1
|
Lennon NJ, Kottyan LC, Kachulis C, Abul-Husn NS, Arias J, Belbin G, Below JE, Berndt SI, Chung WK, Cimino JJ, Clayton EW, Connolly JJ, Crosslin DR, Dikilitas O, Velez Edwards DR, Feng Q, Fisher M, Freimuth RR, Ge T, Glessner JT, Gordon AS, Patterson C, Hakonarson H, Harden M, Harr M, Hirschhorn JN, Hoggart C, Hsu L, Irvin MR, Jarvik GP, Karlson EW, Khan A, Khera A, Kiryluk K, Kullo I, Larkin K, Limdi N, Linder JE, Loos RJF, Luo Y, Malolepsza E, Manolio TA, Martin LJ, McCarthy L, McNally EM, Meigs JB, Mersha TB, Mosley JD, Musick A, Namjou B, Pai N, Pesce LL, Peters U, Peterson JF, Prows CA, Puckelwartz MJ, Rehm HL, Roden DM, Rosenthal EA, Rowley R, Sawicki KT, Schaid DJ, Smit RAJ, Smith JL, Smoller JW, Thomas M, Tiwari H, Toledo DM, Vaitinadin NS, Veenstra D, Walunas TL, Wang Z, Wei WQ, Weng C, Wiesner GL, Yin X, Kenny EE. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat Med 2024; 30:480-487. [PMID: 38374346 PMCID: PMC10878968 DOI: 10.1038/s41591-024-02796-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.
Collapse
Affiliation(s)
| | - Leah C Kottyan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Josh Arias
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gillian Belbin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sonja I Berndt
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James J Cimino
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - David R Crosslin
- Tulane University, New Orleans, LA, USA
- University of Washington, Seattle, WA, USA
| | | | | | - QiPing Feng
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Tian Ge
- Mass General Brigham, Boston, MA, USA
| | | | | | | | | | - Maegan Harden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Margaret Harr
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Clive Hoggart
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Hsu
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | - Amit Khera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Katie Larkin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nita Limdi
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Luo
- Northwestern University, Evanston, IL, USA
| | | | - Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa J Martin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Li McCarthy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Tesfaye B Mersha
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Bahram Namjou
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Nihal Pai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Cynthia A Prows
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Heidi L Rehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dan M Roden
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Robb Rowley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Hemant Tiwari
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | - Zhe Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei-Qi Wei
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Eimear E Kenny
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
3
|
Lennon NJ, Kottyan LC, Kachulis C, Abul-Husn N, Arias J, Belbin G, Below JE, Berndt S, Chung W, Cimino JJ, Clayton EW, Connolly JJ, Crosslin D, Dikilitas O, Velez Edwards DR, Feng Q, Fisher M, Freimuth R, Ge T, Glessner JT, Gordon A, Guiducci C, Hakonarson H, Harden M, Harr M, Hirschhorn J, Hoggart C, Hsu L, Irvin R, Jarvik GP, Karlson EW, Khan A, Khera A, Kiryluk K, Kullo I, Larkin K, Limdi N, Linder JE, Loos R, Luo Y, Malolepsza E, Manolio T, Martin LJ, McCarthy L, Meigs JB, Mersha TB, Mosley J, Namjou B, Pai N, Pesce LL, Peters U, Peterson J, Prows CA, Puckelwartz MJ, Rehm H, Roden D, Rosenthal EA, Rowley R, Sawicki KT, Schaid D, Schmidlen T, Smit R, Smith J, Smoller JW, Thomas M, Tiwari H, Toledo D, Vaitinadin NS, Veenstra D, Walunas T, Wang Z, Wei WQ, Weng C, Wiesner G, Xianyong Y, Kenny E. Selection, optimization, and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.25.23290535. [PMID: 37333246 PMCID: PMC10275001 DOI: 10.1101/2023.05.25.23290535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Li Hsu
- Fred Hutchinson Cancer Center and University of Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ulrike Peters
- Fred Hutchinson Cancer Center and University of Washington
| | | | | | | | | | - Dan Roden
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Applying a genetic risk score for prostate cancer to men with lower urinary tract symptoms in primary care to predict prostate cancer diagnosis: a cohort study in the UK Biobank. Br J Cancer 2022; 127:1534-1539. [PMID: 35978138 PMCID: PMC9553867 DOI: 10.1038/s41416-022-01918-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is highly heritable, with >250 common variants associated in genome-wide association studies. It commonly presents with non-specific lower urinary tract symptoms that are frequently associated with benign conditions. METHODS Cohort study using UK Biobank data linked to primary care records. Participants were men with a record showing a general practice consultation for a lower urinary tract symptom. The outcome measure was prostate cancer diagnosis within 2 years of consultation. The predictor was a genetic risk score of 269 genetic variants for prostate cancer. RESULTS A genetic risk score (GRS) is associated with prostate cancer in symptomatic men (OR per SD increase = 2.12 [1.86-2.41] P = 3.5e-30). An integrated risk model including age and GRS applied to symptomatic men predicted prostate cancer (AUC 0.768 [0.739-0.796]). Prostate cancer incidence was 8.1% (6.7-9.7) in the highest risk quintile. In the lowest quintile, prostate cancer incidence was <1%. CONCLUSIONS This study is the first to apply GRS in primary care to improve the triage of symptomatic patients. Men with the lowest genetic risk of developing prostate cancer could safely avoid invasive investigation, whilst those identified with the greatest risk could be fast-tracked for further investigation. These results show that a GRS has potential application to improve the diagnostic pathway of symptomatic patients in primary care.
