1
|
ALIOMRANI M, MESRIPOUR A, MEHRJARDI AS. Creatine and Alpha-Lipoic Acid Antidepressant-Like Effect Following Cyclosporine A Administration. Turk J Pharm Sci 2022; 19:196-201. [DOI: 10.4274/tjps.galenos.2021.27217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
2
|
Antibacterial Effect of a Short Peptide, VV18, from Calcineurin-A of Macrobrachium rosenbergii: Antibiofilm Agent Against Escherichia coli and a Bacterial Membrane Disruptor in Pseudomonas aeruginosa. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Ohta S. Direct Targets and Subsequent Pathways for Molecular Hydrogen to Exert Multiple Functions: Focusing on Interventions in Radical Reactions. Curr Pharm Des 2021; 27:595-609. [PMID: 32767925 DOI: 10.2174/1381612826666200806101137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023]
Abstract
Molecular hydrogen (H2) was long regarded as non-functional in mammalian cells. We overturned the concept by demonstrating that H2 exhibits antioxidant effects and protects cells against oxidative stress. Subsequently, it has been revealed that H2 has multiple functions in addition to antioxidant effects, including antiinflammatory, anti-allergic functions, and as cell death and autophagy regulation. Additionally, H2 stimulates energy metabolism. As H2 does not readily react with most biomolecules without a catalyst, it is essential to identify the primary targets with which H2 reacts or interacts directly. As a first event, H2 may react directly with strong oxidants, such as hydroxyl radicals (•OH) in vivo. This review addresses the key issues related to this in vivo reaction. •OH may have a physiological role because it triggers a free radical chain reaction and may be involved in the regulation of Ca2+- or mitochondrial ATP-dependent K+-channeling. In the subsequent pathway, H2 suppressed a free radical chain reaction, leading to decreases in lipid peroxide and its end products. Derived from the peroxides, 4-hydroxy-2-nonenal functions as a mediator that up-regulates multiple functional PGC-1α. As the other direct target in vitro and in vivo, H2 intervenes in the free radical chain reaction to modify oxidized phospholipids, which may act as an antagonist of Ca2+-channels. The resulting suppression of Ca2+-signaling inactivates multiple functional NFAT and CREB transcription factors, which may explain H2 multi-functionality. This review also addresses the involvement of NFAT in the beneficial role of H2 in COVID-19, Alzheimer's disease and advanced cancer. We discuss some unsolved issues of H2 action on lipopolysaccharide signaling, MAPK and NF-κB pathways and the Nrf2 paradox. Finally, as a novel idea for the direct targeting of H2, this review introduces the possibility that H2 causes structural changes in proteins via hydrate water changes.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
4
|
Ali AS, Almalki AS, Alharthy BT. Effect of Kaempferol on Tacrolimus-Induced Nephrotoxicity and Calcineurin B1 Expression Level in Animal Model. J Exp Pharmacol 2020; 12:397-407. [PMID: 33149706 PMCID: PMC7604448 DOI: 10.2147/jep.s265359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The kidneys are considered one of the most susceptible organs for adverse drug effects, particularly in post-transplant conditions. Tacrolimus (FK506), a calcineurin inhibitor immunosuppressant, is an essential component in the transplantation regimen. Despite that, nephrotoxicity is a severe drawback for its chronic utilization, where oxidative stress might be implicated. Kaempferol (KMF) is a natural flavonoid that has many adaptable biological activities, including antioxidant action. OBJECTIVE Exploring the KMF protective effect on FK506-induced nephrotoxicity and the underlying role of calcineurin B1. METHODS Twenty-four male albino-Wistar rats were randomly divided into three equal groups. The control group received solvents: propylene glycol, i.p. and 0.5% carboxymethyl cellulose, PO; FK506 group was injected with FK506 (0.6 mg/kg, i.p.), and FK506+KMF group was given FK506 (0.6 mg/kg, i.p.) and KMF (10 mg/kg, PO). The treatment regimen for all groups was once daily for 30 days. ELISA technique applied for measuring FK506 trough level and nephrotoxicity biomarkers in serum (cystatin C and urea) on days 15 and 30, and in kidney tissue homogenate (MDA and calcineurin B1) on day 30. RESULTS In FK506-treated rats, the FK506 trough level was 7.84 ± 1.31 ug/l on day 15 and 9.54 ± 1.45 ug/l on day 30. FK506 use has significantly (P<0.01) increased biomarkers levels of cystatin C (325% and 477%), urea (177% and 245%), MDA (1253%), except calcineurin B1 that has decreased (97%). The KMF combination has resulted in a significant reduction in the FK506 trough level by day 30 (6.79 ± 1.35 ug/l, P<0.01). KMF has significantly ameliorated the levels of cystatin C (46% and 73%, P<0.001), urea (38% and 68%, P<0.001), MDA (75%, P<0.001), and calcineurin B1 (1833%, P<0.05). CONCLUSION Oxidative stress and calcineurin B1 are contributing factors in FK506-induced nephrotoxicity. Hence, inhibition of calcineurin enzyme is not limited to the immune cells. KMF could be a novel nephroprotective antioxidant.
