1
|
Madheswaran M, Ventserova N, D’Abrosca G, Salzano G, Celauro L, Cazzaniga FA, Isernia C, Malgieri G, Moda F, Russo L, Legname G, Fattorusso R. Unfolding Mechanism and Fibril Formation Propensity of Human Prion Protein in the Presence of Molecular Crowding Agents. Int J Mol Sci 2024; 25:9916. [PMID: 39337404 PMCID: PMC11432716 DOI: 10.3390/ijms25189916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The pathological process of prion diseases implicates that the normal physiological cellular prion protein (PrPC) converts into misfolded abnormal scrapie prion (PrPSc) through post-translational modifications that increase β-sheet conformation. We recently demonstrated that HuPrP(90-231) thermal unfolding is partially irreversible and characterized by an intermediate state (β-PrPI), which has been revealed to be involved in the initial stages of PrPC fibrillation, with a seeding activity comparable to that of human infectious prions. In this study, we report the thermal unfolding characterization, in cell-mimicking conditions, of the truncated (HuPrP(90-231)) and full-length (HuPrP(23-231)) human prion protein by means of CD and NMR spectroscopy, revealing that HuPrP(90-231) thermal unfolding is characterized by two successive transitions, as in buffer solution. The amyloidogenic propensity of HuPrP(90-231) under crowded conditions has also been investigated. Our findings show that although the prion intermediate, structurally very similar to β-PrPI, forms at a lower temperature compared to when it is dissolved in buffer solution, in cell-mimicking conditions, the formation of prion fibrils requires a longer incubation time, outlining how molecular crowding influences both the equilibrium states of PrP and its kinetic pathways of folding and aggregation.
Collapse
Affiliation(s)
- Manoj Madheswaran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Nataliia Ventserova
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy
| | - Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5–Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Fabio Moda
- SSD Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| |
Collapse
|
2
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
3
|
Ghosh S, Jana R, Jana S, Basu R, Chatterjee M, Ranawat N, Das Sarma J. Differential expression of cellular prion protein (PrP C) in mouse hepatitis virus induced neuroinflammation. J Neurovirol 2024; 30:215-228. [PMID: 38922550 DOI: 10.1007/s13365-024-01215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.
Collapse
Affiliation(s)
- Satavisha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Rishika Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Soumen Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Optical NeuroImaging Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Madhurima Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Nishtha Ranawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Burke Neurological Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Cong H, Liu H, Cao Y, Liang C, Chen Y. Protein-protein interaction site prediction by model ensembling with hybrid feature and self-attention. BMC Bioinformatics 2023; 24:456. [PMID: 38053020 DOI: 10.1186/s12859-023-05592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Protein-protein interactions (PPIs) are crucial in various biological functions and cellular processes. Thus, many computational approaches have been proposed to predict PPI sites. Although significant progress has been made, these methods still have limitations in encoding the characteristics of each amino acid in sequences. Many feature extraction methods rely on the sliding window technique, which simply merges all the features of residues into a vector. The importance of some key residues may be weakened in the feature vector, leading to poor performance. RESULTS We propose a novel sequence-based method for PPI sites prediction. The new network model, PPINet, contains multiple feature processing paths. For a residue, the PPINet extracts the features of the targeted residue and its context separately. These two types of features are processed by two paths in the network and combined to form a protein representation, where the two types of features are of relatively equal importance. The model ensembling technique is applied to make use of more features. The base models are trained with different features and then ensembled via stacking. In addition, a data balancing strategy is presented, by which our model can get significant improvement on highly unbalanced data. CONCLUSION The proposed method is evaluated on a fused dataset constructed from Dset186, Dset_72, and PDBset_164, as well as the public Dset_448 dataset. Compared with current state-of-the-art methods, the performance of our method is better than the others. In the most important metrics, such as AUPRC and recall, it surpasses the second-best programmer on the latter dataset by 6.9% and 4.7%, respectively. We also demonstrated that the improvement is essentially due to using the ensemble model, especially, the hybrid feature. We share our code for reproducibility and future research at https://github.com/CandiceCong/StackingPPINet .
