1
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
2
|
Feng X, Li X, Feng J, Xia J. Intracranial hemorrhage management in the multi-omics era. Heliyon 2023; 9:e14749. [PMID: 37101482 PMCID: PMC10123201 DOI: 10.1016/j.heliyon.2023.e14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Intracranial hemorrhage (ICH) is a devastating disorder. Neuroprotective strategies that prevent tissue injury and improve functional outcomes have been identified in multiple animal models of ICH. However, these potential interventions in clinical trials produced generally disappointing results. With progress in omics, studies of omics data, including genomics, transcriptomics, epigenetics, proteomics, metabolomics, and the gut microbiome, may help promote precision medicine. In this review, we focused on introducing the applications of all omics in ICH and shed light on all of the considerable advantages to systematically analyze the necessity and importance of multiple omics technology in ICH.
Collapse
Affiliation(s)
- Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Neurology, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, China
| |
Collapse
|
3
|
Cheang I, Zhu Q, Liao S, Li X. Current Understanding of piRNA in Cardiovascular Diseases. FRONTIERS IN MOLECULAR MEDICINE 2022; 1:791931. [PMID: 39087079 PMCID: PMC11285661 DOI: 10.3389/fmmed.2021.791931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/17/2021] [Indexed: 08/02/2024]
Abstract
The relationship regarding non-coding genomes and cardiovascular disease (CVD) has been explored in the past decade. As one of the leading causes of death, there remains a lack of sensitive and specific genomic biomarkers in the diagnosis and prognosis of CVD. Piwi-interacting RNA (piRNA) is a group of small non-coding RNA (ncRNA) which associated with Piwi proteins. There is an emerging strong body of evidence in support of a role for ncRNAs, including piRNAs, in pathogenesis and prognosis of CVD. This article reviews the current evidence for piRNA-regulated mechanisms in CVD, which could lead to the development of new therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Xinli Li
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Gentry AE, Robins J, Makowski M, Kliewer W. Differential DNA Methylation and Cardiometabolic Risk in African American Mother-Adolescent Dyads. Biol Res Nurs 2022; 24:75-84. [PMID: 34719281 PMCID: PMC9248288 DOI: 10.1177/10998004211039017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cardiovascular disease disproportionately affects African Americans as the leading cause of morbidity and mortality. Among African Americans, compared to other racial groups, cardiovascular disease onset occurs at an earlier age due to a higher prevalence of cardiometabolic risk factors, particularly obesity, hypertension and type 2 diabetes. Emerging evidence suggests that heritable epigenetic processes are related to increased cardiovascular disease risk, but this is largely unexplored in adolescents or across generations. MATERIALS AND METHODS In a cross-sectional descriptive pilot study in low-income African American mother-adolescent dyads, we examined associations between DNA methylation and the cardiometabolic indicators of body mass index, waist circumference, and insulin resistance. RESULTS Four adjacent cytosine and guanine nucleotides (CpG) sites were significantly differentially methylated and associated with C-reactive protein (CRP), 62 with waist circumference, and none to insulin resistance in models for both mothers and adolescents. CONCLUSION Further study of the relations among psychological and environmental stressors, indicators of cardiovascular disease, risk, and epigenetic factors will improve understanding of cardiovascular disease risk so that preventive measures can be instituted earlier and more effectively. To our knowledge this work is the first to examine DNA methylation and cardiometabolic risk outcomes in mother-adolescent dyads.
Collapse
Affiliation(s)
- Amanda Elswick Gentry
- Department of Psychiatry, Virginia
Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University,
Richmond, VA, USA,Amanda Elswick Gentry, PhD, Department of
Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia
Commonwealth University, 800 East Leigh Street, Suite 100, Room 130-B, Richmond,
VA 23219, USA.
| | - Jo Robins
- School of Nursing, Virginia
Commonwealth University, Richmond, VA, USA
| | | | - Wendy Kliewer
- Department of Psychology, College of
Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Lee JD, Kim HY, Kang K, Jeong HG, Song MK, Tae IH, Lee SH, Kim HR, Lee K, Chae S, Hwang D, Kim S, Kim HS, Kim KB, Lee BM. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol 2020; 94:887-909. [PMID: 32080758 DOI: 10.1007/s00204-020-02657-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
|
6
|
Abstract
Epigenetic regulatory mechanisms, encompassing diverse molecular processes including DNA methylation, histone post-translational modifications, and noncoding RNAs, are essential to numerous processes such as cell differentiation, growth and development, environmental adaptation, aging, and disease states. In many cases, epigenetic changes occur in response to environmental cues and lifestyle factors, resulting in persistent changes in gene expression that affect vascular disease risk during the lifetime of the individual. Biological aging-a powerful cardiovascular risk factor-is partly genetically determined yet strongly influenced by traditional risk factors, reflecting epigenetic modulation. Quantification of specific DNA methylation patterns may serve as an accurate predictor of biological age-a concept known as the epigenetic clock, which could help to refine cardiovascular risk assessment. Epigenetic reprogramming of monocytes rewires cellular immune signaling and induces a metabolic shift toward aerobic glycolysis, thereby increasing innate immune responses. This form of trained epigenetic memory can be maladaptive, thus augmenting vascular inflammation. Somatic mutations in epigenetic regulatory enzymes lead to clonal hematopoiesis of indeterminate potential, a precursor of hematologic malignancies and a recently recognized cardiovascular risk factor; moreover, epigenetic regulators are increasingly being targeted in cancer therapeutics. Thus, understanding epigenetic regulatory mechanisms lies at the intersection between cancer and cardiovascular disease and is of paramount importance to the burgeoning field of cardio-oncology (Graphic Abstract).