Collapse
Affiliation(s)
- Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdullah Saddah Almalki
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Pharmacy, Ajyad Hospital, Ministry of Health, Riyadh, Saudi Arabia,Correspondence: Abdullah Saddah AlmalkiMakkah24268 – 9382, Kingdom of Saudi Arabia Tel +966 126401000 - Ext 20151Fax +966 126400855 Email
| | - Basma Tarek Alharthy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Sun Y, Liu J, Geng Z, Tao Y, Zheng F, Wang Y, Fu S, Wang W, Xie C, Zhang Y, Gong F. The elevated serum levels of calcineurin and nuclear factor of activated T-cells 1 in children with Kawasaki disease. Pediatr Rheumatol Online J 2020; 18:23. [PMID: 32183825 PMCID: PMC7077172 DOI: 10.1186/s12969-020-0420-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The calcineurin and nuclear factor of activated T-cells (CaN-NFAT) signaling pathway had been found to be associated with Kawasaki disease (KD) susceptibility and coronary artery aneurysm formation as a contributor. To evaluate serum calcineurin (CaN) and nuclear factor of activated T-cells 1(NFAT1) levels in patients with Kawasaki disease (KD). METHODS Serum levels of CaN and NFAT1 were measured by enzyme-linked immunosorbent assay method in 66 healthy children and 74 KD patients at acute, afebrile and subacute stage. RESULTS The serum levels of CaN and NFAT1 increased significantly in the acute stage, and decreased progressively in the afebrile and subacute stage, along with the reduction of C-reactive protein, white blood cells and neutrophil counts. And in the acute stage, the afebrile stage and the subacute stage, the expression of CaN and NFAT1 was upregulated significantly in KD patients compared to that in the healthy control. After the IVIG treatment, the serum levels of CaN and NFAT1 declined significantly in IVIG responders. However, the CaN and NTAT1 levels in the IVIG non-responders declined slowly. And in the afebrile stage, the NFAT1 levels were lower in KD patients with coronary artery lesions (CALs) (268.82 ± 11.96 ng/ml) than those without CALs (285.84 ± 25.13 ng/ml). However, the serum levels of CaN in KD patients with CALs had no significant difference with those in KD patients without CALs. CONCLUSIONS The specific regulation of CaN and NFAT1 serum levels in the course of KD was suggested that both of them were related in the development of KD.
Collapse
Affiliation(s)
- Yameng Sun
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Jingjing Liu
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Zhimin Geng
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Yijing Tao
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Fenglei Zheng
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Ying Wang
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Songling Fu
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Wei Wang
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Chunhong Xie
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Yiying Zhang
- grid.13402.340000 0004 1759 700XChildren’s Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052 People’s Republic of China
| | - Fangqi Gong
- Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
6
|
Dominant mutants of the calcineurin catalytic subunit (CNA-1) showed developmental defects, increased sensitivity to stress conditions, and CNA-1 interacts with CaM and CRZ-1 in Neurospora crassa. Arch Microbiol 2019; 202:921-934. [DOI: 10.1007/s00203-019-01768-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
|
7
|
Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment. Int J Mol Sci 2019; 20:ijms20163981. [PMID: 31426273 PMCID: PMC6719140 DOI: 10.3390/ijms20163981] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (HH) signaling pathway is central to the regulation of bone development and homeostasis. HH signaling is not only involved in osteoblast differentiation from bone marrow mesenchymal stem cells (BM-MSCs), but also acts upstream within osteoblasts via the OPG/RANK/RANKL axis to control the expression of RANKL. HH signaling has been found to up-regulate parathyroid hormone related protein (PTHrP) expression in osteoblasts, which in turn activates its downstream targets nuclear factor of activated T cells (NFAT) and cAMP responsive element binding protein (CREB), and as a result CREB and NFAT cooperatively increase RANKL expression and osteoclastogenesis. Osteoblasts must remain in balance with osteoclasts in order to avoid excessive bone formation or resorption, thereby maintaining bone homeostasis. This review systemically summarizes the mechanisms whereby HH signaling induces osteoblast development and controls RANKL expression through PTHrP in osteoblasts. Proper targeting of HH signaling may offer a therapeutic option for treating bone homeostasis disorders.