Collapse
Affiliation(s)
- Hanhan Cong
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
- Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China
| | - Hong Liu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
- Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China.
| | - Yi Cao
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yuehui Chen
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, China
| |
Collapse
|
5
|
Legname G. Copper coordination modulates prion conversion and infectivity in mammalian prion proteins. Prion 2023; 17:1-6. [PMID: 36597284 PMCID: PMC9815218 DOI: 10.1080/19336896.2022.2163835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mammals the cellular form of the prion protein (PrPC) is a ubiquitous protein involved in many relevant functions in the central nervous system. In addition to its physiological functions PrPC plays a central role in a group of invariably fatal neurodegenerative disorders collectively called prion diseases. In fact, the protein is a substrate in a process in which it converts into an infectious and pathological form denoted as prion. The protein has a unique primary structure where the unstructured N-terminal moiety possesses characteristic sequences wherein histidines are able to coordinate metal ions, in particular copper ions. These sequences are called octarepeats for their characteristic length. Moreover, a non-octarepeat fifth-copper binding site is present where copper coordination seems to control infectivity. In this review, I will argue that these sequences may play a significant role in modulating prion conversion and replication.
Collapse
Affiliation(s)
- Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy,CONTACT Giuseppe Legname Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste34136, Italy
| |
Collapse
|
6
|
Abskharon R, Pan H, Sawaya MR, Seidler PM, Olivares EJ, Chen Y, Murray KA, Zhang J, Lantz C, Bentzel M, Boyer DR, Cascio D, Nguyen BA, Hou K, Cheng X, Pardon E, Williams CK, Nana AL, Vinters HV, Spina S, Grinberg LT, Seeley WW, Steyaert J, Glabe CG, Ogorzalek Loo RR, Loo JA, Eisenberg DS. Structure-based design of nanobodies that inhibit seeding of Alzheimer's patient-extracted tau fibrils. Proc Natl Acad Sci U S A 2023; 120:e2300258120. [PMID: 37801475 PMCID: PMC10576031 DOI: 10.1073/pnas.2300258120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/21/2023] [Indexed: 10/08/2023] Open
Abstract
Despite much effort, antibody therapies for Alzheimer's disease (AD) have shown limited efficacy. Challenges to the rational design of effective antibodies include the difficulty of achieving specific affinity to critical targets, poor expression, and antibody aggregation caused by buried charges and unstructured loops. To overcome these challenges, we grafted previously determined sequences of fibril-capping amyloid inhibitors onto a camel heavy chain antibody scaffold. These sequences were designed to cap fibrils of tau, known to form the neurofibrillary tangles of AD, thereby preventing fibril elongation. The nanobodies grafted with capping inhibitors blocked tau aggregation in biosensor cells seeded with postmortem brain extracts from AD and progressive supranuclear palsy (PSP) patients. The tau capping nanobody inhibitors also blocked seeding by recombinant tau oligomers. Another challenge to the design of effective antibodies is their poor blood-brain barrier (BBB) penetration. In this study, we also designed a bispecific nanobody composed of a nanobody that targets a receptor on the BBB and a tau capping nanobody inhibitor, conjoined by a flexible linker. We provide evidence that the bispecific nanobody improved BBB penetration over the tau capping inhibitor alone after intravenous administration in mice. Our results suggest that the design of synthetic antibodies that target sequences that drive protein aggregation may be a promising approach to inhibit the prion-like seeding of tau and other proteins involved in AD and related proteinopathies.
