1
|
Rimal B, Howe RA, Panthi CM, Wang W, Lamichhane G. Oral oxaborole MRX-5 exhibits efficacy against pulmonary Mycobacterium abscessus in mouse. Antimicrob Agents Chemother 2024; 68:e0135124. [PMID: 39360824 PMCID: PMC11539245 DOI: 10.1128/aac.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Mycobacterium abscessus (Mab) is an opportunistic pathogen common in patients with lung comorbidities and immunosuppression. There are no FDA-approved treatments, and current treatment has a failure rate exceeding 50%. The intravenous oxaborole MRX-6038 is active against Mab. This study evaluated MRX-5, the oral prodrug, against five Mab isolates in a mouse lung infection model. MRX-5 showed dose-dependent efficacy, with 15 and 45 mg/kg doses comparable to the standard of care, supporting progression to clinical trial.
Collapse
Affiliation(s)
- Binayak Rimal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruth A. Howe
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chandra M. Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wen Wang
- MicuRx Pharmaceuticals, Inc., Foster City, California, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Phelan J, Van den Heede K, Masyn S, Verbeeck R, Lamprecht DA, Koul A, Wall RJ. An open-access dashboard to interrogate the genetic diversity of Mycobacterium tuberculosis clinical isolates. Sci Rep 2024; 14:24792. [PMID: 39433543 PMCID: PMC11494124 DOI: 10.1038/s41598-024-75818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Tuberculosis (TB) remains one of the leading infectious disease killers in the world. The ongoing development of novel anti-TB medications has yielded potent compounds that often target single sites with well-defined mechanisms of action. However, despite the identification of resistance-associated mutations through target deconvolution studies, comparing these findings with the diverse Mycobacterium tuberculosis populations observed in clinical settings is often challenging. To address this gap, we constructed an open-access database encompassing genetic variations from > 50,000 clinical isolates, spanning the entirety of the M. tuberculosis protein-encoding genome. This resource offers a valuable tool for investigating the prevalence of target-based resistance mutations in any drug target within clinical contexts. To demonstrate the practical application of this dataset in drug discovery, we focused on drug targets currently undergoing phase II clinical trials. By juxtaposing genetic variations of these targets with resistance mutations derived from laboratory-adapted strains, we identified multiple positions across three targets harbouring resistance-associated mutations already present in clinical isolates. Furthermore, our analysis revealed a discernible correlation between genetic diversity within each protein and their predicted essentiality. This meta-analysis, openly accessible via a dedicated dashboard, enables comprehensive exploration of genetic diversity pertaining to any drug target or resistance determinant in M. tuberculosis.
Collapse
Affiliation(s)
- Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Klaas Van den Heede
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Serge Masyn
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Rudi Verbeeck
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Dirk A Lamprecht
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Anil Koul
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium.
| | - Richard J Wall
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
3
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024:e0008023. [PMID: 39360834 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
4
|
Boonyalai N, Peerapongpaisarn D, Thamnurak C, Oransathid W, Wongpatcharamongkol N, Oransathid W, Lurchachaiwong W, Griesenbeck JS, Waters NC, Demons ST, Ruamsap N, Vesely BA. Screening of the Pandemic Response Box library identified promising compound candidate drug combinations against extensively drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:21709. [PMID: 39289446 PMCID: PMC11408719 DOI: 10.1038/s41598-024-72603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Infections caused by antimicrobial-resistant Acinetobacter baumannii pose a significant threat to human health, particularly in the context of hospital-acquired infections. As existing antibiotics lose efficacy against Acinetobacter isolates, there is an urgent need for the development of novel antimicrobial agents. In this study, we assessed 400 structurally diverse compounds from the Medicines for Malaria Pandemic Response Box for their activity against two clinical isolates of A. baumannii: A. baumannii 5075, known for its extensive drug resistance, and A. baumannii QS17-1084, obtained from an infected wound in a Thai patient. Among the compounds tested, seven from the Pathogen box exhibited inhibitory effects on the in vitro growth of A. baumannii isolates, with IC50s ≤ 48 µM for A. baumannii QS17-1084 and IC50s ≤ 17 µM for A. baumannii 5075. Notably, two of these compounds, MUT056399 and MMV1580854, shared chemical scaffolds resembling triclosan. Further investigations involving drug combinations identified five synergistic drug combinations, suggesting potential avenues for therapeutic development. The combination of MUT056399 and brilacidin against A. baumannii QS17-1084 and that of MUT056399 and eravacycline against A. baumannii 5075 showed bactericidal activity. These combinations significantly inhibited biofilm formation produced by both A. baumannii strains. Our findings highlight the drug combinations as promising candidates for further evaluation in murine wound infection models against multidrug-resistant A. baumannii. These compounds hold potential for addressing the critical need for effective antibiotics in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Dutsadee Peerapongpaisarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wilawan Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nantanat Wongpatcharamongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wirote Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Woradee Lurchachaiwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Division of Global Health Protection, Thailand MoPH-US CDC Collaboration, Nonthaburi, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Samandra T Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
5
|
Zoltner M, Horn D, Field MC. Pass the boron: benzoxaboroles as antiparasite drugs. Trends Parasitol 2024; 40:820-828. [PMID: 39107181 DOI: 10.1016/j.pt.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024]
Abstract
The development of new drug modalities has been facilitated recently by the introduction of boron as a component of organic compounds, and specifically within a benzoxaborale scaffold. This has enabled exploration of new chemical space and the development of effective compounds targeting a broad range of morbidities, including infections by protozoa, fungi, worms, and bacteria. Most notable is the recent demonstration of a single oral dose cure using acoziborole against African trypanosomiasis. Common and species-/structure-specific interactions between benzoxaboroles and parasite species have emerged and provide vital insights into the mechanisms of cidality, as well as potential challenges in terms of resistance and/or side effects. Here, we discuss the literature specific to benzoxaborole studies in parasitic protists and consider unanswered questions concerning this important new drug class.