Collapse
|
8
|
Gu SH, Zheng SJ, Zhang XD, He ZH, Zheng LP, Yi GH, Lin MG, Fu LZ, Tian SH, Li HH, Lu YD. Recombinant human calcineurin B inhibits orthotopic hepatocellular carcinoma xenograt growth in mice by promoting apoptosis. ASIAN PAC J TROP MED 2019. [DOI: 10.4103/1995-7645.271978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Hammoud SH, Alkhansa S, Mahjoub N, Omar AG, El-Mas MM, Eid AA. Molecular basis of the counteraction by calcium channel blockers of cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 2018; 315:F572-F582. [PMID: 29767558 DOI: 10.1152/ajprenal.00275.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nephrotoxicity is a serious side effect for the immunosuppressant drug cyclosporine A(CSA). In this study, we tested the hypothesis that administration of calcium channel blockers such as verapamil or nifedipine ameliorates renal CSA-induced renal dysfunction. Furthermore, our study investigates the roles of inflammatory, oxidative, and fibrotic pathways in CSA-induced renal dysfunction. Six groups of male rats ( n = 6/group) were used and received one of the following treatments for seven consecutive days: vehicle (Cremophor EL ip), CSA (25 mg·kg-1·day-1 ip), verapamil (2 mg·kg-1·day-1 ip), nifedipine (3 mg·kg-1·day-1 ip), CSA in the presence or absence of either verapamil, or nifedipine. Biochemical and histomorphometric analyses showed that rats treated with CSA exhibited clear signs of nephrotoxicity that included 1) proteinuria and elevations in serum creatinine and blood urea nitrogen, 2) mesangial expansion, 3) increases in glomerular and tubular type IV collagen expression, and 4) increases in the glomerulosclerosis and tubulointerstitial fibrosis indices. Although the single administration of nifedipine or verapamil had no significant effect on renal pathology, or its biochemical and physiological function, the concurrent use of either calcium channel blockers significantly and equipotently ameliorated the biochemical, morphological, and functional derangements caused by CSA. More importantly, we report that the oxidative (reactive oxygen species production, NADPH-oxidase activity, and dual oxidase 1/2 levels), fibrotic (transforming growth factor-β1 expression), and inflammatory (NF-κB expression) manifestations of renal toxicity induced by CSA were significantly reversed upon administration of nifedipine or verapamil. Together, these results highlight the efficacy of calcium channel-blocking agents in attenuating CSA-induced nephrotoxicity and predisposing biochemical and molecular machineries.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University , Beirut , Lebanon
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut , Beirut , Lebanon
| | - Neamah Mahjoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut , Beirut , Lebanon
| | - Amal G Omar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University , Alexandria , Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University , Alexandria , Egypt
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
10
|
Calcineurin Regulatory Subunit Calcium-Binding Domains Differentially Contribute to Calcineurin Signaling in Saccharomyces cerevisiae. Genetics 2018; 209:801-813. [PMID: 29735720 DOI: 10.1534/genetics.118.300911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
The protein phosphatase calcineurin is central to Ca2+ signaling pathways from yeast to humans. Full activation of calcineurin requires Ca2+ binding to the regulatory subunit CNB, comprised of four Ca2+-binding EF hand domains, and recruitment of Ca2+-calmodulin. Here we report the consequences of disrupting Ca2+ binding to individual Cnb1 EF hand domains on calcineurin function in Saccharomyces cerevisiae Calcineurin activity was monitored via quantitation of the calcineurin-dependent reporter gene, CDRE-lacZ, and calcineurin-dependent growth under conditions of environmental stress. Mutation of EF2 dramatically reduced CDRE-lacZ expression and failed to support calcineurin-dependent growth. In contrast, Ca2+ binding to EF4 was largely dispensable for calcineurin function. Mutation of EF1 and EF3 exerted intermediate phenotypes. Reduced activity of EF1, EF2, or EF3 mutant calcineurin was also observed in yeast lacking functional calmodulin and could not be rescued by expression of a truncated catalytic subunit lacking the C-terminal autoinhibitory domain either alone or in conjunction with the calmodulin binding and autoinhibitory segment domains. Ca2+ binding to EF1, EF2, and EF3 in response to intracellular Ca2+ signals therefore has functions in phosphatase activation beyond calmodulin recruitment and displacement of known autoinhibitory domains. Disruption of Ca2+ binding to EF1, EF2, or EF3 reduced Ca2+ responsiveness of calcineurin, but increased the sensitivity of calcineurin to immunophilin-immunosuppressant inhibition. Mutation of EF2 also increased the susceptibility of calcineurin to hydrogen peroxide inactivation. Our observations indicate that distinct Cnb1 EF hand domains differentially affect calcineurin function in vivo, and that EF4 is not essential despite conservation across taxa.
Collapse
|
11
|
Helmy MW, Helmy MM, El-Mas MM. Enhanced lipoxygenase/LTD4 signaling accounts for the exaggerated hypertensive and nephrotoxic effects of cyclosporine plus indomethacin in rats. Biomed Pharmacother 2018; 102:309-316. [PMID: 29571015 DOI: 10.1016/j.biopha.2018.03.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022] Open
Abstract
The combined use of cyclosporine (CSA) and nonsteroidal antiinflammatory drugs (NSAIDs) causes exaggerated rises in systolic blood pressure (SBP) and nephrotoxicity. We examined whether these influences relate to the arachidonate/5-lipoxygenase (LOX) pathway. Rats were treated with CSA (20 mg kg-1 day-1), indomethacin (5 mg kg-1 day-1), or their combination for 10 days. Changes in SBP and renal biochemical/histopathological characteristics along with leukotriene levels were determined in rats treated with or without LT receptor antagonists. CSA or indomethacin caused: (i) renal tubular atrophy and interstitial fibrosis, (ii) increases in serum creatinine, blood urea nitrogen (BUN), and renal LTD4, LTB4, TNF-α, TGF-β1, and caspase-3, and (iii) decreases in renal PGE2 and total antioxidant capacity (TAC). SBP measured by tail-cuff plethysmography was increased by CSA but not indomethacin. These effects were mostly intensified in rats treated with CSA plus indomethacin. The co-treatment with montelukast (cysteinyl LT receptor blocker), but not ONO-4057 (LTB4 receptor blocker), ameliorated CSA/indomethacin-evoked hypertension, renal structural/biochemical deterioration, and LTD4 levels. Moreover, montelukast exhibited a greater capacity in reversing inflammatory, oxidative, apoptotic, and fibrotic abnormalities induced by CSA/indomethacin. Overall, lipoxygenase/LTD4 upregulation contributes to the exaggerated hypertension and nephrotoxicity caused by CSA/indomethacin. The therapeutic potential of cysteinyl LT receptor antagonism in rectifying CSA/NSAIDs-evoked anomalies is warranted.