Collapse
Affiliation(s)
- Romany Abskharon
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Hope Pan
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Paul M. Seidler
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | | | - Yu Chen
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Molecular Instrumentation Center, UCLA, Los Angeles, CA90095
| | - Kevin A. Murray
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Jeffrey Zhang
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Carter Lantz
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
| | - Megan Bentzel
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - David R. Boyer
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Binh A. Nguyen
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Ke Hou
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Xinyi Cheng
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Els Pardon
- VIB-Vrije Universiteit Brussel Center for Structural Biology, VIB and Vrije Universiteit Brussel, BrusselsB-1050, Belgium
| | - Christopher K. Williams
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Alissa L. Nana
- Department of Neurology, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94143
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Salvatore Spina
- Department of Neurology, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94143
| | - Lea T. Grinberg
- Department of Neurology, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Department of Pathology, University of California, San Francisco, CA94143
| | - William W. Seeley
- Department of Neurology, University of California San Francisco Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Department of Pathology, University of California, San Francisco, CA94143
| | - Jan Steyaert
- VIB-Vrije Universiteit Brussel Center for Structural Biology, VIB and Vrije Universiteit Brussel, BrusselsB-1050, Belgium
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| | - David S. Eisenberg
- Department of Chemistry and Biochemistry, UCLA,Los Angeles, CA90095
- Department of Biological Chemistry, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
- UCLA-Department of Energy Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
| |
Collapse
|
7
|
L P Hosszu L, Sangar D, Batchelor M, Risse E, Hounslow AM, Collinge J, Waltho JP, Bieschke J. Loss of residues 119 - 136, including the first β-strand of human prion protein, generates an aggregation-competent partially "open" form. J Mol Biol 2023:168158. [PMID: 37244570 DOI: 10.1016/j.jmb.2023.168158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
In prion replication, the cellular form of prion protein (PrPC) must undergo a full conformational transition to its disease-associated fibrillar form. Transmembrane forms of PrP have been implicated in this structural conversion. The cooperative unfolding of a structural core in PrPC presents a substantial energy barrier to prion formation, with membrane insertion and detachment of parts of PrP presenting a plausible route to its reduction. Here, we examined the removal of residues 119 - 136 of PrP, a region which includes the first β-strand and a substantial portion of the conserved hydrophobic region of PrP, a region which associates with the ER membrane, on the structure, stability and self-association of the folded domain of PrPC. We see an "open" native-like conformer with increased solvent exposure which fibrilises more readily than the native state. These data suggest a stepwise folding transition, which is initiated by the conformational switch to this "open" form of PrPC.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Emmanuel Risse
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
8
|
Efremenko E, Aslanli A, Lyagin I. Advanced Situation with Recombinant Toxins: Diversity, Production and Application Purposes. Int J Mol Sci 2023; 24:ijms24054630. [PMID: 36902061 PMCID: PMC10003545 DOI: 10.3390/ijms24054630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Today, the production and use of various samples of recombinant protein/polypeptide toxins is known and is actively developing. This review presents state-of-the-art in research and development of such toxins and their mechanisms of action and useful properties that have allowed them to be implemented into practice to treat various medical conditions (including oncology and chronic inflammation applications) and diseases, as well as to identify novel compounds and to detoxify them by diverse approaches (including enzyme antidotes). Special attention is given to the problems and possibilities of the toxicity control of the obtained recombinant proteins. The recombinant prions are discussed in the frame of their possible detoxification by enzymes. The review discusses the feasibility of obtaining recombinant variants of toxins in the form of protein molecules modified with fluorescent proteins, affine sequences and genetic mutations, allowing us to investigate the mechanisms of toxins' bindings to their natural receptors.
Collapse
Affiliation(s)
- Elena Efremenko
- Correspondence: ; Tel.: +7-(495)-939-3170; Fax: +7-(495)-939-5417
| | | | | |
Collapse
|
9
|
Mollica L, Giachin G. Recognition Mechanisms between a Nanobody and Disordered Epitopes of the Human Prion Protein: An Integrative Molecular Dynamics Study. J Chem Inf Model 2022; 63:531-545. [PMID: 36580661 PMCID: PMC9875307 DOI: 10.1021/acs.jcim.2c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy using antibodies to target the aggregation of flexible proteins holds promise for therapeutic interventions in neurodegenerative diseases caused by protein misfolding. Prions or PrPSc, the causal agents of transmissible spongiform encephalopathies (TSE), represent a model target for immunotherapies as TSE are prototypical protein misfolding diseases. The X-ray crystal structure of the wild-type (WT) human prion protein (HuPrP) bound to a camelid antibody fragment, denoted as Nanobody 484 (Nb484), has been previously solved. Nb484 was found to inhibit prion aggregation in vitro through a unique mechanism of structural stabilization of two disordered epitopes, that is, the palindromic motif (residues 113-120) and the β2-α2 loop region (residues 164-185). The study of the structural basis for antibody recognition of flexible proteins requires appropriate sampling techniques for the identification of conformational states occurring in disordered epitopes. To elucidate the Nb484-HuPrP recognition mechanisms, here we applied molecular dynamics (MD) simulations complemented with available NMR and X-ray crystallography data collected on the WT HuPrP to describe the conformational spaces occurring on HuPrP prior to Nb484 binding. We observe the experimentally determined binding competent conformations within the ensembles of pre-existing conformational states in solution before binding. We also described the Nb484 recognition mechanisms in two HuPrP carrying a polymorphism (E219K) and a TSE-causing mutation (V210I). Our hybrid approaches allow the identification of dynamic conformational landscapes existing on HuPrP and highly characterized by molecular disorder to identify physiologically relevant and druggable transitions.