Collapse
Affiliation(s)
- Abdalrahman Zarzour
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Ha Won Kim
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Neal L Weintraub
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| |
Collapse
|
7
|
Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Noncoding RNA 2019; 5:ncrna5020031. [PMID: 30934986 PMCID: PMC6630366 DOI: 10.3390/ncrna5020031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).
Collapse
|
8
|
Romeo F, Novelli G, Ferrari M, Talamo M. Beyond the cardiovascular risk charts: the new way of hybrid profiles. J Cardiovasc Med (Hagerstown) 2016; 17:851-854. [PMID: 27467546 DOI: 10.2459/jcm.0000000000000405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Francesco Romeo
- aUniversity of Rome Tor Vergata bINUIT Tor Vergata Foundation, Rome cVita Salute University of Milan, Italy
| | | | | | | |
Collapse
|
9
|
Haase T, Börnigen D, Müller C, Zeller T. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med 2016; 3:27. [PMID: 27626034 PMCID: PMC5003874 DOI: 10.3389/fcvm.2016.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to morbidity and mortality worldwide. However, the pathogenesis of CVD is complex and remains elusive. Within the last years, systems medicine has emerged as a novel tool to study the complex genetic, molecular, and physiological interactions leading to diseases. In this review, we provide an overview about the current approaches for systems medicine in CVD. They include bioinformatical and experimental tools such as cell and animal models, omics technologies, network, and pathway analyses. Additionally, we discuss challenges and current literature examples where systems medicine has been successfully applied for the study of CVD.
Collapse
Affiliation(s)
- Tina Haase
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| |
Collapse
|
10
|
Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM, Rimm EB, Wang TJ, Bennett BJ. Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment: A Scientific Statement From the American Heart Association. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:291-313. [PMID: 27095829 PMCID: PMC7829062 DOI: 10.1161/hcg.0000000000000030] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases are the leading cause of death worldwide and are strongly linked to both genetic and nutritional factors. The field of nutrigenomics encompasses multiple approaches aimed at understanding the effects of diet on health or disease development, including nutrigenetic studies investigating the relationship between genetic variants and diet in modulating cardiometabolic risk, as well as the effects of dietary components on multiple "omic" measures, including transcriptomics, metabolomics, proteomics, lipidomics, epigenetic modifications, and the microbiome. Here, we describe the current state of the field of nutrigenomics with respect to cardiometabolic disease research and outline a direction for the integration of multiple omics techniques in future nutrigenomic studies aimed at understanding mechanisms and developing new therapeutic options for cardiometabolic disease treatment and prevention.
Collapse
|
11
|
Zhao Y, Chen J, Freudenberg JM, Meng Q, Rajpal DK, Yang X. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci. Arterioscler Thromb Vasc Biol 2016; 36:928-41. [PMID: 26966275 PMCID: PMC5576868 DOI: 10.1161/atvbaha.115.306725] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/01/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. APPROACH AND RESULTS We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. CONCLUSIONS Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant to CAD.
Collapse
Affiliation(s)
- Yuqi Zhao
- From the Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., Q.M., X.Y.); and Target Sciences Computational Biology (US), GSK, King of Prussia, PA (J.C., J.M.F., D.K.R.)
| | - Jing Chen
- From the Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., Q.M., X.Y.); and Target Sciences Computational Biology (US), GSK, King of Prussia, PA (J.C., J.M.F., D.K.R.)
| | - Johannes M Freudenberg
- From the Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., Q.M., X.Y.); and Target Sciences Computational Biology (US), GSK, King of Prussia, PA (J.C., J.M.F., D.K.R.)
| | - Qingying Meng
- From the Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., Q.M., X.Y.); and Target Sciences Computational Biology (US), GSK, King of Prussia, PA (J.C., J.M.F., D.K.R.)
| | - Deepak K Rajpal
- From the Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., Q.M., X.Y.); and Target Sciences Computational Biology (US), GSK, King of Prussia, PA (J.C., J.M.F., D.K.R.).
