.2001395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.
Collapse
Affiliation(s)
- Sannette C Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Shetty Ravi Dyavar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Derrick R Samuelson
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
| | - Kristina L Bailey
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE;
| |
Collapse
|
21
|
Wall EC, Brownridge P, Laing G, Terra VS, Mlozowa V, Denis B, Nyirenda M, Allain T, Ramos-Sevillano E, Carrol E, Collins A, Gordon SB, Lalloo DG, Wren B, Beynon R, Heyderman RS, Brown JS. CSF Levels of Elongation Factor Tu Is Associated With Increased Mortality in Malawian Adults With Streptococcus pneumoniae Meningitis. Front Cell Infect Microbiol 2020; 10:603623. [PMID: 33363056 PMCID: PMC7759504 DOI: 10.3389/fcimb.2020.603623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022] Open
Abstract
Background Mortality from bacterial meningitis, predominately caused by Streptococcus pneumoniae, exceeds 50% in sub-Saharan African countries with high HIV prevalence. Underlying causes of high mortality are poorly understood. We examined the host and pathogen proteome in the CSF of adults with proven pneumococcal meningitis (PM), testing if there was an association between differentially expressed proteins and outcome. Materials/Methods CSF proteomes were analyzed by quantitative Mass-Spectrometry. Spectra were identified using the Swissprot human and TIGR4 pneumococcal protein libraries. Proteins were quantitated and analyzed against mortality. Unique proteins in PM were identified against published normal CSF proteome. Random-Forest models were used to test for protein signatures discriminating outcome. Proteins of interest were tested for their effects on growth and neutrophil opsonophagocytic killing of S. pneumoniae. Results CSF proteomes were available for 57 Adults with PM (median age 32 years, 60% male, 70% HIV-1 co-infected, mortality 63%). Three hundred sixty individual human and 23 pneumococcal proteins were identified. Of the human protein hits, 30% were not expressed in normal CSF, and these were strongly associated with inflammation and primarily related to neutrophil activity. No human protein signature predicted outcome. However, expression of the essential S. pneumoniae protein Elongation Factor Tu (EF-Tu) was significantly increased in CSF of non-survivors [False Discovery Rate (q) <0.001]. Expression of EF-Tu was negatively co-correlated against expression of Neutrophil defensin (r 0.4 p p < 0.002), but not against complement proteins C3 or Factor H. In vitro, addition of EF-Tu protein impaired S. pneumoniae neutrophil killing in CSF. Conclusions Excessive S. pneumoniae EF-Tu protein in CSF was associated with reduced survival in meningitis in a high HIV prevalence population. We show EF-Tu may inhibit neutrophil mediated killing of S. pneumoniae in CSF. Further mechanistic work is required to better understand how S. pneumoniae avoids essential innate immune responses during PM through production of excess EF-Tu.
Collapse
Affiliation(s)
- Emma C. Wall
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Philip Brownridge
- Centre for Proteomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gavin Laing
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Vanessa S. Terra
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Veronica Mlozowa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Mulinda Nyirenda
- Adult Emergency Trauma Centre, Queen Elizabeth Central Hospital, Ministry of Health, Blantyre, Malawi
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Theresa Allain
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Enitan Carrol
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Collins
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospital Foundation Trust, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Beynon
- Centre for Proteomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert S. Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jeremy S. Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
22
|
β2 Integrins differentially regulate γδ T cell subset thymic development and peripheral maintenance. Proc Natl Acad Sci U S A 2020; 117:22367-22377. [PMID: 32848068 DOI: 10.1073/pnas.1921930117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The γδ T cells reside predominantly at barrier sites and play essential roles in immune protection against infection and cancer. Despite recent advances in the development of γδ T cell immunotherapy, our understanding of the basic biology of these cells, including how their numbers are regulated in vivo, remains poor. This is particularly true for tissue-resident γδ T cells. We have identified the β2 family of integrins as regulators of γδ T cells. β2-integrin-deficient mice displayed a striking increase in numbers of IL-17-producing Vγ6Vδ1+ γδ T cells in the lungs, uterus, and circulation. Thymic development of this population was normal. However, single-cell RNA sequencing revealed the enrichment of genes associated with T cell survival and proliferation specifically in β2-integrin-deficient IL-17+ cells compared to their wild-type counterparts. Indeed, β2-integrin-deficient Vγ6+ cells from the lungs showed reduced apoptosis ex vivo, suggesting that increased survival contributes to the accumulation of these cells in β2-integrin-deficient tissues. Furthermore, our data revealed an unexpected role for β2 integrins in promoting the thymic development of the IFNγ-producing CD27+ Vγ4+ γδ T cell subset. Together, our data reveal that β2 integrins are important regulators of γδ T cell homeostasis, inhibiting the survival of IL-17-producing Vγ6Vδ1+ cells and promoting the thymic development of the IFNγ-producing Vγ4+ subset. Our study introduces unprecedented mechanisms of control for γδ T cell subsets.