Collapse
Affiliation(s)
- Luca Mollica
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, 20090 Milan, Italy,
| | - Gabriele Giachin
- Department
of Chemical Sciences (DiSC), University
of Padua, 35131 Padova, Italy,
| |
Collapse
|
10
|
Zheng F, Pang Y, Li L, Pang Y, Zhang J, Wang X, Raes G. Applications of nanobodies in brain diseases. Front Immunol 2022; 13:978513. [PMID: 36426363 PMCID: PMC9679430 DOI: 10.3389/fimmu.2022.978513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/30/2022] [Indexed: 03/31/2024] Open
Abstract
Nanobodies are antibody fragments derived from camelids, naturally endowed with properties like low molecular weight, high affinity and low immunogenicity, which contribute to their effective use as research tools, but also as diagnostic and therapeutic agents in a wide range of diseases, including brain diseases. Also, with the success of Caplacizumab, the first approved nanobody drug which was established as a first-in-class medication to treat acquired thrombotic thrombocytopenic purpura, nanobody-based therapy has received increasing attention. In the current review, we first briefly introduce the characterization and manufacturing of nanobodies. Then, we discuss the issue of crossing of the brain-blood-barrier (BBB) by nanobodies, making use of natural methods of BBB penetration, including passive diffusion, active efflux carriers (ATP-binding cassette transporters), carrier-mediated influx via solute carriers and transcytosis (including receptor-mediated transport, and adsorptive mediated transport) as well as various physical and chemical methods or even more complicated methods such as genetic methods via viral vectors to deliver nanobodies to the brain. Next, we give an extensive overview of research, diagnostic and therapeutic applications of nanobodies in brain-related diseases, with emphasis on Alzheimer's disease, Parkinson's disease, and brain tumors. Thanks to the advance of nanobody engineering and modification technologies, nanobodies can be linked to toxins or conjugated with radionuclides, photosensitizers and nanoparticles, according to different requirements. Finally, we provide several perspectives that may facilitate future studies and whereby the versatile nanobodies offer promising perspectives for advancing our knowledge about brain disorders, as well as hopefully yielding diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yucheng Pang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Luyao Li
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yuxing Pang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinyi Wang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Geert Raes
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
11
|
Kovač V, Čurin Šerbec V. Prion Protein: The Molecule of Many Forms and Faces. Int J Mol Sci 2022; 23:ijms23031232. [PMID: 35163156 PMCID: PMC8835406 DOI: 10.3390/ijms23031232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein most abundantly found in the outer membrane of neurons. Due to structural characteristics (a flexible tail and structured core), PrPC interacts with a wide range of partners. Although PrPC has been proposed to be involved in many physiological functions, only peripheral nerve myelination homeostasis has been confirmed as a bona fide function thus far. PrPC misfolding causes prion diseases and PrPC has been shown to mediate β-rich oligomer-induced neurotoxicity in Alzheimer’s and Parkinson’s disease as well as neuroprotection in ischemia. Upon proteolytic cleavage, PrPC is transformed into released and attached forms of PrP that can, depending on the contained structural characteristics of PrPC, display protective or toxic properties. In this review, we will outline prion protein and prion protein fragment properties as well as overview their involvement with interacting partners and signal pathways in myelination, neuroprotection and neurodegenerative diseases.