| | - Xia Yang
- From the Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., Q.M., X.Y.); and Target Sciences Computational Biology (US), GSK, King of Prussia, PA (J.C., J.M.F., D.K.R.).
| |
Collapse
|
12
|
Microbiome-Epigenome Interactions and the Environmental Origins of Inflammatory Bowel Diseases. J Pediatr Gastroenterol Nutr 2016; 62:208-19. [PMID: 26308318 PMCID: PMC4724338 DOI: 10.1097/mpg.0000000000000950] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The incidence of pediatric inflammatory bowel disease (IBD), which includes Crohn disease and ulcerative colitis, has risen alarmingly in the Western and developing world in recent decades. Epidemiologic (including monozygotic twin and migrant) studies highlight the substantial role of environment and nutrition in IBD etiology. Here we review the literature supporting the developmental and environmental origins hypothesis of IBD. We also provide a detailed exploration of how the human microbiome and epigenome (primarily through DNA methylation) may be important elements in the developmental origins of IBD in both children and adults.
Collapse
|
13
|
Ward WO, Kodavanti UP. Left ventricular gene expression profile of healthy and cardiovascular compromised rat models used in air pollution studies. Inhal Toxicol 2015; 27 Suppl 1:63-79. [DOI: 10.3109/08958378.2014.954171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- William O. Ward
- Biostatistics Core, Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Urmila P. Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Gallego-Fabrega C, Krupinski J, Fernandez-Cadenas I. La resistencia en el tratamiento secundario del ictus isquémico, el componente genético en la respuesta a ácido acetilsalicílico y clopidogrel. Neurologia 2015; 30:566-73. [DOI: 10.1016/j.nrl.2013.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/20/2013] [Accepted: 11/28/2013] [Indexed: 02/08/2023] Open
|
15
|
Drug resistance and secondary treatment of ischaemic stroke: The genetic component of the response to acetylsalicylic acid and clopidogrel. NEUROLOGÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.nrleng.2013.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Glotov AS, Sinitsyna ES, Danilova MM, Vashukova ES, Walter JG, Stahl F, Baranov VS, Vlakh EG, Tennikova TB. Detection of human genome mutations associated with pregnancy complications using 3-D microarray based on macroporous polymer monoliths. Talanta 2015; 147:537-46. [PMID: 26592644 DOI: 10.1016/j.talanta.2015.09.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/21/2015] [Accepted: 09/27/2015] [Indexed: 01/13/2023]
Abstract
Analysis of variations in DNA structure using a low-density microarray technology for routine diagnostic in evidence-based medicine is still relevant. In this work the applicability of 3-D macroporous monolithic methacrylate-based platforms for detection of different pathogenic genomic substitutions was studied. The detection of nucleotide replacements in F5 (Leiden G/A, rs6025), MTHFR (C/T, rs1801133) and ITGB3 (T/C, rs5918), involved in coagulation, and COMT (C/G, rs4818), TPH2 (T/A, rs11178997), PON1 (T/A rs854560), AGTR2 (C/A, rs11091046) and SERPINE1 (5G/4G, rs1799889), associated with pregnancy complications, was performed. The effect of such parameters as amount and type of oligonucleotide probe, amount of PCR product on signal-to-noise ratio, as well as mismatch discrimination was analyzed. Sensitivity and specificity of mutation detections were coincided and equal to 98.6%. The analysis of SERPINE1 and MTHFR genotypes by both NGS and developed microarray was performed and compared.
Collapse
Affiliation(s)
- A S Glotov
- Faculty of Biology, Saint-Petersburg State University, St. Petersburg, Russia; D.O. Ott Research Institute of Obstetrics and Gynecology, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - E S Sinitsyna
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia; Institute of Macromolecular Compound, Russian Academy of Sciences, St. Petersburg, Russia
| | - M M Danilova
- D.O. Ott Research Institute of Obstetrics and Gynecology, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - E S Vashukova
- D.O. Ott Research Institute of Obstetrics and Gynecology, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - J G Walter
- Institute for Technical Chemistry, Leibniz University, Hannover, Germany
| | - F Stahl
- Institute for Technical Chemistry, Leibniz University, Hannover, Germany
| | - V S Baranov
- Faculty of Biology, Saint-Petersburg State University, St. Petersburg, Russia; D.O. Ott Research Institute of Obstetrics and Gynecology, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - E G Vlakh
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia; Institute of Macromolecular Compound, Russian Academy of Sciences, St. Petersburg, Russia
| | - T B Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia; Institute of Macromolecular Compound, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
17
|
Costa ADF, Franco OL. Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions. J Cell Physiol 2015; 230:959-68. [PMID: 25393239 DOI: 10.1002/jcp.24807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Several epidemiologic studies suggest that obesity and hypertension are associated with cardiac transcriptome modifications that could be further associated with inflammatory processes and cardiac hypertrophy. In this field, transcriptome studies have demonstrated their importance to elucidate physiologic mechanisms, pathways or genes involved in many biologic processes. Over the past decade, RNA microarray and RNA-seq analysis has become an essential component to examine metabolic pathways in terms of mRNA expression in cardiology. In this review, cardiac muscle gene expression in response to effects of obesity and hypertension will be focused, providing a broad view on cardiac transcriptome and physiologic and biochemical mechanisms involved in gene expression changes produced by these events, emphasizing the use of new technologies for gene expression analyses.