Collapse
Affiliation(s)
- Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, BIOCEV, Vestec, Czech Republic
| | - David Horn
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mark C Field
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Institute of Parasitology, Faculty of Sciences, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Rimal B, Lippincott CK, Panthi CM, Xie Y, Keepers TR, Alley MRK, Lamichhane G. Efficacy of epetraborole against Mycobacteroides abscessus in a mouse model of lung infection. Antimicrob Agents Chemother 2024; 68:e0064824. [PMID: 39016592 PMCID: PMC11323969 DOI: 10.1128/aac.00648-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Mycobacteroides abscessus (Mab or Mycobacterium abscessus) is a fast-growing mycobacterium that is ubiquitous in the environment and can cause opportunistic disease in people with lung comorbidity and immunodeficiency. There are no Food and Drug Administration-approved drugs for this disease, and repurposed antibiotics have a poor microbiological response. To address the need for effective new antibiotics, we determined the efficacy of epetraborole (EBO) against three Mab clinical isolates in a mouse model of lung Mab infection. Reduction in lung Mab burden over 4 weeks of treatment was the study end point. EBO was administered orally once daily at doses of 25 and 50 mg/kg, which achieved exposures approximating the once-daily dosing of 250 mg and 500 mg, respectively, in humans. EBO administration led to a gradual reduction in the lung Mab burden. After 4 weeks of treatment, the efficacies of 25 and 50 mg/kg EBO against isolates ATCC 19977 and M9501 were comparable. However, against isolate M9530, 50 mg/kg EBO was more efficacious than 25 mg/kg and comparable with parenteral imipenem, one of the most efficacious antibiotics against Mab. We also undertook a dose-ranging study by evaluating the efficacies of once-daily oral administration of 0.5, 5, 10, 25, and 100 mg/kg EBO against M9501 over 4 weeks. Once-daily oral 100 mg/kg EBO was as effective as twice-daily 100 mg/kg imipenem injection. Our study suggests that EBO could address the unmet need for effective oral treatment options for Mab lung disease, given the high rates of Mab drug resistance and limited tolerable intravenous options.
Collapse
Affiliation(s)
- Binayak Rimal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher K. Lippincott
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chandra M. Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yi Xie
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - MRK Alley
- AN2 Therapeutics, Inc., Menlo Park, California, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Sivasankar S, Boppe A, Grobusch MP, Jeyaraj S. Evaluation of MMV Pandemic Response Box compounds to identify potent compounds against clinically relevant bacterial and fungal clinical isolates in vitro. New Microbes New Infect 2024; 60-61:101444. [PMID: 39040124 PMCID: PMC11261442 DOI: 10.1016/j.nmni.2024.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Background Multidrug resistant bacterial and fungal pathogens are resistant to a number of significant front-line drugs, hence, identification of new inhibitory agents to combat them is crucial. In this study, we aim to evaluate the activity of Pandemic Box compounds from Malaria Medicines Venture (MMV) against A. baumannii and P. aeruginosa bacterial, C. auris, C. albicans and A. niger fungal clinical isolates. Methods Isolates were initially screened with 201 antibacterial and 46 antifungal compounds (10 μM) using a microbroth dilution in triplicates to determine MIC. A persister assay was performed for bacterial pathogens. Results Out of 201 antibacterial compounds, twenty-nine and seven compounds inhibited the growth of A. baumannii and P. aeruginosa at 10 μM, respectively. MMV1580854, MMV1579788, eravacycline and epetraborole inhibited both the bacterial test isolates. In a persister assay, MMV1634390 showed complete bactericidal effect against A. baumannii. With antifungal activity compounds, C. auris responded to15 compounds, Six compounds inhibited C. albicans and one was effective against A. niger at 10 μM. The ratio of Minimum Fungicidal Concentration (MFC): Minimum Inhibitory Concentration (MIC) of MMV1782110 was 2 against C. auris. Eberconazole, amorolfine and luliconazole are fungicidal targeting C. albicans at a MFC: MIC ratio of 2. Conclusion Five compounds from MMV Pandemic Box were found to be inhibiting colistin and ceftazidime resistant A. baumannii clinical isolate, also against colistin and β-lactam resistant P. aeruginosa clinical isolate. MMV1634390 showed complete bactericidal effect against A. baumannii in a persister assay. MMV1782110, Eberconazole, amorolfine and luliconazole exhibited potent anti-fungal activity. Further investigations are warranted to identify the targets and mechanism.