Collapse
Affiliation(s)
- Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Egypt
| | - Mai M Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
12
|
Zhao X, Li R, Qiao M, Yan J, Sun Q. MiR-548a-3p Promotes Keratinocyte Proliferation Targeting PPP3R1 after Being Induced by IL-22. Inflammation 2018; 41:496-504. [PMID: 29181737 DOI: 10.1007/s10753-017-0705-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Psoriasis is an immune-mediated chronic skin disorder where T cells play a main role, and numerous inflammatory cytokines are implicated in its pathogenesis by initiating keratinocyte proliferation. Interleukin-22 (IL-22), an IL-10 family cytokines, is critical in the pathogenesis and development of psoriasis. To determine the target of microRNA (miR) -548a-3p and investigate its role in keratinocyte proliferation after treating human keratinocytes (HaCaT) with IL-22, we used quantitative reverse transcriptase PCR to measure the expression of miR-548a-3p in both HaCaT cells stimulated with IL-22 and psoriatic lesions, and then detected the biological function of miR-548a-3p in HaCaT cells by performing Counting Kit-8 (CCK-8) assays. Luciferase reporter assay was conducted to determine the target gene of miR-548a-3p. Immunohistochemistry and Western blot were performed to verify the target gene. Results showed that miR-548a-3p was significantly upregulated both in HaCaT cells treated with IL-22 and psoriatic lesions. The over expression of miR-548a-3p could promote the proliferation of HaCaT cells. Luciferase was mutated in the 3'UTR of PPP3R1, a gene coding Calcineurin. Immunohistochemistry and Western blot demonstrated that the expression of PPP3R1 decreased respectively in psoriatic lesions and HaCaT cells. In conclusion, the expression of miR-548a-3p is upregulated in IL-22 mediated keratinocyte proliferative disorder like psoriasis. The impact of miR-548a-3p on keratinocyte proliferation may be implemented by targeting PPP3R1 and T regulatory cells may be involved in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Xintong Zhao
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Ronghua Li
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Meng Qiao
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shangdong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacol Res 2018; 129:251-261. [DOI: 10.1016/j.phrs.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|
14
|
Association of CnB 5I/5D promoter gene polymorphism and serum calcineurin levels in early onset of coronary artery disease of south Indian cohort. Gene 2017; 632:1-6. [PMID: 28827117 DOI: 10.1016/j.gene.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022]
Abstract
Calcineurin, a serine/threonine phosphatase is a calcium dependent protein which on activation triggers transcriptional up regulation of inflammatory genes associated with inflammation in the arteries and progressive formation of plaques in CAD. The present investigation is aimed to study the possible association of Calcineurin encoding gene PPP3R1 (CnB 5I/5D) polymorphism in correlation with serum levels of calcineurin in coronary artery disease (CAD). A total of 300 angiographically documented CAD patients and 300 age, gender ethnicity matched healthy controls were recruited for the study. Serum Calcineurin levels were estimated by enzyme-linked immunosorbent assay (ELISA) and genotypes were determined based on PCR-RFLP. The CnB 5I/5D variation was found to be significantly associated with CAD (p<0.03), correlated to elevated serum calcineurin levels encoded by (<0.01) 5I/5D allele authenticated by Insilco analysis. Multiple logistic regression analysis also confirmed these findings [adjusted OR for DD genotype was 3.19 (95% CI 1.40-7.24) and p=0.001]. The results suggest that 5-base pair deletion results in increased serum calcineurin levels and may trigger up regulation of calcineurin which mediates vascular inflammation and atherosclerosis in CAD.
Collapse
|
15
|
Bongiovanni D, Saccomani V, Piovan E. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2017; 18:ijms18091904. [PMID: 28872614 PMCID: PMC5618553 DOI: 10.3390/ijms18091904] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy.