Collapse
Affiliation(s)
- Alzenira de Fátima Costa
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia Centro de Análises Proteômicas e Bioquímicas, Brasília, Brazil
| | | |
Collapse
|
18
|
Wu PY, Chandramohan R, Phan JH, Mahle WT, Gaynor JW, Maher KO, Wang MD. Cardiovascular transcriptomics and epigenomics using next-generation sequencing: challenges, progress, and opportunities. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:701-10. [PMID: 25518043 PMCID: PMC4983435 DOI: 10.1161/circgenetics.113.000129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Po-Yen Wu
- From the School of Electrical and Computer Engineering (P.-Y.W.), School of Biology (R.C.), Georgia Institute of Technology, Atlanta, GA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (J.H.P.); The Wallace H. Coulter Department of Biomedical Engineering, School of Electrical and Computer Engineering, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA (M.D.W.); Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (W.T.M., K.O.M.); The Children's Hospital of Philadelphia, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (J.W.G.)
| | - Raghu Chandramohan
- From the School of Electrical and Computer Engineering (P.-Y.W.), School of Biology (R.C.), Georgia Institute of Technology, Atlanta, GA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (J.H.P.); The Wallace H. Coulter Department of Biomedical Engineering, School of Electrical and Computer Engineering, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA (M.D.W.); Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (W.T.M., K.O.M.); The Children's Hospital of Philadelphia, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (J.W.G.)
| | - John H Phan
- From the School of Electrical and Computer Engineering (P.-Y.W.), School of Biology (R.C.), Georgia Institute of Technology, Atlanta, GA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (J.H.P.); The Wallace H. Coulter Department of Biomedical Engineering, School of Electrical and Computer Engineering, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA (M.D.W.); Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (W.T.M., K.O.M.); The Children's Hospital of Philadelphia, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (J.W.G.)
| | - William T Mahle
- From the School of Electrical and Computer Engineering (P.-Y.W.), School of Biology (R.C.), Georgia Institute of Technology, Atlanta, GA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (J.H.P.); The Wallace H. Coulter Department of Biomedical Engineering, School of Electrical and Computer Engineering, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA (M.D.W.); Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (W.T.M., K.O.M.); The Children's Hospital of Philadelphia, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (J.W.G.)
| | - J William Gaynor
- From the School of Electrical and Computer Engineering (P.-Y.W.), School of Biology (R.C.), Georgia Institute of Technology, Atlanta, GA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (J.H.P.); The Wallace H. Coulter Department of Biomedical Engineering, School of Electrical and Computer Engineering, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA (M.D.W.); Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (W.T.M., K.O.M.); The Children's Hospital of Philadelphia, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (J.W.G.)
| | - Kevin O Maher
- From the School of Electrical and Computer Engineering (P.-Y.W.), School of Biology (R.C.), Georgia Institute of Technology, Atlanta, GA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (J.H.P.); The Wallace H. Coulter Department of Biomedical Engineering, School of Electrical and Computer Engineering, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA (M.D.W.); Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (W.T.M., K.O.M.); The Children's Hospital of Philadelphia, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (J.W.G.)
| | - May D Wang
- From the School of Electrical and Computer Engineering (P.-Y.W.), School of Biology (R.C.), Georgia Institute of Technology, Atlanta, GA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (J.H.P.); The Wallace H. Coulter Department of Biomedical Engineering, School of Electrical and Computer Engineering, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA (M.D.W.); Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (W.T.M., K.O.M.); The Children's Hospital of Philadelphia, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (J.W.G.).