Collapse
|
23
|
Papanicolaou A, Wang H, Satzke C, Vlahos R, Wilson N, Bozinovski S. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med 2020; 26:1047-1058. [PMID: 32828703 DOI: 10.1016/j.molmed.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Distinct asthma phenotypes are emerging from well-defined cohort studies and appear to be associated with a history of pneumonia. Asthmatics are more susceptible to infections caused by Streptococcus pneumoniae; however, the mechanisms that underlie defective immunity to this pathogen are still being elucidated. Here, we discuss how alternatively activated macrophages (AAMs) in asthmatics are defective in bacterial phagocytosis and how respiratory viruses disrupt essential host immunity to cause bacterial dispersion deeper into the lungs. We also describe how respiratory pathogens instigate neutrophilic inflammation and amplify type-2 inflammation in asthmatics. Finally, we propose novel dual-acting strategies including granulocyte-colony-stimulating factor receptor (G-CSFR) antagonism and specialised pro-resolving mediators (SPMs) to suppress type-2 and neutrophilic inflammation without compromising pathogen clearance.
Collapse
Affiliation(s)
- Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Hao Wang
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
24
|
Menéndez R, Méndez R, Amara-Elori I, Reyes S, Montull B, Feced L, Alonso R, Amaro R, Alcaraz V, Fernandez-Barat L, Torres A. Systemic Inflammation during and after Bronchiectasis Exacerbations: Impact of Pseudomonas aeruginosa. J Clin Med 2020; 9:jcm9082631. [PMID: 32823681 PMCID: PMC7463990 DOI: 10.3390/jcm9082631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchiectasis is a chronic structural disease associated with exacerbations that provoke systemic inflammation. We aimed to evaluate the systemic acute proinflammatory cytokine and its biomarker profiles during and after exacerbations and its relationship with the severity of episode, microbiological findings, and the bronchiectasis severity index. This prospective observational study compared exacerbation and stable groups. Cytokine (interleukins (IL)-17a, IL-1β, IL-6, IL 8; tumor necrosis factor-alpha (α)) and high-sensitivity C-reactive protein (hsCRP) levels were determined by multiplex analysis on days 1, 5, 30, and 60 in the exacerbation group and on day 1 in the stable group. We recruited 165 patients with exacerbations, of which 93 were severe (hospitalized). Proinflammatory systemic IL-17a, IL-1β, IL-8, and tumor necrosis factor-α levels increased similarly on days 1 and 5 in severe and non-severe episodes, but on day 30, IL-17a, IL-8, and IL-6 levels were only increased for severe exacerbations. The highest IL-17a level occurred in patients with chronic plus the acute isolation of Pseudomonas aeruginosa. At 30 days, severe exacerbations were independently associated with higher levels of IL-17 (Odds ratio (OR) 4.58), IL-6 (OR 4.89), IL-8 (OR 3.08), and hsCRP (OR 6.7), adjusted for age, the bronchiectasis severity index, and treatment duration. Exacerbations in patients with chronic P. aeruginosa infection were associated with an increase in IL-17 and IL-6 at 30 days (ORs 7.47 and 3.44, respectively). Severe exacerbations elicit a higher systemic proinflammatory response that is sustained to day 30. Patients with chronic P. aeruginosa infection had impaired IL-17a reduction. IL-17a could be a useful target for measuring systemic inflammation.
Collapse
Affiliation(s)
- Rosario Menéndez
- Pulmonary Medicine Department, Hospital Universitario y Politécnico La Fe, 46023 Valencia, Spain; (R.M.); (I.A.-E.); (S.R.); (B.M.); (L.F.)
- CIBER Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.A.); (V.A.); (L.F.-B.); (A.T.)