Collapse
Affiliation(s)
- Deborah Bongiovanni
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova 35128, Italy.
| |
Collapse
|
16
|
Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 2017; 8:186-197. [PMID: 27325145 PMCID: PMC5354160 DOI: 10.1080/21505594.2016.1201250] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/26/2023] Open
Abstract
Increases in the incidence and mortality due to the major invasive fungal infections such as aspergillosis, candidiasis and cryptococcosis caused by the species of Aspergillus, Candida and Cryptococcus, are a growing threat to the immunosuppressed patient population. In addition to the limited armamentarium of the current classes of antifungal agents available (pyrimidine analogs, polyenes, azoles, and echinocandins), their toxicity, efficacy and the emergence of resistance are major bottlenecks limiting successful patient outcomes. Although these drugs target distinct fungal pathways, there is an urgent need to develop new antifungals that are more efficacious, fungal-specific, with reduced or no toxicity and simultaneously do not induce resistance. Here we review several lines of evidence which indicate that the calcineurin signaling pathway, a target of the immunosuppressive drugs FK506 and cyclosporine A, orchestrates growth, virulence and drug resistance in a variety of fungal pathogens and can be exploited for novel antifungal drug development.
Collapse
Affiliation(s)
- Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Soo Chan Lee
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
17
|
Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H, Liu C, Shukla P, Sayed N, Churko JM, Shao N, Woo NA, Chao AS, Gold JD, Karakikes I, Snyder MP, Wu JC. Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell 2016; 19:311-25. [PMID: 27545504 PMCID: PMC5087997 DOI: 10.1016/j.stem.2016.07.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 01/24/2023]
Abstract
Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Paul W Burridge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kun-Hsing Yu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John H Ahrens
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole A Woo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander S Chao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph D Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Zhang Q, Tian Y, Duan J, Wu J, Yan S, Chen H, Meng X, Owusu-Ansah KG, Zheng S. Chelerythrine ameliorates acute cardiac allograft rejection in mice. Transpl Immunol 2016; 38:78-83. [PMID: 27450116 DOI: 10.1016/j.trim.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023]
Abstract
The improvement in graft survival over the past decade has been mainly due to calcineurin inhibitors, which interfere with the calcium-mediated pathway. Recently, other pathways such as those mediated by protein kinase C (PKC) are coming into view. The purpose of this study was to assess the immunosuppressive properties of chelerythrine, a specific PKC inhibitor, in preventing acute rejection in murine heterotopic heart transplantation. Mice were randomly divided into control and chelerythrine treated group. The control group received PBS while the chelerythrine treated group was given intraperitoneal injection doses (1, 5, 10mg/kg) of chelerythrine from day 0 to day 14 after heart transplantation. Six days after transplantation, cardiac allografts were harvested for further tests. The mean survival time (MST) of the cardiac allograft in untreated animals was 8days while graft MSTs observed in chelerythrine treated group was 13 and 23days at 5 and 10mg/kg treatment doses, respectively (P<0.05). Histologic assessment of the allograft in chelerythrine group showed a significant decline in histologic rejection score, as well as CD4+ and CD8+ T cell infiltration and ICAM-1+ endothelial cell activation. Down-regulation of Th1/Th2 cytokine expression was observed in chelerythrine treatment group. Meanwhile, chelerythrine was also found to inhibit the dephosphorylation of phosphorylated nuclear factor of activated T cells (NFAT) protein 1 and 4.
Collapse
Affiliation(s)
- Qiyi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Yang Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Jixuan Duan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Jingjin Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Sheng Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Hui Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Xueqin Meng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Kwabena Gyabaah Owusu-Ansah
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
19
|
Tamuli R, Deka R, Borkovich KA. Calcineurin Subunits A and B Interact to Regulate Growth and Asexual and Sexual Development in Neurospora crassa. PLoS One 2016; 11:e0151867. [PMID: 27019426 PMCID: PMC4809485 DOI: 10.1371/journal.pone.0151867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that consists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-1) subunit genes under the regulation of Ptcu-1, a copper-responsive promoter. In these strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induction of cna-1 and cnb-1, while excess Cu2+ represses gene expression. Through analysis of these strains under repressing and inducing conditions, we found that the calcineurin is required for normal growth, asexual development and female fertility in N. crassa. Moreover, we isolated and analyzed cnb-1 mutant alleles generated by repeat-induced point mutation (RIP), with the results further supporting roles for calcineurin in growth and fertility in N. crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay system developed to study protein-protein interactions in N. crassa.