| |
Collapse
|
19
|
Girolami F, Iascone M, Tomberli B, Bardi S, Benelli M, Marseglia G, Pescucci C, Pezzoli L, Sana ME, Basso C, Marziliano N, Merlini PA, Fornaro A, Cecchi F, Torricelli F, Olivotto I. Novel α-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhythmias: a massively parallel sequencing study. ACTA ACUST UNITED AC 2014; 7:741-50. [PMID: 25173926 DOI: 10.1161/circgenetics.113.000486] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Next-generation sequencing might be particularly advantageous in genetically heterogeneous conditions, such as hypertrophic cardiomyopathy (HCM), in which a considerable proportion of patients remain undiagnosed after Sanger. In this study, we present an Italian family with atypical HCM in which a novel disease-causing variant in α-actinin 2 (ACTN2) was identified by next-generation sequencing. METHODS AND RESULTS A large family spanning 4 generations was examined, exhibiting an autosomal dominant cardiomyopathic trait comprising a variable spectrum of (1) midapical HCM with restrictive evolution with marked biatrial dilatation, (2) early-onset atrial fibrillation and atrioventricular block, and (3) left ventricular noncompaction. In the proband, 48 disease genes for HCM, selected on the basis of published reports, were analyzed by targeted resequencing with a customized enrichment system. After bioinformatics analysis, 4 likely pathogenic variants were identified: TTN c.21977G>A (p.Arg7326Gln); TTN c.8749A>C (p.Thr2917Pro); ACTN2 c.683T>C (p.Met228Thr); and OBSCN c.13475T>G (p.Leu4492Arg). The novel variant ACTN2 c.683T>C (p.Met228Thr), located in the actin-binding domain, proved to be the only mutation fully cosegregating with the cardiomyopathic trait in 18 additional family members (of whom 11 clinically affected). ACTN2 c.683T>C (p.Met228Thr) was absent in 570 alleles of healthy controls and in 1000 Genomes Project and was labeled as Damaging by in silico analysis using polymorphism phenotyping v2, as Deleterious by sorts intolerant from tolerant, and as Disease-Causing by Mutation Taster. CONCLUSIONS A targeted next-generation sequencing approach allowed the identification of a novel ACTN2 variant associated with midapical HCM and juvenile onset of atrial fibrillation, emphasizing the potential of such approach in HCM diagnostic screening.
Collapse
Affiliation(s)
- Francesca Girolami
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.).
| | - Maria Iascone
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Benedetta Tomberli
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Sara Bardi
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Matteo Benelli
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Giuseppina Marseglia
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Chiara Pescucci
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Laura Pezzoli
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Maria Elena Sana
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Cristina Basso
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Nicola Marziliano
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Piera Angelica Merlini
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Alessandra Fornaro
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Franco Cecchi
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Francesca Torricelli
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| | - Iacopo Olivotto
- From the Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy (F.G., S.B., M.B., G.M., C.P., F.T.); USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy (M.I., L.P., M.E.S.); Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padua, Italy (C.B.); Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy (N.M.); Division of Cardiology, Azienda Ospedaliera Universitaria di Parma, Parma, Italy (N.M.); Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy (B.T., A.F., I.O.); and Department of Clinical and Experimental Medicine (P.A.M.), University of Florence, Florence, Italy (F.C.)
| |
Collapse
|
20
|
Talmud PJ, Futema M, Humphries SE. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol 2014; 25:274-81. [PMID: 24977977 DOI: 10.1097/mol.0000000000000090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Genome-Wide Association Studies have provided robust identification of approximately 100 genetic loci determining plasma lipid parameters. Using these multiple common genetic lipid-determining variants in a 'gene score' has thrown new light on the mode of inheritance of familial lipid disorders. RECENT FINDINGS Different hypertriglyceridaemia states have been explained by the polygenic coinheritance of triglyceride-raising alleles. Taking this gene score approach with 12 LDL-cholesterol-raising alleles, we reported that for patients with a clinical diagnosis of familial hypercholesterolaemia, but no identified rare mutation in the familial hypercholesterolaemia-causing genes, LDL receptor, apolipoprotein B and PCSK9, the most likely explanation for their elevated LDL-C levels was a polygenic, not a monogenic, cause of the disease. SUMMARY These findings have wider implications for understanding complex disorders, and may very well explain the genetic basis of familial combined hyperlipidaemia, another familial lipid disorder in which the genetic cause(s) has remained elusive.
Collapse
Affiliation(s)
- Philippa J Talmud
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | | | | |
Collapse
|
21
|
Shen X, Young R, Canty JM, Qu J. Quantitative proteomics in cardiovascular research: global and targeted strategies. Proteomics Clin Appl 2014; 8:488-505. [PMID: 24920501 DOI: 10.1002/prca.201400014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/02/2014] [Accepted: 06/06/2014] [Indexed: 11/05/2022]
Abstract
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here, we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
22
|
Kowalik MM, Lango R. Genotype Assessment as a Tool for Improved Risk Prediction in Cardiac Surgery. J Cardiothorac Vasc Anesth 2014; 28:163-168. [DOI: 10.1053/j.jvca.2013.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 12/20/2022]
|
23
|
Abdulkareem N, Smelt J, Jahangiri M. Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy. Interact Cardiovasc Thorac Surg 2013; 17:554-9. [PMID: 23728086 PMCID: PMC3745132 DOI: 10.1093/icvts/ivt196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 01/15/2023] Open
Abstract
The association between ascending aortic aneurysm (AA) and bicuspid aortic valve (BAV) has been well established. Different genetic, haemodynamic and cardiovascular risk factors have been implicated in the development and progression of AA. However, to date, definite conclusions cannot be drawn regarding the exact molecular, cellular and haemodynamic mechanisms causing BAV-associated aortopathy. For this study, we performed a thorough electronic systematic review of the literature using MEDLINE (1960-2012) and EMBASE databases. MeSH terms included: 'bicuspid aortic valve and ascending aorta', 'bicommissural aortic valve and aneurysm', 'bicuspid aortopathy', 'bicuspid aortic valve pathophysiology', 'bicuspid aortic valve and genetics' and 'bicuspid aortic valve and treatment'. We aim in this review to discuss the mechanisms, pathophysiology, genetics and modern drug therapy in the context of BAV-associated aortopathy.