- Correspondence:
| | - Raúl Méndez
- Pulmonary Medicine Department, Hospital Universitario y Politécnico La Fe, 46023 Valencia, Spain; (R.M.); (I.A.-E.); (S.R.); (B.M.); (L.F.)
| | - Isabel Amara-Elori
- Pulmonary Medicine Department, Hospital Universitario y Politécnico La Fe, 46023 Valencia, Spain; (R.M.); (I.A.-E.); (S.R.); (B.M.); (L.F.)
| | - Soledad Reyes
- Pulmonary Medicine Department, Hospital Universitario y Politécnico La Fe, 46023 Valencia, Spain; (R.M.); (I.A.-E.); (S.R.); (B.M.); (L.F.)
| | - Beatriz Montull
- Pulmonary Medicine Department, Hospital Universitario y Politécnico La Fe, 46023 Valencia, Spain; (R.M.); (I.A.-E.); (S.R.); (B.M.); (L.F.)
| | - Laura Feced
- Pulmonary Medicine Department, Hospital Universitario y Politécnico La Fe, 46023 Valencia, Spain; (R.M.); (I.A.-E.); (S.R.); (B.M.); (L.F.)
| | - Ricardo Alonso
- Laboratory Department, Hospital Universitario y Politécnico La Fe, 46023 Valencia, Spain;
| | - Rosanel Amaro
- CIBER Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.A.); (V.A.); (L.F.-B.); (A.T.)
- Pulmonary Medicine Department, Hospital Clínico y Provincial, IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Alcaraz
- CIBER Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.A.); (V.A.); (L.F.-B.); (A.T.)
- Pulmonary Medicine Department, Hospital Clínico y Provincial, IDIBAPS, 08036 Barcelona, Spain
| | - Laia Fernandez-Barat
- CIBER Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.A.); (V.A.); (L.F.-B.); (A.T.)
- Pulmonary Medicine Department, Hospital Clínico y Provincial, IDIBAPS, 08036 Barcelona, Spain
| | - Antoni Torres
- CIBER Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (R.A.); (V.A.); (L.F.-B.); (A.T.)
- Pulmonary Medicine Department, Hospital Clínico y Provincial, IDIBAPS, 08036 Barcelona, Spain
| |
Collapse
|
25
|
O’Brien RL, Born WK. Two functionally distinct subsets of IL‐17 producing γδ T cells. Immunol Rev 2020; 298:10-24. [DOI: 10.1111/imr.12905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Rebecca L. O’Brien
- Department of Biomedical Research National Jewish Health Denver CO USA
- Department of Immunology and Microbiology University of Colorado Denver School of Medicine Aurora CO USA
| | - Willi K. Born
- Department of Biomedical Research National Jewish Health Denver CO USA
- Department of Immunology and Microbiology University of Colorado Denver School of Medicine Aurora CO USA
| |
Collapse
|
26
|
Minhas V, Aprianto R, McAllister LJ, Wang H, David SC, McLean KT, Comerford I, McColl SR, Paton JC, Veening JW, Trappetti C. In vivo dual RNA-seq reveals that neutrophil recruitment underlies differential tissue tropism of Streptococcus pneumoniae. Commun Biol 2020; 3:293. [PMID: 32504007 PMCID: PMC7275033 DOI: 10.1038/s42003-020-1018-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Streptococcus pneumoniae is a genetically diverse human-adapted pathogen commonly carried asymptomatically in the nasopharynx. We have recently shown that a single nucleotide polymorphism (SNP) in the raffinose pathway regulatory gene rafR accounts for a difference in the capacity of clonally-related strains to cause localised versus systemic infection. Using dual RNA-seq, we show that this SNP affects expression of bacterial genes encoding multiple sugar transporters, and fine-tunes carbohydrate metabolism, along with extensive rewiring of host transcriptional responses to infection, particularly expression of genes encoding cytokine and chemokine ligands and receptors. The data predict a crucial role for differential neutrophil recruitment (confirmed by in vivo neutrophil depletion and IL-17 neutralization) indicating that early detection of bacteria by the host in the lung environment is crucial for effective clearance. Thus, dual RNA-seq provides a powerful tool for understanding complex host-pathogen interactions and reveals how a single bacterial SNP can drive differential disease outcomes. Minhas, Aprianto et al. apply dual RNA seq to a set of related Streptococcus pneumoniae strains to find that differential neutrophil recruitment explains different tissue tropism of these strains. This study highlights the power of dual RNA-seq in investigating how a single bacterial SNP determines the host’s disease outcomes.