Collapse
Affiliation(s)
- Seshan Sivasankar
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
- PSG Center for Genetics and Molecular Biology, Off Avinashi Road, Coimbatore, India
| | - Appalaraju Boppe
- Department of Microbiology, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Martin Peter Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location Amsterdam, Amsterdam, the Netherlands
- Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Centre de Recherches Médicales de Lambaréné CERMEL, Hospital Albert Schweitzer, BP 242, Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
- Masanga Medical Research Unit, Masanga, Sierra Leone
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sankarganesh Jeyaraj
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
- PSG Center for Genetics and Molecular Biology, Off Avinashi Road, Coimbatore, India
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location Amsterdam, Amsterdam, the Netherlands
- Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Johansen MD, Spaink HP, Oehlers SH, Kremer L. Modeling nontuberculous mycobacterial infections in zebrafish. Trends Microbiol 2024; 32:663-677. [PMID: 38135617 DOI: 10.1016/j.tim.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The incidence of infections due to nontuberculous mycobacteria (NTM) has increased rapidly in recent years, surpassing tuberculosis in developed countries. Due to inherent antimicrobial resistance, NTM infections are particularly difficult to treat with low cure rates. There is an urgent need to understand NTM pathogenesis and to develop novel therapeutic approaches for the treatment of NTM diseases. Zebrafish have emerged as an excellent animal model due to genetic amenability and optical transparency during embryonic development, allowing spatiotemporal visualization of host-pathogen interactions. Furthermore, adult zebrafish possess fully functional innate and adaptive immunity and recapitulate important pathophysiological hallmarks of mycobacterial infection. Here, we report recent breakthroughs in understanding the hallmarks of NTM infections using the zebrafish model.
Collapse
Affiliation(s)
- Matt D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Stefan H Oehlers
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Kremer
- Centre National de la Recherche Scientifique, UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
9
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
10
|
Habjan E, Schouten GK, Speer A, van Ulsen P, Bitter W. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment. FEMS Microbiol Rev 2024; 48:fuae011. [PMID: 38684467 PMCID: PMC11078164 DOI: 10.1093/femsre/fuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gina K Schouten
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter van Ulsen
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Mori M, Cocorullo M, Tresoldi A, Cazzaniga G, Gelain A, Stelitano G, Chiarelli LR, Tomaiuolo M, Delre P, Mangiatordi GF, Garofalo M, Cassetta A, Covaceuszach S, Villa S, Meneghetti F. Structural basis for specific inhibition of salicylate synthase from Mycobacterium abscessus. Eur J Med Chem 2024; 265:116073. [PMID: 38169270 DOI: 10.1016/j.ejmech.2023.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 μM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.
Collapse
Affiliation(s)
- Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Mario Cocorullo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100, Pavia, Italy
| | - Andrea Tresoldi
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100, Pavia, Italy
| | - Martina Tomaiuolo
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, 34149, Trieste, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council, Via G. Amendola 122/o, 70126, Bari, Italy
| | - Giuseppe F Mangiatordi
- Institute of Crystallography, National Research Council, Via G. Amendola 122/o, 70126, Bari, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Alberto Cassetta
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, 34149, Trieste, Italy
| | - Sonia Covaceuszach
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, 34149, Trieste, Italy.
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
12
|
Sivasankar S, Premnath MA, Boppe A, Grobusch MP, Jeyaraj S. Screening of MMV pandemic response and pathogen box compounds against pan-drug-resistant Klebsiella pneumoniae to identify potent inhibitory compounds. New Microbes New Infect 2023; 55:101193. [PMID: 38046897 PMCID: PMC10690571 DOI: 10.1016/j.nmni.2023.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Background The recent emergence of pan-drug-resistant (PDR) K. pneumoniae strains hinders the success rate of treatment procedures for patients. High mortality, extended duration of hospitalization with high costs is associated with such infections. Discovery and identification of new drugs are inevitable to combat PDR clinical pathogens. We aim to identify and evaluate new compounds in vitro against a PDR clinical K. pneumoniae isolate using compounds of Pathogen Box and Pandemic Response Box from Medicines for Malaria Venture (MMV). Methods The PDR strain was initially screened with the 601 compounds from both Boxes at 10 μM concentration. Formation of dormant cells against the drug activity was assessed using persister assay. MIC was determined for the drugs inhibiting PDR K. pneumoniae during initial screening. Results Five compounds were identified to inhibit the test strain. MMV1580854 (94.60 %), MMV1579788 (94.65 %), MMV1578574 (eravacycline; 93.13 %), MMV1578566 (epetraborole; 95.29 %) and MMV1578564 (96.32 %) were able to exhibit a higher percentage of growth inhibition. Persisters were found to be growing in a range from 104 to 107 CFU/ml. Minimum inhibitory concentrations (MIC) of all compounds were ≥ 2 μM except for MMV1579788, which had a MIC of ≥ 5 μM. Conclusion Five novel compounds were identified against the highly evolved pan-drug-resistant K. pneumoniae. Among the five, epetraborole andMMV1578564 were identified as highly potent based on the persister frequency and MICs. The pan-drug resistant clinical isolate used in this study was found to be acting differently from the reference or wild type strains against the test compounds in a previous study.