Collapse
Affiliation(s)
| | | | - Marjan Jahangiri
- Department of Cardiothoracic Surgery, St. George's Hospital, University of London, London, UK
| |
Collapse
|
24
|
Sarajlić A, Janjić V, Stojković N, Radak D, Pržulj N. Network topology reveals key cardiovascular disease genes. PLoS One 2013; 8:e71537. [PMID: 23977067 PMCID: PMC3744556 DOI: 10.1371/journal.pone.0071537] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and "driver genes." We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies "key" genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs.
Collapse
Affiliation(s)
- Anida Sarajlić
- Department of Computing, Imperial College London, London, United Kingdom
| | - Vuk Janjić
- Department of Computing, Imperial College London, London, United Kingdom
| | - Neda Stojković
- Institute for Cardiovascular Disease “Dedinje,” University of Belgrade, Belgrade, Serbia
| | - Djordje Radak
- Institute for Cardiovascular Disease “Dedinje,” University of Belgrade, Belgrade, Serbia
| | - Nataša Pržulj
- Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Affiliation(s)
- Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden.
| | | |
Collapse
|
26
|
Affiliation(s)
- Diane R Gold
- Channing Laboratory, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, 181 Longwood Ave, Boston MA 02115, USA.
| | | |
Collapse
|
27
|
Zhang Z, Zhao Z, Liu B, Li D, Zhang D, Chen H, Liu D. Systems biomedicine: It’s your turn—Recent progress in systems biomedicine. QUANTITATIVE BIOLOGY 2013. [DOI: 10.1007/s40484-013-0009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Yang YT, Lin CY, Jeng J, Ong CW. Impact of pyrrolidine-bispyrrole DNA minor groove binding agents and chirality on global proteomic profile in Escherichia Coli. Proteome Sci 2013; 11:23. [PMID: 23702249 PMCID: PMC3669006 DOI: 10.1186/1477-5956-11-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is great interest in the design of small molecules that selectively target minor grooves of duplex DNA for controlling specific gene expression implicated in a disease. The design of chiral small molecules for rational drug design has attracted increasing attention due to the chirality of DNA. Yet, there is limited research on the chirality effect of minor groove binders on DNA interaction, especially at the protein expression level. This paper is an attempt to illustrate that DNA binding affinity might not provide a full picture on the biological activities. Drug interacting at the genomic level can be translated to the proteomic level. Here we have illustrated that although the chiral bispyrrole-pyrrolidine-oligoamides, PySSPy and PyRSPy, showed low binding affinity to DNA, their influence at the proteomic level is significant. More importantly, the chirality also plays a role. Two-dimensional proteomic profile to identify the differentially expressed protein in Escherichia coli DH5α (E coli DH5α) were investigated. RESULTS E coli DH5α incubated with the chiral PySSPy and PyRSPy, diastereomeric at the pyrrolidine ring, showed differential expression of eighteen proteins as observed through two dimensional proteomic profiling. These eighteen proteins identified by MALDI_TOF/TOF MS include antioxidant defense, DNA protection, protein synthesis, chaperone, and stress response proteins. No statistically significant toxicity was observed at the tested drug concentrations as measured via MTT assay. CONCLUSION The current results showed that the chiral PySSPy and PyRSPy impact on the proteomic profiling of E coli DH5α, implicating the importance of drug chirality on biological activities at the molecular level.
Collapse
Affiliation(s)
- Ya-Ting Yang
- Department of Chemistry, National Sun Yat-sen University, No, 70, Lienhai Rd,, Kaohsiung, 80424, Taiwan.