Collapse
Affiliation(s)
- Vikrant Minhas
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Rieza Aprianto
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lauren J McAllister
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Hui Wang
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Shannon C David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Kimberley T McLean
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Iain Comerford
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Shaun R McColl
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
27
|
Shaikh SB, Prabhu A, Bhandary YP. Interleukin-17A: A Potential Therapeutic Target in Chronic Lung Diseases. Endocr Metab Immune Disord Drug Targets 2020; 19:921-928. [PMID: 30652654 DOI: 10.2174/1871530319666190116115226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/03/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that has gained a lot of attention because of its involvement in respiratory diseases. Interleukin-17 cytokine family includes six members, out of which, IL-17A participates towards the immune responses in allergy and inflammation. It also modulates the progression of respiratory disorders. OBJECTIVE The present review is an insight into the involvement and contributions of the proinflammatory cytokine IL-17A in chronic respiratory diseases like Idiopathic Pulmonary Fibrosis (IPF), Chronic Obstructive Pulmonary Distress (COPD), asthma, pneumonia, obliterative bronchiolitis, lung cancer and many others. CONCLUSION IL-17A is a major regulator of inflammatory responses. In all the mentioned diseases, IL- 17A plays a prime role in inducing the diseases, whereas the lack of this pro-inflammatory cytokine reduces the severity of respective respiratory diseases. Thereby, this review suggests IL-17A as an instrumental target in chronic respiratory diseases.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Cell and Molecular Biology Department, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore -575018, Karnataka, India
| | - Ashwini Prabhu
- Cell and Molecular Biology Department, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore -575018, Karnataka, India
| | - Yashodhar Prabhakar Bhandary
- Cell and Molecular Biology Department, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore -575018, Karnataka, India
| |
Collapse
|
28
|
G-CSFR antagonism reduces neutrophilic inflammation during pneumococcal and influenza respiratory infections without compromising clearance. Sci Rep 2019; 9:17732. [PMID: 31776393 PMCID: PMC6881371 DOI: 10.1038/s41598-019-54053-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive neutrophilic inflammation can contribute to the pathogenesis of pneumonia. Whilst anti-inflammatory therapies such as corticosteroids are used to treat excessive inflammation, they do not selectively target neutrophils and may compromise antimicrobial or antiviral defences. In this study, neutrophil trafficking was targeted with a granulocyte-colony stimulating factor receptor monoclonal antibody (G-CSFR mAb) during Streptococcus pneumoniae (serotype 19F) or influenza A virus (IAV, strain HKx31) lung infection in mice. Firstly, we demonstrated that neutrophils are indispensable for the clearance of S. pneumoniae from the airways using an anti-Ly6G monoclonal antibody (1A8 mAb), as the complete inhibition of neutrophil recruitment markedly compromised bacterial clearance. Secondly, we demonstrated that G-CSF transcript lung levels were significantly increased during pneumococcal infection. Prophylactic or therapeutic administration of G-CSFR mAb significantly reduced blood and airway neutrophil numbers by 30–60% without affecting bacterial clearance. Total protein levels in the bronchoalveolar lavage (BAL) fluid (marker for oedema) was also significantly reduced. G-CSF transcript levels were also increased during IAV lung infection. G-CSFR mAb treatment significantly reduced neutrophil trafficking into BAL compartment by 60% and reduced blood neutrophil numbers to control levels in IAV-infected mice. Peak lung viral levels at day 3 were not altered by G-CSFR therapy, however there was a significant reduction in the detection of IAV in the lungs at the day 7 post-infection phase. In summary, G-CSFR signalling contributes to neutrophil trafficking in response to two common respiratory pathogens. Blocking G-CSFR reduced neutrophil trafficking and oedema without compromising clearance of two pathogens that can cause pneumonia.
Collapse
|
29
|
Interleukin 17 Receptor E (IL-17RE) and IL-17C Mediate the Recruitment of Neutrophils during Acute Streptococcus pneumoniae Pneumonia. Infect Immun 2019; 87:IAI.00329-19. [PMID: 31481409 DOI: 10.1128/iai.00329-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Neutrophils contribute to lung injury in acute pneumococcal pneumonia. The interleukin 17 receptor E (IL-17RE) is the functional receptor for the epithelial-derived cytokine IL-17C, which is known to mediate innate immune functions. The aim of this study was to investigate the contribution of IL-17RE/IL-17C to pulmonary inflammation in a mouse model of acute Streptococcus pneumoniae pneumonia. Numbers of neutrophils and the expression levels of the cytokine granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor alpha (TNF-α) were decreased in lungs of IL-17RE-deficient (Il-17re-/- ) mice infected with S. pneumoniae Numbers of alveolar macrophages rapidly declined in both wild-type (WT) and Il-17re-/- mice and recovered 72 h after infection. There were no clear differences in the elimination of bacteria and numbers of blood granulocytes between infected WT and Il-17re-/- mice. The fractions of granulocyte-monocyte progenitors (GMPs) were significantly reduced in infected Il-17re-/- mice. Numbers of neutrophils were significantly reduced in lungs of mice deficient for IL-17C 24 h after infection with S. pneumoniae These data indicate that the IL-17C/IL-17RE axis promotes the recruitment of neutrophils without affecting the recovery of alveolar macrophages in the acute phase of S. pneumoniae lung infection.