Collapse
|
12
|
Russo L, Salzano G, Corvino A, Bistaffa E, Moda F, Celauro L, D'Abrosca G, Isernia C, Milardi D, Giachin G, Malgieri G, Legname G, Fattorusso R. Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein. Chem Sci 2022; 13:10406-10427. [PMID: 36277622 PMCID: PMC9473526 DOI: 10.1039/d2sc00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational conversion of the cellular prion protein (PrPC) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, via Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90–231) thermal unfolding and characterize the conformational equilibrium between its native structure and a β-enriched intermediate state, named β-PrPI. By comparing the folding mechanisms of metal-free and Cu2+-bound HuPrP(23–231) and HuPrP(90–231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated μs–ms dynamics that in turn modulate the folding process. Moreover, via thioflavin T (ThT)-fluorescence fibrillization assays we show that β-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the β-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions. The N-ter domain in HuPrP regulates the folding mechanism by tuning the long-range μs–ms dynamics. Removal of the N-ter domain triggers the formation of a stable β-enriched intermediate state inducing amyloid aggregates with HuPrPSc seeding activity.![]()
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giulia Salzano
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Andrea Corvino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography, National Research Council, Catania, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, Padova, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
13
|
Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021; 434:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
Conformational conversion of the α-helix-rich cellular prion protein into the misfolded, β-rich, aggregated, scrapie form underlies the molecular basis of prion diseases that represent a class of invariably fatal, untreatable, and transmissible neurodegenerative diseases. However, despite the extensive and rigorous research, there is a significant gap in the understanding of molecular mechanisms that contribute to prion pathogenesis. In this review, we describe the historical perspective of the development of the prion concept and the current state of knowledge of prion biology including structural, molecular, and cellular aspects of the prion protein. We then summarize the putative functional role of the N-terminal intrinsically disordered segment of the prion protein. We next describe the ongoing efforts in elucidating the prion phase behavior and the emerging role of liquid-liquid phase separation that can have potential functional relevance and can offer an alternate non-canonical pathway involving conformational conversion into a disease-associated form. We also attempt to shed light on the evolutionary perspective of the prion protein highlighting the potential role of intrinsic disorder in prion protein biology and summarize a few important questions associated with the phase transitions of the prion protein. Delving deeper into these key aspects can pave the way for a detailed understanding of the critical molecular determinants of the prion phase transition and its relevance to physiology and neurodegenerative diseases.
Collapse
|
14
|
Zhang X, Pan YH, Chen Y, Pan C, Ma J, Yuan C, Yu G, Ma J. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer. J Biol Chem 2021; 297:101344. [PMID: 34710372 PMCID: PMC8604679 DOI: 10.1016/j.jbc.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China; Department of Neurodegeneraive Science, Van Andel Institute, Grand Rapids, Michigan, USA; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
15
|
Roterman I, Stapor K, Fabian P, Konieczny L. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Int J Mol Sci 2021; 22:10587. [PMID: 34638925 PMCID: PMC8508659 DOI: 10.3390/ijms221910587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The role of the environment in amyloid formation based on the fuzzy oil drop model (FOD) is discussed here. This model assumes that the hydrophobicity distribution within a globular protein is consistent with a 3D Gaussian (3DG) distribution. Such a distribution is interpreted as the idealized effect of the presence of a polar solvent-water. A chain with a sequence of amino acids (which are bipolar molecules) determined by evolution recreates a micelle-like structure with varying accuracy. The membrane, which is a specific environment with opposite characteristics to the polar aquatic environment, directs the hydrophobic residues towards the surface. The modification of the FOD model to the FOD-M form takes into account the specificity of the cell membrane. It consists in "inverting" the 3DG distribution (complementing the Gaussian distribution), which expresses the exposure of hydrophobic residues on the surface. It turns out that the influence of the environment for any protein (soluble or membrane-anchored) is the result of a consensus factor expressing the participation of the polar environment and the "inverted" environment. The ratio between the proportion of the aqueous and the "reversed" environment turns out to be a characteristic property of a given protein, including amyloid protein in particular. The structure of amyloid proteins has been characterized in the context of prion, intrinsically disordered, and other non-complexing proteins to cover a wider spectrum of molecules with the given characteristics based on the FOD-M model.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Medyczna 7, 30-688 Kraków, Poland
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
16
|
Abstract
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2 diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic properties of amyloid aggregates are correlated with their ability to damage cell membranes. However, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be completely elucidated. This review aims at describing the mutual relationships linking abnormal protein conformational transition and self-assembly into amyloid aggregates with membrane damage. A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of effective therapies.