| | | | | | | |
Collapse
|
29
|
Roukos DH, Katsouras CS, Baltogiannis GG, Naka KK, Michalis LK. Network-based drugs: promise and clinical challenges in cardiovascular disease. Expert Rev Proteomics 2013; 10:119-22. [DOI: 10.1586/epr.13.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
|
31
|
Genomics in cardiovascular disease. J Am Coll Cardiol 2013; 61:2029-37. [PMID: 23524054 DOI: 10.1016/j.jacc.2012.12.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/29/2013] [Accepted: 02/19/2013] [Indexed: 01/29/2023]
Abstract
A paradigm shift toward biology occurred in the 1990s and was subsequently catalyzed by the sequencing of the human genome in 2000. The cost of deoxyribonucleic acid (DNA) sequencing has gone from millions to thousands of dollars with sequencing of one's entire genome costing only $1,000. Rapid DNA sequencing is being embraced for single gene disorders, particularly for sporadic cases and those from small families. Transmission of lethal genes such as associated with Huntington's disease can, through in vitro fertilization, avoid passing it on to one's offspring. DNA sequencing will meet the challenge of elucidating the genetic predisposition for common polygenic diseases, especially in determining the function of the novel common genetic risk variants and identifying the rare variants, which may also partially ascertain the source of the missing heritability. The challenge for DNA sequencing remains great, despite human genome sequences being 99.5% identical, the 3 million single nucleotide polymorphisms responsible for most of the unique features add up to 40 to 60 new mutations per person which, for 7 billion people, is 300 to 400 billion mutations. It is claimed that DNA sequencing has increased 10,000-fold while information storage and retrieval only 16-fold. The physician and health user will be challenged by the convergence of 2 major trends, whole genome sequencing, and the storage/retrieval and integration of the data.
Collapse
|
32
|
Kloos W, Katus HA, Meder B. Genetic cardiomyopathies. Lessons learned from humans, mice, and zebrafish. Herz 2013; 37:612-7. [PMID: 22767018 DOI: 10.1007/s00059-012-3651-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dilated cardiomyopathy (DCM) is a multifactorial disease of the heart muscle and a leading cause of congestive heart failure. Human genetic studies and the establishment of suitable animal models such as mice and zebrafish have already revealed parts of its genetic etiology. With the next generation of genomic sequencing technologies (NGS) on the rise, the comprehensive genetic dissection of DCM patients will reveal clinically relevant information, novel causes, and modifiers of this complex disorder. The recent exploration of the epigenome as another mechanism of cardiac gene regulation will further elucidate unexplained variations observed in the correlation between the patient's genotype and phenotype. Some of these intriguing advances being made in basic genetic research will soon find their way into clinical practice for more individualized treatment of cardiomyopathy patients.
Collapse
Affiliation(s)
- W Kloos
- Abteilung Innere Medizin III, Kardiologie, Angiologie und Pulmologie, Universitätsklinik Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Gemany
| | | | | |
Collapse
|
33
|
Epigenetics and the developmental origins of inflammatory bowel diseases. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2013; 26:909-15. [PMID: 23248794 DOI: 10.1155/2012/526408] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gut microbiota, the intestinal mucosa and the host immune system are among the large biological networks involved in the development of inflammatory bowel disease (IBD), which includes Crohn disease (CD) and ulcerative colitis (UC). Host genetics and environmental factors can significantly modulate the interactive relationships among these biological systems and influence predilection toward IBD. High monozygotic twin discordance rates and the rapid rise in the prevalence of IBD indicate that environmental influences may be as important or even more important in their pathogenesis than genetic susceptibility. However, the nature and timing of environmental factors critical for inducing IBD remain largely unknown. The molecular mechanisms and the key biological component(s) that may be affected by such factors are also in question. Epigenetic changes, such as DNA methylation (the methylation of cytosines followed by a guanine in CpG dinucleotides) can be modified by environmental influences during finite developmental periods and have been implicated in the pathogenesis of IBD. Mucosal DNA methylation can also react to changes in the commensal microbiota, underscoring the intercalating relationships among the large biological systems involved in gastrointestinal disorders. Therefore, transient environmental influences during specific periods of development may induce critical change(s) in an isolated or concomitant fashion within the intestinal biomic networks and lead to increased susceptibility to IBD. The present review focuses on the emerging paradigm shift considering IBD to originate from critical environmental effects during pre- and postnatal development.