Collapse
Affiliation(s)
- Seshan Sivasankar
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
- PSG Center for Genetics and Molecular Biology, Off Avinashi Road, Coimbatore, India
| | - Mari Abinaya Premnath
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
- PSG Center for Genetics and Molecular Biology, Off Avinashi Road, Coimbatore, India
| | - Appalaraju Boppe
- Department of Microbiology, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Martin Peter Grobusch
- Centre de Recherches Médicales de Lambaréné CERMEL, Hospital Albert Schweitzer, BP 242, Lambaréné, Gabon
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tubingen, Germany
- Masanga Medical Research Unit, Masanga, Sierra Leone
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sankarganesh Jeyaraj
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
- PSG Center for Genetics and Molecular Biology, Off Avinashi Road, Coimbatore, India
| |
Collapse
|
13
|
Anjos LRBD, Costa VAF, Neves BJ, Junqueira-Kipnis AP, Kipnis A. Repurposing miconazole and tamoxifen for the treatment of Mycobacterium abscessus complex infections through in silico chemogenomics approach. World J Microbiol Biotechnol 2023; 39:273. [PMID: 37553519 DOI: 10.1007/s11274-023-03718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Drug repositioning is an alternative to overcome the complexity of the drug discovery and approval procedures for the treatment of Mycobacterium abscessus Complex (MABSC) infections that are increasing globally due to the emergency of antimicrobial resistance mechanisms. Here, an in silico chemogenomics approach was performed to compare the sequences from 4942 M. abscessus subsp. abscessus (M. abscessus) proteins with 5258 or 3473 therapeutic targets registered in the DrugBank or Therapeutic Target Database, respectively. This comparison identified 446 drugs or drug candidates whose targets were homologous to M. abscessus proteins. These identified drugs were considered potential inhibitors of MABSC (anti-MABSC activity). Further screening and inspection resulted in the selection of ezetimibe, furosemide, itraconazole, miconazole (MCZ), tamoxifen (TAM), and thiabendazole (THI) for experimental validation. Among them, MCZ and TAM showed minimum inhibitory concentrations (MIC) of 32 and 24 µg mL-1 against M. abscessus, respectively. For M. bolletii and M. massiliense strains, MCZ and TAM showed MICs of 16 and 24 µg mL-1, in this order. Subsequently, the antibacterial activity of MCZ was confirmed in vivo, indicating its potential to reduce the bacterial load in the lungs of infected mice. These results show that MCZ and TAM can serve as molecular scaffolds for the prospective hit-2-lead optimization of new analogs with greater potency, selectivity, and permeability.
Collapse
Affiliation(s)
| | | | - Bruno Junior Neves
- Faculty of Pharmacy, Laboratory of Cheminformatics (LabChem), Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - André Kipnis
- Department of Biosciences and Technology, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
14
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
15
|
Sullivan JR, Courtine C, Taylor L, Solomon O, Behr MA. Loss of allosteric regulation in α-isopropylmalate synthase identified as an antimicrobial resistance mechanism. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:7. [PMID: 38686213 PMCID: PMC11057210 DOI: 10.1038/s44259-023-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 05/02/2024]
Abstract
Despite our best efforts to discover new antimicrobials, bacteria have evolved mechanisms to become resistant. Resistance to antimicrobials can be attributed to innate, inducible, and acquired mechanisms. Mycobacterium abscessus is one of the most antimicrobial resistant bacteria and is known to cause chronic pulmonary infections within the cystic fibrosis community. Previously, we identified epetraborole as an inhibitor against M. abscessus with in vitro and in vivo activities and that the efficacy of epetraborole could be improved with the combination of the non-proteinogenic amino acid norvaline. Norvaline demonstrated activity against the M. abscessus epetraborole resistant mutants thus, limiting resistance to epetraborole in wild-type populations. Here we show M. abscessus mutants with resistance to epetraborole can acquire resistance to norvaline in a leucyl-tRNA synthetase (LeuRS) editing-independent manner. After showing that the membrane hydrophobicity and efflux activity are not linked to norvaline resistance, whole-genome sequencing identified a mutation in the allosteric regulatory domain of α-isopropylmalate synthase (α-IPMS). We found that mutants with the α-IPMSA555V variant incorporated less norvaline in the proteome and produced more leucine than the parental strain. Furthermore, we found that leucine can rescue growth inhibition from norvaline challenge in the parental strain. Our results demonstrate that M. abscessus can modulate its metabolism through mutations in an allosteric regulatory site to upregulate the biosynthesis of the natural LeuRS substrate and outcompete norvaline. These findings emphasize the antimicrobial resistant nature of M. abscessus and describe a unique mechanism of substrate-inhibitor competition.