Collapse
|
17
|
Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proc Natl Acad Sci U S A 2021; 118:2019631118. [PMID: 33731477 PMCID: PMC7999870 DOI: 10.1073/pnas.2019631118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The misfolding and aggregation of the human prion protein (PrP) is associated with transmissible spongiform encephalopathies (TSEs). Intermediate conformations forming during the conversion of the cellular form of PrP into its pathological scrapie conformation are key drivers of the misfolding process. Here, we analyzed the properties of the C-terminal domain of the human PrP (huPrP) and its T183A variant, which is associated with familial forms of TSEs. We show that the mutation significantly enhances the aggregation propensity of huPrP, such as to uniquely induce amyloid formation under physiological conditions by the sole C-terminal domain of the protein. Using NMR spectroscopy, biophysics, and metadynamics simulations, we identified the structural characteristics of the misfolded intermediate promoting the aggregation of T183A huPrP and the nature of the interactions that prevent this species to be populated in the wild-type protein. In support of these conclusions, POM antibodies targeting the regions that promote PrP misfolding were shown to potently suppress the aggregation of this amyloidogenic mutant.
Collapse
|
18
|
Wang XT, Sun H, Chen NH, Yuan YH. Tunneling nanotubes: A novel pharmacological target for neurodegenerative diseases? Pharmacol Res 2021; 170:105541. [PMID: 33711434 DOI: 10.1016/j.phrs.2021.105541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022]
Abstract
Diversiform ways of intercellular communication are vital links in maintaining homeostasis and disseminating physiological states. Among intercellular bridges, tunneling nanotubes (TNTs) discovered in 2004 were recognized as potential pharmacology targets related to the pathogenesis of common or infrequent neurodegenerative disorders. The neurotoxic aggregates in neurodegenerative diseases including scrapie prion protein (PrPSc), mutant tau protein, amyloid-beta (Aβ) protein, alpha-synuclein (α-syn) as well as mutant Huntington (mHTT) protein could promote TNT formation via certain physiological mechanisms, in turn, mediating the intercellular transmission of neurotoxicity. In this review, we described in detail the skeleton, the formation, the physicochemical properties, and the functions of TNTs, while paying particular attention to the key role of TNTs in the transport of pathological proteins during neurodegeneration.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hua Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
19
|
Wang F, Li ZF, Yang YY, Wan DB, Vasylieva N, Zhang YQ, Cai J, Wang H, Shen YD, Xu ZL, Hammock BD. Chemiluminescent Enzyme Immunoassay and Bioluminescent Enzyme Immunoassay for Tenuazonic Acid Mycotoxin by Exploitation of Nanobody and Nanobody-Nanoluciferase Fusion. Anal Chem 2020; 92:11935-11942. [PMID: 32702970 PMCID: PMC7743996 DOI: 10.1021/acs.analchem.0c02338] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The isolation of nanobodies (Nbs) from phage display libraries is an increasingly effective approach for the generation of new biorecognition elements, which can be used to develop immunoassays. In this study, highly specific Nbs against the Alternaria mycotoxin tenuazonic acid (TeA) were isolated from an immune nanobody phage display library using a stringent biopanning strategy. The obtained Nbs were characterized by classical enzyme-linked immunosorbent assay (ELISA), and the best one Nb-3F9 was fused with nanoluciferase to prepare an advanced bifunctional fusion named nanobody-nanoluciferase (Nb-Nluc). In order to improve the sensitivity and reduce the assay time, two different kinds of luminescent strategies including chemiluminescent enzyme immunoassay (CLEIA) and bioluminescent enzyme immunoassay (BLEIA) were established, respectively, on the basis of the single Nb and the fusion protein Nb-Nluc for TeA detection. The two-step CLEIA was developed on the basis of the same nanobody as ELISA, only with simple substrate replacement from 3,3',5,5'-tetramethylbenzidine (TMB) to luminol. In contrast with CLEIA, the novel BLEIA was conducted in one-step new strategy on the basis of Nb-Nluc and bioluminescent substrate coelenterazine-h (CTZ-h). Their half maximal inhibitory concentration (IC50) values were similar to 8.6 ng/mL for CLEIA and 9.3 ng/mL for BLEIA, which was a 6-fold improvement in sensitivity compared with that of ELISA (IC50 of 54.8 ng/mL). Both of the two assays provided satisfactory recoveries ranging from 80.1%-113.5% in real samples, which showed better selectivity for TeA analogues and other common mycotoxins. These results suggested that Nbs and Nb-Nluc could be used as useful reagents for immunodetection and that the developed CLEIA/BLEIA have great potential for TeA analysis.