Collapse
Affiliation(s)
- Ranjan Tamuli
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| | - Rekha Deka
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Katherine A. Borkovich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
20
|
Iuchi K, Imoto A, Kamimura N, Nishimaki K, Ichimiya H, Yokota T, Ohta S. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 2016; 6:18971. [PMID: 26739257 PMCID: PMC4704061 DOI: 10.1038/srep18971] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/02/2015] [Indexed: 01/23/2023] Open
Abstract
We previously showed that H2 acts as a novel antioxidant to protect cells against oxidative stress. Subsequently, numerous studies have indicated the potential applications of H2 in therapeutic and preventive medicine. Moreover, H2 regulates various signal transduction pathways and the expression of many genes. However, the primary targets of H2 in the signal transduction pathways are unknown. Here, we attempted to determine how H2 regulates gene expression. In a pure chemical system, H2 gas (approximately 1%, v/v) suppressed the autoxidation of linoleic acid that proceeds by a free radical chain reaction, and pure 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PAPC), one of the major phospholipids, was autoxidized in the presence or absence of H2. H2 modified the chemical production of the autoxidized phospholipid species in the cell-free system. Exposure of cultured cells to the H2-dependently autoxidized phospholipid species reduced Ca2+ signal transduction and mediated the expression of various genes as revealed by comprehensive microarray analysis. In the cultured cells, H2 suppressed free radical chain reaction-dependent peroxidation and recovered the increased cellular Ca2+, resulting in the regulation of Ca2+-dependent gene expression. Thus, H2 might regulate gene expression via the Ca2+ signal transduction pathway by modifying the free radical-dependent generation of oxidized phospholipid mediators.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Akemi Imoto
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Kiyomi Nishimaki
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Harumi Ichimiya
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Takashi Yokota
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan.,Department of Neuroregenerative Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
21
|
Zhao Y, Cui GM, Zhou NN, Li C, Zhang Q, Sun H, Han B, Zou CW, Wang LJ, Li XD, Wang JC. Calpain-Calcineurin-Nuclear Factor Signaling and the Development of Atrial Fibrillation in Patients with Valvular Heart Disease and Diabetes. J Diabetes Res 2016; 2016:4639654. [PMID: 27123462 PMCID: PMC4830711 DOI: 10.1155/2016/4639654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/17/2016] [Indexed: 12/28/2022] Open
Abstract
Calpain, calcineurin (CaN), and nuclear factor of activated T cell (NFAT) play a key role in the development of atrial fibrillation. Patients with valvular heart disease (VHD) are prone to develop atrial fibrillation (AF). Thus, our current study was aimed at investigating whether activation of calpain-CaN-NFAT pathway is associated with the incidence of AF in the patients with VHD and diabetes. The expressions of calpain 2 and alpha- and beta-isoforms of CaN catalytic subunit (CnA) as well as NFAT-c3 and NFAT-c4 were quantified by quantitative reverse transcription-polymerase chain reaction in atrial tissues from 77 hospitalized patients with VHD and diabetes. The relevant protein content was measured by Western blot and calpain 2 in human atrium was localized by immunohistochemistry. We found that the expressions of calpain 2, CnA alpha and CnA beta, and NFAT-c3 but not NFAT-c4 were significantly elevated in the samples from patients with AF compared to those with sinus rhythm (SR). Elevated protein levels of calpain 2 and CnA were observed in patients with AF, and so was the enhanced localization of calpain 2. We thereby concluded that CaN together with its upstream molecule, calpain 2, and its downstream effector, NFAT-c3, might contribute to the development of AF in patients with VHD and diabetes.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Guo-ming Cui
- Shandong Medicinal Imaging Research Institute, Jinan 250021, China
| | - Nan-nan Zhou
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Cong Li
- Intensive Care Unit, Shouguang People's Hospital, Weifang 262700, China
| | - Qing Zhang
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hui Sun
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Bo Han
- Department of Cardiac Surgery, The 4th Hospital of Jinan, Jinan 250031, China
| | - Cheng-wei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Li-juan Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiao-dong Li
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jian-chun Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- *Jian-chun Wang:
| |
Collapse
|
22
|
Helmy MW, El-Gowelli HM, Ali RM, El-Mas MM. Endothelin ETA receptor/lipid peroxides/COX-2/TGF-β1 signalling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats. Br J Pharmacol 2015; 172:4291-302. [PMID: 26013701 DOI: 10.1111/bph.13199] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclosporine (CSA) and non-steroidal anti-inflammatory drugs (NSAIDs) are co-prescribed for some arthritic conditions. We tested the hypothesis that this combined regimen elicits exaggerated nephrotoxicity in rats via the up-regulation of endothelin (ET) receptor signalling. EXPERIMENTAL APPROACH The effects of a 10 day treatment with CSA (20 mg · kg(-1) · day(-1)), indomethacin (5 mg · kg(-1) · day(-1)) or their combination on renal biochemical, inflammatory, oxidative and structural profiles were assessed. The roles of ETA receptor and COX-2 pathways in the interaction were evaluated. KEY RESULTS Oral treatment with CSA or indomethacin elevated serum urea and creatinine, caused renal tubular atrophy and interstitial fibrosis, increased renal TGF-β1, and reduced immunohistochemical expressions of ETA receptors and COX-2. CSA, but not indomethacin, increased renal ET-1, the lipid peroxidation product malondialdehyde (MDA) and GSH activity. Compared with individual treatments, simultaneous CSA/indomethacin exposure caused: (i) greater elevations in serum creatinine and renal MDA; (ii) loss of the compensatory increase in GSH; (iii) renal infiltration of inflammatory cells and worsening of fibrotic and necrotic profiles; and (iv) increased renal ET-1 and decreased ETA receptor and COX-2 expressions. Blockade of ETA receptors by atrasentan ameliorated the biochemical, structural, inflammatory and oxidative abnormalities caused by the CSA/indomethacin regimen. Furthermore, atrasentan partly reversed the CSA/indomethacin-evoked reductions in the expression of ETA receptor and COX-2 protein. CONCLUSIONS AND IMPLICATIONS The exaggerated oxidative insult and associated dysregulation of the ETA receptor/COX-2/TGF-β1 signalling might account for the aggravated nephrotoxicity caused by the CSA/indomethacin regimen. The potential renoprotective effect of ETA receptor antagonism might be exploited therapeutically.