Collapse
Affiliation(s)
- Jaryd R. Sullivan
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- McGill International TB Centre, Montreal, QC H4A 3S5 Canada
| | - Christophe Courtine
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- Present Address: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755 USA
| | - Lorne Taylor
- Clinical Proteomics Platform, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
| | - Ori Solomon
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- McGill International TB Centre, Montreal, QC H4A 3S5 Canada
| | - Marcel A. Behr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- McGill International TB Centre, Montreal, QC H4A 3S5 Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1 Canada
| |
Collapse
|
16
|
Nguyen TQ, Heo BE, Hanh BTB, Jeon S, Park Y, Choudhary A, Lee S, Kim TH, Moon C, Min SJ, Jang J. DS86760016, a Leucyl-tRNA Synthetase Inhibitor, Is Active against Mycobacterium abscessus. Antimicrob Agents Chemother 2023; 67:e0156722. [PMID: 37212672 PMCID: PMC10269085 DOI: 10.1128/aac.01567-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/27/2023] [Indexed: 05/23/2023] Open
Abstract
Benzoxaboroles are a new class of leucyl-tRNA synthetase inhibitors. Epetraborole, a benzoxaborole, is a clinical candidate developed for Gram-negative infections and has been confirmed to exhibit favorable activity against a well known pulmonary pathogen, Mycobacterium abscessus. However, according to ClinicalTrials.gov, in 2017, a clinical phase II study on the use of epetraborole to treat complicated urinary tract and intra-abdominal infections was terminated due to the rapid emergence of drug resistance during treatment. Nevertheless, epetraborole is in clinical development for nontuberculous mycobacteria (NTM) disease especially for Mycobacterium avium complex-related pulmonary disease (MAC-PD). DS86760016, an epetraborole analog, was further demonstrated to have an improved pharmacokinetic profile, lower plasma clearance, longer plasma half-life, and higher renal excretion than epetraborole in animal models. In this study, DS86760016 was found to be similarly active against M. abscessus in vitro, intracellularly, and in zebrafish infection models with a low mutation frequency. These results expand the diversity of druggable compounds as new benzoxaborole-based candidates for treating M. abscessus diseases.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Arunima Choudhary
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sujin Lee
- Department of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Tae Ho Kim
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
17
|
Finin P, Khan RMN, Oh S, Boshoff HIM, Barry CE. Chemical approaches to unraveling the biology of mycobacteria. Cell Chem Biol 2023; 30:420-435. [PMID: 37207631 PMCID: PMC10201459 DOI: 10.1016/j.chembiol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb), perhaps more than any other organism, is intrinsically appealing to chemical biologists. Not only does the cell envelope feature one of the most complex heteropolymers found in nature1 but many of the interactions between Mtb and its primary host (we humans) rely on lipid and not protein mediators.2,3 Many of the complex lipids, glycolipids, and carbohydrates biosynthesized by the bacterium still have unknown functions, and the complexity of the pathological processes by which tuberculosis (TB) disease progress offers many opportunities for these molecules to influence the human response. Because of the importance of TB in global public health, chemical biologists have applied a wide-ranging array of techniques to better understand the disease and improve interventions.
Collapse
Affiliation(s)
- Peter Finin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - R M Naseer Khan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
18
|
Gupta R, Rohde KH. Implementation of a mycobacterial CRISPRi platform in Mycobacterium abscessus and demonstration of the essentiality of ftsZ Mab. Tuberculosis (Edinb) 2023; 138:102292. [PMID: 36495774 PMCID: PMC11552333 DOI: 10.1016/j.tube.2022.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium abscessus (Mab) is a highly drug-resistant non-tuberculous mycobacterial species that causes debilitating TB-like pulmonary infections. The lack of genetic tools has hampered characterization of its extensive repertoire of virulence factors, antimicrobial resistance mechanisms, and drug targets. In this study, we evaluated the performance of a mycobacterial single plasmid CRISPRi-dCas9 system optimized for M. tuberculosis and M. smegmatis for inducible gene silencing in Mab. The efficacy of CRISPRi-mediated repression of two antibiotic resistance genes (blaMab, whiB7Mab) and two putative essential genes (ftsZMab,topAMab) was determined by measuring mRNA transcript levels and phenotypic outcomes. While our results support the utility of this mycobacterial CRISPRi dCas9Sth1 single-plasmid platform for inducible silencing of specific target genes in Mab, they also highlighted several caveats and nuances that may warrant species-specific optimization for Mab. We observed overall lower levels of gene repression in Mab including variable silencing of different target genes despite use of PAMs of similar predicted strength. In addition, leaky gene repression in the absence of inducer was noted for some genes but not others. Nonetheless, using CRISPRi we demonstrated the silencing of multiple target genes and validated ftsZMab as an essential gene and promising drug target for the first time.
Collapse
Affiliation(s)
- Rashmi Gupta
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL, 32827, USA.
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL, 32827, USA.
| |
Collapse
|
19
|
Nicola F, Cirillo DM, Lorè NI. Preclinical murine models to study lung infection with Mycobacterium abscessus complex. Tuberculosis (Edinb) 2023; 138:102301. [PMID: 36603391 DOI: 10.1016/j.tube.2022.102301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium (NTM) able to cause invasive pulmonary infections, named NTM pulmonary disease. The therapeutic approaches are limited, and infections are difficult to treat due to antibiotic resistance conferred by an impermeable cell wall, drug efflux pumps, or drug-modifying enzymes. The development of new therapeutics, intended as antimicrobials or drug limiting immunopathology, is urgently necessary. In this context, the preclinical murine models of M. abscessus represent a useful tool to validate and translate in vitro-proofed concepts. These in vivo models are essential for developing new targets and drugs, ameliorating our knowledge in combinatorial regimens of current existing antibiotic treatments, and repurposing existing drugs for new therapeutic options against M. abscessus infection. Thus, this review aims at providing an overview of the current state of the art of preclinical murine models to study M. abscessus lung infection and its exploitation for new therapeutic approaches. This review discusses the murine models available focusing on the different bacterial challenges (aerosol, intranasal, intratracheal, and intravenous administrations), murine genetic background, and additional bacterial related factors. Then, we discuss the successful preclinical models for M. abscessus respiratory infection exploited to study the efficacy and safety of new antimicrobials or to determine the best dosage and route of administration of existing drugs. Finally, we present the current murine models exploited to develop new therapeutic approaches to modulate the host immune response and limit immunopathological damage during M. abscessus lung disease. In conclusion, our review article provides an overview of current and available murine models to characterize acute or chronic infections and to study the outcome of new therapeutic strategies against M. abscessus lung infection.