Collapse
Affiliation(s)
- Feng Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Zhen-Feng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Guangzhou Nabo Antibody Technology Co. Ltd, Guangzhou 510530, P. R. China
| | - Yuan-Yuan Yang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - De-Bin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yu-Qi Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Jun Cai
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Hong Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Yu-Dong Shen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Zhen-Lin Xu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, Guangzhou 510642, P. R. China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| |
Collapse
|
20
|
Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Life (Basel) 2020; 10:life10080144. [PMID: 32784399 PMCID: PMC7459996 DOI: 10.3390/life10080144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Aβ, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins’ family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer’s, Type II Diabetes Mellitus, Parkinson’s, and Creutzfeldt–Jakob’s diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.
Collapse
|
21
|
Hosszu LLP, Conners R, Sangar D, Batchelor M, Sawyer EB, Fisher S, Cliff MJ, Hounslow AM, McAuley K, Leo Brady R, Jackson GS, Bieschke J, Waltho JP, Collinge J. Structural effects of the highly protective V127 polymorphism on human prion protein. Commun Biol 2020; 3:402. [PMID: 32728168 PMCID: PMC7391680 DOI: 10.1038/s42003-020-01126-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP β-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the β2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Rebecca Conners
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Elizabeth B Sawyer
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stuart Fisher
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
- ESRF, 71, Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katherine McAuley
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - R Leo Brady
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
| | - Graham S Jackson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
22
|
Prion Protein in Stem Cells: A Lipid Raft Component Involved in the Cellular Differentiation Process. Int J Mol Sci 2020; 21:ijms21114168. [PMID: 32545192 PMCID: PMC7312503 DOI: 10.3390/ijms21114168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
The prion protein (PrP) is an enigmatic molecule with a pleiotropic effect on different cell types; it is localized stably in lipid raft microdomains and it is able to recruit downstream signal transduction pathways by its interaction with various biochemical partners. Since its discovery, this lipid raft component has been involved in several functions, although most of the publications focused on the pathological role of the protein. Recent studies report a key role of cellular prion protein (PrPC) in physiological processes, including cellular differentiation. Indeed, the PrPC, whose expression is modulated according to the cell differentiation degree, appears to be part of the multimolecular signaling pathways of the neuronal differentiation process. In this review, we aim to summarize the main findings that report the link between PrPC and stem cells.
Collapse
|
23
|
Ma Y, Ma J. Immunotherapy against Prion Disease. Pathogens 2020; 9:E216. [PMID: 32183309 PMCID: PMC7157205 DOI: 10.3390/pathogens9030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
The term "prion disease" encompasses a group of neurodegenerative diseases affecting both humans and animals. Currently, there is no effective therapy and all forms of prion disease are invariably fatal. Because of (a) the outbreak of bovine spongiform encephalopathy in cattle and variant Creutzfeldt-Jakob disease in humans; (b) the heated debate about the prion hypothesis; and (c) the availability of a natural prion disease in rodents, the understanding of the pathogenic process in prion disease is much more advanced compared to that of other neurodegenerative disorders, which inspired many attempts to develop therapeutic strategies against these fatal diseases. In this review, we focus on immunotherapy against prion disease. We explain our rationale for immunotherapy as a plausible therapeutic choice, review previous trials using either active or passive immunization, and discuss potential strategies for overcoming the hurdles in developing a successful immunotherapy. We propose that immunotherapy is a plausible and practical therapeutic strategy and advocate more studies in this area to develop effective measures to control and treat these devastating disorders.
Collapse
Affiliation(s)
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA;
| |
Collapse
|