Collapse
Affiliation(s)
- Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Hanan M El-Gowelli
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rabab M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Nasipak BT, Padilla-Benavides T, Green KM, Leszyk JD, Mao W, Konda S, Sif S, Shaffer SA, Ohkawa Y, Imbalzano AN. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nat Commun 2015; 6:7441. [PMID: 26081415 PMCID: PMC4530624 DOI: 10.1038/ncomms8441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium signaling is important for differentiation-dependent gene expression, but is also involved in other cellular functions. Therefore mechanisms must exist to distinguish calcium signaling relevant to differentiation. Calcineurin is a calcium-regulated phosphatase that is required for myogenic gene expression and skeletal muscle differentiation. Here, we demonstrate that inhibition of calcineurin blocks chromatin remodeling and that the Brg1 ATPase of the SWI/SNF chromatin remodeling enzyme, which is required for the activation of myogenic gene expression, is a calcineurin substrate. Furthermore, we identify the calcium-regulated classical protein kinase C beta (PKCβ) as a repressor of myogenesis and as the enzyme that opposes calcineurin function. Replacement of endogenous Brg1 with a phosphomimetic mutant in primary myoblasts inhibits myogenesis, while replacement with a non-phosphorylatable mutant allows myogenesis despite inhibition of calcineurin signaling, demonstrating the functionality of calcineurin/PKC modified residues. Thus the Brg1 chromatin remodeling enzyme integrates two antagonistic calcium-dependent signaling pathways that control myogenic differentiation.
Collapse
Affiliation(s)
- Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Karin M Green
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - John D Leszyk
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Wenjie Mao
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Silvana Konda
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Saïd Sif
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Yasuyuki Ohkawa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.,Department Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi Fukuoka 812-8582, Japan
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| |
Collapse
|
24
|
Kemmerling J, Fehlert E, Kuper CF, Rühl-Fehlert C, Stropp G, Vogels J, Krul C, Vohr HW. The transferability from rat subacute 4-week oral toxicity study to translational research exemplified by two pharmaceutical immunosuppressants and two environmental pollutants with immunomodulating properties. Eur J Pharmacol 2015; 759:326-42. [PMID: 25823813 DOI: 10.1016/j.ejphar.2015.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 01/29/2023]
Abstract
Exposure to chemicals may have an influence on the immune system. Often, this is an unwanted effect but in some pharmaceuticals, it is the intended mechanism of action. Immune function tests and in depth histopathological investigations of immune organs were integrated in rodent toxicity studies performed according to an extended OECD test guideline 407 protocol. Exemplified by two immunosuppressive drugs, azathioprine and cyclosporine A, and two environmental chemicals, hexachlorobenzene and benzo[a]pyrene, results of subacute rat studies were compared to knowledge in other species particular in humans. Although immune function has a high concordance in mammalian species, regarding the transferability from rodents to humans various factors have to be taken into account. In rats, sensitivity seems to depend on factors such as strain, sex, stress levels as well as metabolism. The two immunosuppressive drugs showed a high similarity of effects in animals and humans as the immune system was the most sensitive target in both. Hexachlorobenzene gave an inconsistent pattern of effects when considering the immune system of different species. In some species pronounced inflammation was observed, whereas in primates liver toxicity seemed more obvious. Generally, the immune system was not the most sensitive target in hexachlorobenzene-treatment. Immune function tests in rats gave evidence of a reaction to systemic inflammation rather than a direct impact on immune cells. Data from humans are likewise equivocal. In the case of benzo[a]pyrene, the immune system was the most sensitive target in rats. In the in vitro plaque forming cell assay (Mishell-Dutton culture) a direct comparison of cells from different species including rat and human was possible and showed similar reactions. The doses in the rat study had, however, no realistic relation to human exposure, which occurs exclusively in mixtures and in a much lower range. In summary, a case by case approach is necessary when testing immunotoxicity. Improvements for the translation from animals to humans related to immune cells can be expected from in vitro tests which offer direct comparison with reactions of human immune cells. This may lead to a better understanding of results and variations seen in animal studies.
Collapse
Affiliation(s)
- Jessica Kemmerling
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany.
| | - Ellen Fehlert
- Department of Medicine IV, Eberhard-Karls University, Otfried-Müller Street 10, 72076 Tübingen, Germany
| | - C Frieke Kuper
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | | | - Gisela Stropp
- Bayer Pharma AG, GDD-GED-Product Stewardship Industrial Chemicals, Aprather Weg, 42096 Wuppertal, Germany
| | - Jack Vogels
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Cyrille Krul
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Hans-Werner Vohr
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany
| |
Collapse
|
25
|
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a Multifunctional Regulator: Unraveling Novel Functions in Fungal Stress Responses, Hyphal Growth, Drug Resistance, and Pathogenesis. FUNGAL BIOL REV 2014; 28:56-69. [PMID: 25383089 DOI: 10.1016/j.fbr.2014.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Frédéric Lamoth
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland ; Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
26
|
Siebelt M, van der Windt AE, Groen HC, Sandker M, Waarsing JH, Müller C, de Jong M, Jahr H, Weinans H. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation. Osteoarthritis Cartilage 2014; 22:591-600. [PMID: 24561282 DOI: 10.1016/j.joca.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. METHODS Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. RESULTS FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. CONCLUSION FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA.