Collapse
Affiliation(s)
- Francesca Nicola
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
20
|
Sullivan JR, Yao J, Courtine C, Lupien A, Herrmann J, Müller R, Behr MA. Natural Products Lysobactin and Sorangicin A Show In Vitro Activity against Mycobacterium abscessus Complex. Microbiol Spectr 2022; 10:e0267222. [PMID: 36342177 PMCID: PMC9769517 DOI: 10.1128/spectrum.02672-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of lung disease caused by Mycobacterium abscessus is increasing among patients with cystic fibrosis. M. abscessus is a multidrug resistant opportunistic pathogen that is notoriously difficult to treat due to a lack of efficacious therapeutic regimens. Currently, there are no standard regimens, and treatment guidelines are based empirically on drug susceptibility testing. Thus, novel antibiotics are required. Natural products represent a vast pool of biologically active compounds that have a history of being a good source of antibiotics. Here, we screened a library of 517 natural products purified from fermentations of various bacteria, fungi, and plants against M. abscessus ATCC 19977. Lysobactin and sorangicin A were active against the M. abscessus complex and drug resistant clinical isolates. These natural products merit further consideration to be included in the M. abscessus drug pipeline. IMPORTANCE The many thousands of people living with cystic fibrosis are at a greater risk of developing a chronic lung infection caused by Mycobacterium abscessus. Since M. abscessus is clinically resistant to most anti-TB drugs available, treatment options are limited to macrolides. Despite macrolide-based therapies, cure rates for M. abscessus lung infections are 50%. Using an in-house library of curated natural products, we identified lysobactin and sorangicin A as novel scaffolds for the future development of antimicrobials for patients with M. abscessus infections.
Collapse
Affiliation(s)
- Jaryd R. Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
| | - Jacqueline Yao
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Christophe Courtine
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Andréanne Lupien
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI),Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI),Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Marcel A. Behr
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
21
|
Sriram D, Wahi R, Maggioncalda EC, Panthi CM, Lamichhane G. Clofazimine as a comparator for preclinical efficacy evaluations of experimental therapeutics against pulmonary M. abscessus infection in mice. Tuberculosis (Edinb) 2022; 137:102268. [PMID: 36228452 PMCID: PMC10739713 DOI: 10.1016/j.tube.2022.102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) can cause chronic pulmonary disease in the setting of structural lung conditions. Current treatment recommendations require at least one year of daily therapy with repurposed antibiotics. Yet these therapies are often ineffective and associated with significant adverse events. To address this challenge, research efforts are underway to develop new antibiotics and regimens. During the preclinical phase of treatment development, experimental agents require testing and comparison alongside positive controls that are known agents with clinical history. As there are no FDA approved treatments for this indication, here, we have considered repurposed antibiotics currently included in the recommendation for treating Mab disease as candidates for selection of an ideal standard comparator that can serve as a positive control in preclinical studies. Clofazimine meets the criteria for an ideal positive control as it can be administered via the least invasive route, requires only once-daily dosing, is well tolerated, and is widely available in high purity from independent sources. Using a mouse model of pulmonary Mab disease, we assessed for ideal dosages of clofazimine in C3HeB/FeJ and BALB/c mice in a six-week treatment window. Clofazimine, 25 mg/kg, once daily, produced desired reduction in Mab burden in the lungs of C3HeB/FeJ and BALB/c mice. Based on these findings, we conclude that clofazimine meets the criteria for a positive control comparator in mice for use in preclinical efficacy assessments of agents for treatment of Mab pulmonary disease. Although not included in the current standard-of-care for treating Mab disease, rifabutin, 20 mg/kg, also produced desired reduction in Mab lung burden in C3HeB/FeJ mice but not in BALB/c mice. IMPORTANCE: Mycobacteroides abscessus can cause life-threatening infections in patients with chronic lung conditions. New treatments are needed as cure rate using existing drugs is low. During pre-clinical phase of treatment development, it is important to compare the efficacy of the experimental drug against existing ones with known history. Here, we demonstrate that clofazimine, one of the antibiotics repurposed for treating Mab disease, can serve as a positive control comparator for efficacy assessments of experimental drugs and regimens to treat M. abscessus disease in mice.