Collapse
|
34
|
Bouchard-Mercier A, Paradis AM, Rudkowska I, Lemieux S, Couture P, Vohl MC. Associations between dietary patterns and gene expression profiles of healthy men and women: a cross-sectional study. Nutr J 2013; 12:24. [PMID: 23398686 PMCID: PMC3598224 DOI: 10.1186/1475-2891-12-24] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/07/2013] [Indexed: 01/21/2023] Open
Abstract
Background Diet regulates gene expression profiles by several mechanisms. The objective of this study was to examine gene expression in relation with dietary patterns. Methods Two hundred and fifty four participants from the greater Quebec City metropolitan area were recruited. Two hundred and ten participants completed the study protocol. Dietary patterns were derived from a food frequency questionnaire (FFQ) by factor analysis. For 30 participants (in fasting state), RNA was extracted from peripheral blood mononuclear cells (PBMCs) and expression levels of 47,231 mRNA transcripts were assessed using the Illumina Human-6 v3 Expression BeadChips®. Microarray data was pre-processed with Flexarray software and analysed with Ingenuity Pathway Analysis (IPA). Results Two dietary patterns were identified. The Prudent dietary pattern was characterised by high intakes of vegetables, fruits, whole grain products and low intakes of refined grain products and the Western dietary pattern, by high intakes of refined grain products, desserts, sweets and processed meats. When individuals with high scores for the Prudent dietary pattern where compared to individuals with low scores, 2,083 transcripts were differentially expressed in men, 1,136 transcripts in women and 59 transcripts were overlapping in men and women. For the Western dietary pattern, 1,021 transcripts were differentially expressed in men with high versus low scores, 1,163 transcripts in women and 23 transcripts were overlapping in men and women. IPA reveals that genes differentially expressed for both patterns were present in networks related to the immune and/or inflammatory response, cancer and cardiovascular diseases. Conclusion Gene expression profiles were different according to dietary patterns, which probably modulate the risk of chronic diseases. Trial Registration NCT:
NCT01343342
Collapse
Affiliation(s)
- Annie Bouchard-Mercier
- Institute of Nutraceuticals and Functional Foods-INAF, Laval University, 2440 Hochelaga Blvd, Quebec G1V 0A6, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cardiovascular diseases remain the dominant cause of death worldwide. In the last decades, the remarkable advances in human genetic and genomic research, plus the now common use of genome-wide association studies, have led to the identification of numerous genetic variants associated with specific cardiovascular traits and diseases. Although the clinical applications are limited because the genetic risk of common cardiovascular disease is still unexplained, and the mechanisms of action of the genetic factor(s) are not known, these research advances have, in turn, widely opened the concept of personalized medicine. In this paper, the status and prospects of personalized medicine for cardiovascular disease will be presented. This will be followed by a discussion of issues regarding the implementation of personalized medicine.
Collapse
Affiliation(s)
- Claude Lenfant
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Zeisel SH, Waterland RA, Ordovás JM, Muoio DM, Jia W, Fodor A. Highlights of the 2012 Research Workshop: Using nutrigenomics and metabolomics in clinical nutrition research. JPEN J Parenter Enteral Nutr 2012; 37:190-200. [PMID: 23042849 DOI: 10.1177/0148607112462401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research Workshop, "Using Nutrigenomics and Metabolomics in Clinical Nutrition Research," was held on January 21, 2012, in Orlando, Florida. The conference brought together experts in human nutrition who use nutrigenomic and metabolomic methods to better understand metabolic individuality and nutrition effects on health. We are beginning to understand how genetic variation and epigenetic events alter requirements for and responses to foods in our diet (the field of nutrigenetics/nutrigenomics and epigenetics). At the same time, methods for profiling almost all of the products of metabolism in plasma, urine, and tissues (metabolomics) are being refined. The relationships between diet and nutrigenomic-metabolomic profiles, as well as between these profiles and health, are being elucidated, and this will dramatically alter clinical practice in nutrition.
Collapse
Affiliation(s)
- Steven H Zeisel
- University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Xu F, Wang Q, Zhang F, Zhu Y, Gu Q, Wu L, Yang L, Yang X. Impact of Next-Generation Sequencing (NGS) technology on cardiovascular disease research. Cardiovasc Diagn Ther 2012; 2:138-46. [PMID: 24282707 DOI: 10.3978/j.issn.2223-3652.2012.06.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/08/2012] [Indexed: 11/14/2022]
Abstract
In recent years, hundreds of gene loci associated with multiple cardiovascular pathologies and traits have been identified through high-throughput Next-Generation Sequencing (NGS) technology. Due to the increasing efficiency and decreasing cost of NGS, rapid progresses anticipated in the field of CVD research. This review summarizes the main strategies of CV research with NGS at the level of genomics, transcriptomics, epigenetics, and proteomics.
Collapse
|
38
|
Phan JH, Quo CF, Wang MD. Cardiovascular genomics: a biomarker identification pipeline. ACTA ACUST UNITED AC 2012; 16:809-22. [PMID: 22614726 DOI: 10.1109/titb.2012.2199570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genomic biomarkers are essential for understanding the underlying molecular basis of human diseases such as cardiovascular disease. In this review, we describe a biomarker identification pipeline for cardiovascular disease, which includes 1) high-throughput genomic data acquisition, 2) preprocessing and normalization of data, 3) exploratory analysis, 4) feature selection, 5) classification, and 6) interpretation and validation of candidate biomarkers. We review each step in the pipeline, presenting current and widely used bioinformatics methods. Furthermore, we analyze several publicly available cardiovascular genomics datasets to illustrate the pipeline. Finally, we summarize the current challenges and opportunities for further research.
Collapse
Affiliation(s)
- John H Phan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
39
|
Apple FS, Blankenberg S, Morrow DA. Impact of Biomarkers, Proteomics, and Genomics in Cardiovascular Disease. Clin Chem 2012; 58:1-2. [DOI: 10.1373/clinchem.2011.175919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fred S Apple
- Hennepin County Medical Center, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, The University Heart Center at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David A Morrow
- TIMI Study Group, and
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|