Collapse
Affiliation(s)
- M Siebelt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A E van der Windt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H C Groen
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Sandker
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J H Waarsing
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Müller
- Center for Radiopharmaceutical Sciences PSI-ETH-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - M de Jong
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H Jahr
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Orthopedic Surgery, University Hospital RWTH, Aachen, Germany
| | - H Weinans
- Department of Biomechanical Engineering, TU Delft, The Netherlands; Department of Orthopaedics, UMC Utrecht, The Netherlands; Department of Rheumatology, UMC Utrecht, The Netherlands
| |
Collapse
|
27
|
Kurashina R, Kikuchi K, Iwaki J, Yoshitake H, Takeshita T, Takizawa T. Placenta-specific miRNA (miR-512-3p) targets PPP3R1 encoding the calcineurin B regulatory subunit in BeWo cells. J Obstet Gynaecol Res 2013; 40:650-60. [PMID: 24246042 DOI: 10.1111/jog.12217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/20/2013] [Indexed: 01/01/2023]
Abstract
AIM The microRNAs (miRNAs) derived from the chromosome 19 miRNA cluster (C19MC) are exclusively expressed in the human placenta, but the origin and functions of C19MC miRNAs are not fully understood. The purpose of this study was to elucidate which cells express C19MC miRNAs in chorionic villi and identify their miRNA targets. METHODS A combination of laser microdissection (LMD) and real-time polymerase chain reaction (PCR) to examine the localization of five C19MC miRNAs (i.e. miR-512-3p, miR-518b, miR-520a, miR-524 and miR-1323) in the human placenta was performed. Furthermore, to identify miR-512-3p-target genes, we analyzed gene expression profiles of the trophoblast cell line BeWo using a DNA microarray. Predicted target genes were validated by real-time PCR, western blotting, and 3'-untranslated region reporter assay. RESULTS By LMD and subsequent PCR analysis, five C19MC miRNAs examined in this study were predominantly expressed in villous trophoblast cells; little expression, if any, was observed in villous stroma cells or fetal endothelial cells. Microarray data showed that 334 genes were downregulated in BeWo cells treated with Pre-miR-512-3p (mature miR-512-3p mimic). We found six candidate target genes of miR-512-3p using DNA microarray data and target prediction software. Furthermore, we revealed that protein phosphatase 3, regulatory subunit B, alpha (PPP3R1), one of the six genes, was a miR-512-3p target using an in vitro experimental validation system. CONCLUSION These data suggest that miR-512-3p participates in human trophoblast function[s] by targeting PPP3R1, encoding a regulatory subunit of calcineurin.
Collapse
Affiliation(s)
- Ryuhei Kurashina
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Department of Reproductive Medicine, Perinatology and Gynecologic Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Knops N, Levtchenko E, van den Heuvel B, Kuypers D. From gut to kidney: transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. Int J Pharm 2013; 452:14-35. [PMID: 23711732 DOI: 10.1016/j.ijpharm.2013.05.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/14/2022]
Abstract
Since their introduction circa 35 years ago, calcineurin-inhibitors (CNI) have become the cornerstone of immunosuppressive therapy in solid organ transplantation. However, CNI's possess a narrow therapeutic index with potential severe consequences of drug under- or overexposure. This demands a meticulous policy of Therapeutic Drug Monitoring (TDM) to optimize outcome. In clinical practice optimal dosing is difficult to achieve due to important inter- and intraindividual variation in CNI pharmacokinetics. A complex and often interdependent set of factors appears relevant in determining drug exposure. These include recipient characteristics such as age, race, body composition, organ function, and food intake, but also graft-related characteristics such as: size, donor-age, and time after transplantation can be important. Fundamental (in vitro) and clinical studies have pointed out the intrinsic relation between the aforementioned variables and the functional capacity of enzymes and transporters involved in CNI metabolism, primarily located in intestine, liver and kidney. Commonly occurring polymorphisms in genes responsible for CNI metabolism (CYP3A4, CYP3A5, CYP3A7, PXR, POR, ABCB1 (P-gp) and possibly UGT) are able to explain an important part of interindividual variability. In particular, a highly prevalent SNP in CYP3A5 has proven to be an important determinant of CNI dose requirements and drug-dose-interactions. In addition, a discrepancy in genotype between graft and receptor has to be taken into account. Furthermore, common phenomena in solid organ transplantation such as inflammation, ischemia- reperfusion injury, graft function, co-medication, altered food intake and intestinal motility can have a differential effect on the expression enzymes and transporters involved in CNI metabolism. Notwithstanding the built-up knowledge, predicting individual CNI pharmacokinetics and dose requirements on the basis of current clinical and experimental data remains a challenge.
Collapse
Affiliation(s)
- Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Belgium.
| | | | | | | |
Collapse
|