Collapse
Affiliation(s)
- Divya Sriram
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Rishi Wahi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Emily C Maggioncalda
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chandra M Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
22
|
Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, Kim JK, Kim JM, Oh DC, Jang J, Jo EK. Ohmyungsamycin Promotes M1-like Inflammatory Responses to Enhance Host Defense against Mycobacteroides abscessus Infections. Virulence 2022; 13:1966-1984. [PMID: 36271707 DOI: 10.1080/21505594.2022.2138009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinsheng Cui
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University,Jinju, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
23
|
Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules 2022; 27:molecules27206948. [PMID: 36296540 PMCID: PMC9608607 DOI: 10.3390/molecules27206948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike Tuberculosis (TB), Mycobacterium abscessus lung disease is a highly drug-resistant bacterial infection with no reliable treatment options. De novo M. abscessus drug discovery is urgently needed but is hampered by the bacterium's extreme drug resistance profile, leaving the current drug pipeline underpopulated. One proposed strategy to accelerate de novo M. abscessus drug discovery is to prioritize screening of advanced TB-active compounds for anti-M. abscessus activity. This approach would take advantage of the greater chance of homologous drug targets between mycobacterial species, increasing hit rates. Furthermore, the screening of compound series with established structure-activity-relationship, pharmacokinetic, and tolerability properties should fast-track the development of in vitro anti-M. abscessus hits into lead compounds with in vivo efficacy. In this review, we evaluated the effectiveness of this strategy by examining the literature. We found several examples where the screening of advanced TB chemical matter resulted in the identification of anti-M. abscessus compounds with in vivo proof-of-concept, effectively populating the M. abscessus drug pipeline with promising new candidates. These reports validate the screening of advanced TB chemical matter as an effective means of fast-tracking M. abscessus drug discovery.
Collapse
|
24
|
A Novel Leucyl-tRNA Synthetase Inhibitor, MRX-6038, Expresses Anti-Mycobacterium abscessus Activity In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0060122. [PMID: 35969055 PMCID: PMC9487484 DOI: 10.1128/aac.00601-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Therapeutic options for Mycobacterium abscessus infections are extremely limited, and new drugs are needed. The anti-M. abscessus activity of MRX-6038, a new leucyl-tRNA synthetase inhibitor, was evaluated in vitro and in vivo. Antimicrobial susceptibility testing was performed on 12 nontuberculosis mycobacteria (NTM) reference strains and 227 clinical NTM isolates. A minimum bactericidal concentration assay was conducted to distinguish the bactericidal versus bacteriostatic activity of MRX-6038. The synergy between MRX-6038 and 12 clinically important antibiotics was determined using a checkerboard assay. The activity of MRX-6038 against M. abscessus residing inside macrophages was also evaluated. Finally, the potency of MRX-6038 in vivo was determined in a neutropenic mouse model that mimicked a pulmonary M. abscessus infection. MRX-6038 exhibited high anti-M. abscessus activity against extracellular M. abscessus in culture, with a MIC50 of 0.063 mg/L and a MIC90 of 0.125 mg/L. Fifty percent of the activity was bactericidal, and fifty percent was bacteriostatic. A synergy between MRX-6038 and clarithromycin or azithromycin was found in 25% of strains. No antagonism was evident between MRX-6038 and 12 antibiotics commonly used to treat NTM infections. MRX-6038 also exhibited activity against intracellular NTM, which caused a significant reduction in the bacterial load in the lungs of M. abscessus-infected neutropenic mice. In conclusion, MRX-6038 was active against M. abscessusin vitro and in vivo, and it represents a potential candidate for incorporation into strategies by which M. abscessus infections are treated.
Collapse
|
25
|
Zhu Q, Zai H, Zhang K, Zhang X, Luo N, Li X, Hu Y, Wu Y. L-norvaline affects the proliferation of breast cancer cells based on the microbiome and metabolome analysis. J Appl Microbiol 2022; 133:1014-1026. [PMID: 35543360 DOI: 10.1111/jam.15620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
AIMS The altered fecal metabolites and microbiota might be involved in the development of breast cancer. We aimed to investigate the effect of differential metabolites on the proliferative activity of breast cancer cells. METHODS AND RESULTS We collected fecal samples from 14 breast cancer patients and 14 healthy subjects. Untargeted metabolomics analysis, short-chain fatty acid (SCFA) targeted analysis, and 16S rDNA sequencing was performed. The gut metabolite composition of patients changed significantly. Levels of norvaline, glucuronate, and galacturonate were lower in the Cancer group than in the Control (p < 0.05). 4-Methylcatechol and guaiacol increased (p < 0.05). Acetic acid and butyric acid were lower in the Cancer group than in the Control group (p < 0.05). Isobutyric acid and pentanoic acid were higher in the Cancer group than in the Control (p < 0.05). In the genus, the abundance of Rothia and Actinomyces increased in the Cancer group, compared with the Control group (p < 0.05). The differential microbiotas were clearly associated with differential metabolites but weakly with SCFAs. The abundance of Rothia and Actinomyces was markedly positively correlated with 4-methylcatechol and guaiacol (p < 0.05) and negatively correlated with norvaline (p < 0.05). L-norvaline inhibited the content of Arg-1 in a concentration-dependent manner. Compared with the L-norvaline or doxorubicin hydrochloride (DOX) group, the proliferation abilities of 4T1 cells were the lowest in the L-norvaline combined with DOX (p < 0.05). The apoptosis rate increased (p < 0.05). CONCLUSIONS Fecal metabolites and microbiota were significantly altered in breast cancer. Levels of differential metabolites (i.e., Norvaline) were significantly correlated with the abundance of differential microbiota. L-norvaline combined with DOX could clearly inhibit the proliferation activity of breast cancer cells. SIGNIFICANCE AND IMPACT OF STUDY This might provide clues to uncover potential biomarkers for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, China