Collapse
|
30
|
Morrow KN, Coopersmith CM, Ford ML. IL-17, IL-27, and IL-33: A Novel Axis Linked to Immunological Dysfunction During Sepsis. Front Immunol 2019; 10:1982. [PMID: 31507598 PMCID: PMC6713916 DOI: 10.3389/fimmu.2019.01982] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide despite numerous attempts to identify effective therapeutics. While some sepsis deaths are attributable to tissue damage caused by inflammation, most mortality is the result of prolonged immunosuppression. Ex vivo, immunosuppression during sepsis is evidenced by a sharp decrease in the production of pro-inflammatory cytokines by T cells and other leukocytes and increased lymphocyte apoptosis. This allows suppressive cytokines to exert a greater inhibitory effect on lymphocytes upon antigen exposure. While some pre-clinical and clinical trials have demonstrated utility in targeting cytokines that promote lymphocyte survival, this has not led to the approval of any therapies for clinical use. As cytokines with a more global impact on the immune system are also altered by sepsis, they represent novel and potentially valuable therapeutic targets. Recent evidence links interleukin (IL)-17, IL-27, and IL-33 to alterations in the immune response during sepsis using patient serum and murine models of peritonitis and pneumonia. Elevated levels of IL-17 and IL-27 are found in the serum of pediatric and adult septic patients early after sepsis onset and have been proposed as diagnostic biomarkers. In contrast, IL-33 levels increase in patient serum during the immunosuppressive stage of sepsis and remain high for more than 5 months after recovery. All three cytokines contribute to immunological dysfunction during sepsis by disrupting the balance between type 1, 2, and 17 immune responses. This review will describe how IL-17, IL-27, and IL-33 exert these effects during sepsis and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kristen N Morrow
- Immunology and Molecular Pathogenesis Program, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States.,Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
31
|
Dual RNA-seq in Streptococcus pneumoniae Infection Reveals Compartmentalized Neutrophil Responses in Lung and Pleural Space. mSystems 2019; 4:4/4/e00216-19. [PMID: 31409659 PMCID: PMC6697439 DOI: 10.1128/msystems.00216-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space. Streptococcus pneumoniae is the dominant cause of community-acquired pneumonia worldwide. Invasion of the pleural space is common and results in increased mortality. We set out to determine the bacterial and host factors that influence invasion of the pleural space. In a murine model of pneumococcal infection, we isolated neutrophil-dominated samples of bronchoalveolar and pleural fluid containing bacteria 48 hours after infection. Using dual RNA sequencing (RNA-seq), we characterized bacterial and host transcripts that were differentially regulated between these compartments and bacteria in broth and resting neutrophils, respectively. Pleural and lung samples showed upregulation of genes involved in the positive regulation of neutrophil extravasation but downregulation of genes mediating bacterial killing. Compared to the lung samples, cells within the pleural space showed marked upregulation of many genes induced by type I interferons, which are cytokines implicated in preventing bacterial transmigration across epithelial barriers. Differences in the bacterial transcripts between the infected samples and bacteria grown in broth showed the upregulation of genes in the bacteriocin locus, the pneumococcal surface adhesin PsaA, and the glycopeptide resistance gene vanZ; the gene encoding the ClpP protease was downregulated in infection. One hundred sixty-nine intergenic putative small bacterial RNAs were also identified, of which 43 (25.4%) small RNAs had been previously described. Forty-two of the small RNAs were upregulated in pleura compared to broth, including many previously identified as being important in virulence. Our results have identified key host and bacterial responses to invasion of the pleural space that can be potentially exploited to develop alternative antimicrobial strategies for the prevention and treatment of pneumococcal pleural disease. IMPORTANCE The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space.