| | - Yuhui Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, China
| |
Collapse
|
26
|
Samby K, Besson D, Dutta A, Patra B, Doy A, Glossop P, Mills J, Whitlock G, Hooft van Huijsduijnen R, Monaco A, Bilbe G, Mowbray C, Perry B, Adam A, Wells TNC, Willis PA. The Pandemic Response Box─Accelerating Drug Discovery Efforts after Disease Outbreaks. ACS Infect Dis 2022; 8:713-720. [PMID: 35286809 PMCID: PMC9003238 DOI: 10.1021/acsinfecdis.1c00527] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current Covid-19 pandemic has underlined the need for a more coordinated and forward-looking investment in the search for new medicines targeting emerging health care threats. Repositioning currently approved drugs is a popular approach to any new emerging disease, but it represents a first wave of response. Behind this would be a second wave of more specifically designed therapies based on activities against specific molecular targets or in phenotypic assays. Following the successful deployment and uptake of previous open access compound collections, we assembled the Pandemic Response Box, a collection of 400 compounds to facilitate drug discovery in emerging infectious disease. These are based on public domain information on chemotypes currently in discovery and early development which have been shown to have useful activities and were prioritized by medicinal chemistry experts. They are freely available to the community as a pharmacological test set with the understanding that data will be shared rapidly in the public domain.
Collapse
Affiliation(s)
- Kirandeep Samby
- Medicines for Malaria Venture, P.O. Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Dominique Besson
- Medicines for Malaria Venture, P.O. Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Anirban Dutta
- TCG Life Sciences, Block BN, Plot 7 Salt Lake Electronics Complex Sector V, Kolkata, West Bengal 700091, India
| | - Buddhadev Patra
- TCG Life Sciences, Block BN, Plot 7 Salt Lake Electronics Complex Sector V, Kolkata, West Bengal 700091, India
| | - Angelique Doy
- Medicines for Malaria Venture, P.O. Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Paul Glossop
- Sandexis, Innovation House, Discovery Park, Sandwich, Kent CT13 9FF, United Kingdom
| | - James Mills
- Sandexis, Innovation House, Discovery Park, Sandwich, Kent CT13 9FF, United Kingdom
| | - Gavin Whitlock
- Sandexis, Innovation House, Discovery Park, Sandwich, Kent CT13 9FF, United Kingdom
| | | | - Alessandra Monaco
- Drugs for Neglected Diseases initiative, 15 Chemin Camille-Vidar, 1202, Geneva, Switzerland
| | - Graeme Bilbe
- Drugs for Neglected Diseases initiative, 15 Chemin Camille-Vidar, 1202, Geneva, Switzerland
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative, 15 Chemin Camille-Vidar, 1202, Geneva, Switzerland
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative, 15 Chemin Camille-Vidar, 1202, Geneva, Switzerland
| | - Anna Adam
- Medicines for Malaria Venture, P.O. Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Timothy N. C. Wells
- Medicines for Malaria Venture, P.O. Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Paul A. Willis
- Medicines for Malaria Venture, P.O. Box 1826, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland
| |
Collapse
|
27
|
Bich Hanh BT, Quang NT, Park Y, Heo BE, Jeon S, Park JW, Jang J. Omadacycline Potentiates Clarithromycin Activity Against Mycobacterium abscessus. Front Pharmacol 2021; 12:790767. [PMID: 34955859 PMCID: PMC8693020 DOI: 10.3389/fphar.2021.790767] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium abscessus is a difficult respiratory pathogen to treat, when compared to other nontuberculus mycobacteria (NTM), due to its drug resistance. In this study, we aimed to find a new clarithromycin partner that potentiated strong, positive, synergy against M. abscessus among current anti-M. abscessus drugs, including omadacycline, amikacin, rifabutin, bedaquiline, and cefoxitine. First, we determined the minimum inhibitory concentrations required of all the drugs tested for M. abscessus subsp. abscessus CIP104536T treatment using a resazurin microplate assay. Next, the best synergistic partner for clarithromycin against M. abscessus was determined using an in vitro checkerboard combination assay. Among the drug combinations evaluated, omadacycline showed the best synergistic effect with clarithromycin, with a fractional inhibitory concentration index of 0.4. This positive effect was also observed against M. abscessus clinical isolates and anti-M. abscessus drug resistant strains. Lastly, this combination was further validated using a M. abscessus infected zebrafish model. In this model, the clarithromycin-omadacyline regimen was found to inhibit the dissemination of M. abscessus, and it significantly extended the lifespan of the M. abscessus infected zebrafish. In summation, the synergy between two anti-M. abscessus compounds, clarithromycin and omadacycline, provides an attractive foundation for a new M. abscessus treatment regimen.
Collapse
Affiliation(s)
- Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Nguyen Thanh Quang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Seunghyeon Jeon
- Division of Life Science, Gyeongsang National University, Jinju, South Korea
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Korea & Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|