Collapse
|
32
|
Farhat K, Bodart G, Charlet-Renard C, Desmet CJ, Moutschen M, Beguin Y, Baron F, Melin P, Quatresooz P, Parent AS, Desmecht D, Sirard JC, Salvatori R, Martens H, Geenen VG. Growth Hormone (GH) Deficient Mice With GHRH Gene Ablation Are Severely Deficient in Vaccine and Immune Responses Against Streptococcus pneumoniae. Front Immunol 2018; 9:2175. [PMID: 30333823 PMCID: PMC6176084 DOI: 10.3389/fimmu.2018.02175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
The precise impact of the somatotrope axis upon the immune system is still highly debated. We have previously shown that mice with generalized ablation of growth hormone (GH) releasing hormone (GHRH) gene (Ghrh−/−) have normal thymus and T-cell development, but present a marked spleen atrophy and B-cell lymphopenia. Therefore, in this paper we have investigated vaccinal and anti-infectious responses of Ghrh−/− mice against S. pneumoniae, a pathogen carrying T-independent antigens. Ghrh−/− mice were unable to trigger production of specific IgM after vaccination with either native pneumococcal polysaccharides (PPS, PPV23) or protein-PPS conjugate (PCV13). GH supplementation of Ghrh−/− mice restored IgM response to PPV23 vaccine but not to PCV13 suggesting that GH could exert a specific impact on the spleen marginal zone that is strongly implicated in T-independent response against pneumococcal polysaccharides. As expected, after administration of low dose of S. pneumoniae, wild type (WT) completely cleared bacteria after 24 h. In marked contrast, Ghrh−/− mice exhibited a dramatic susceptibility to S. pneumoniae infection with a time-dependent increase in lung bacterial load and a lethal bacteraemia already after 24 h. Lungs of infected Ghrh−/− mice were massively infiltrated by inflammatory macrophages and neutrophils, while lung B cells were markedly decreased. The inflammatory transcripts signature was significantly elevated in Ghrh−/− mice. In this animal model, the somatotrope GHRH/GH/IGF1 axis plays a vital and unsuspected role in vaccine and immunological defense against S. pneumoniae.
Collapse
Affiliation(s)
- Khalil Farhat
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Gwennaëlle Bodart
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | | | - Christophe J Desmet
- GIGA-I3 Cellular and Molecular Immunology, University of Liège, Liège, Belgium
| | - Michel Moutschen
- GIGA-I3 Infectious diseases, University of Liège, Liège, Belgium
| | - Yves Beguin
- GIGA-I3 Hematology, University of Liège, Liège, Belgium
| | | | - Pierrette Melin
- Department of Clinical Microbiology, University Hospital of Liège, University of Liège, Liège, Belgium
| | | | - Anne-Simone Parent
- Division of Pediatric Endocrinology, University Hospital of Liège, Liège, Belgium
| | - Daniel Desmecht
- Department of Veterinary Pathology, University of Liège, Liège, Belgium
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Roberto Salvatori
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Vincent G Geenen
- GIGA-I3 Center of Immunoendocrinology, University of Liège, Liège, Belgium
| |
Collapse
|
33
|
Lee S, Kim GL, Kim NY, Kim SJ, Ghosh P, Rhee DK. ATF3 Stimulates IL-17A by Regulating Intracellular Ca 2+/ROS-Dependent IL-1β Activation During Streptococcus pneumoniae Infection. Front Immunol 2018; 9:1954. [PMID: 30214444 PMCID: PMC6125349 DOI: 10.3389/fimmu.2018.01954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Activating transcription factor-3 (ATF3) in the ER stress pathway induces cytokine production and promotes survival during gram-positive bacterial infection. IL-17A is a critical cytokine that is essential for clearance of Streptococcus pneumoniae. However, the mechanism by which ATF3 induces IL-17A production remains unknown. Here, we show that ATF3 induces IL-17A production via NLRP3 inflammasome-dependent IL-1β secretion. Survival rates were comparable in IL-17A-depleted and ATF3 KO mice but were lower than in WT mice treated with isotype control, indicating that ATF3 positively regulated IL-17A production. Indeed, ATF3 KO mice showed a marked reduction in IL-17A protein and mRNA expression compared to levels in WT mice. Moreover, mitochondrial IL-1β production by bone marrow-derived macrophages was significantly reduced in ATF3 KO mice as a result of the disruption of cellular ROS and Ca2+ homeostasis. Accordingly, ATF3 KO mice displayed diminished survival and bacterial clearance following S. pneumoniae infection. Taken together, these data suggest a mechanism in which macrophage ATF3 promotes IL-17A production in γδ T cells to rapidly induce host defenses during early S. pneumoniae infection.
Collapse
Affiliation(s)
- Seungyeop Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Na Young Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Se-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|