Collapse
|
5
|
Feng Q, Nickels E, Muskens IS, de Smith AJ, Gauderman WJ, Yee AC, Ricker C, Mack T, Leavitt AD, Godley LA, Wiemels JL. Increased burden of familial-associated early-onset cancer risk among minority Americans compared to non-Latino Whites. eLife 2021; 10:e64793. [PMID: 34155975 PMCID: PMC8219377 DOI: 10.7554/elife.64793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/04/2021] [Indexed: 01/11/2023] Open
Abstract
Background The role of race/ethnicity in genetic predisposition of early-onset cancers can be estimated by comparing family-based cancer concordance rates among ethnic groups. Methods We used linked California health registries to evaluate the relative cancer risks for first-degree relatives of patients diagnosed between ages 0 and 26, and the relative risks of developing distinct second primary malignancies (SPMs). From 1989 to 2015, we identified 29,631 cancer patients and 62,863 healthy family members. We calculated the standardized incident ratios (SIRs) of early-onset primary cancers diagnosed in proband siblings and mothers, as well as SPMs detected among early-onset patients. Analyses were stratified by self-identified race/ethnicity. Results Given probands with cancer, there were increased relative risks of any cancer for siblings and mothers (SIR = 3.32; 95% confidence interval [CI]: 2.85-3.85) and of SPMs (SIR = 7.27; 95% CI: 6.56-8.03). Given a proband with solid cancer, both Latinos (SIR = 4.98; 95% CI: 3.82-6.39) and non-Latino Blacks (SIR = 7.35; 95% CI: 3.36-13.95) exhibited significantly higher relative risk of any cancer in siblings and mothers when compared to non-Latino White subjects (SIR = 3.02; 95% CI: 2.12-4.16). For hematologic cancers, higher familial risk was evident for Asian/Pacific Islanders (SIR = 7.56; 95% CI: 3.26-14.90) compared to non-Latino whites (SIR = 2.69; 95% CI: 1.62-4.20). Conclusions The data support a need for increased attention to the genetics of early-onset cancer predisposition and environmental factors in race/ethnic minority families in the United States. Funding This work was supported by the V Foundation for funding this work (Grant FP067172).
Collapse
Affiliation(s)
- Qianxi Feng
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
| | - Eric Nickels
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
- Children's Hospital Los AngelesLos AngelesUnited States
| | - Ivo S Muskens
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
| | - Adam J de Smith
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
| | - W James Gauderman
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
| | - Amy C Yee
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
| | - Charite Ricker
- Norris Comprehensive Cancer Center, USC Keck School of MedicineLos AngelesUnited States
| | - Thomas Mack
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
| | - Andrew D Leavitt
- Departments of Medicine and Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Lucy A Godley
- Departments of Medicine and Human Genetics, The University of ChicagoChicagoUnited States
| | - Joseph L Wiemels
- Department of Preventive Medicine, USC Keck School of MedicineLos AngelesUnited States
| |
Collapse
|
6
|
Abstract
More than 40% of the risk of developing prostate cancer (PCa) is from genetic factors. Genome-wide association studies have led to the discovery of more than 140 variants associated with PCa risk. Polygenic risk scores (PRS) generated using these variants show promise in identifying individuals at much higher (and lower) lifetime risk than the average man. PCa PRS also improve the predictive value of prostate-specific antigen screening, may inform the age for starting PCa screening, and are informative for development of more aggressive tumors. Despite the promise, few clinical trials have evaluated the benefit of PCa PRS for clinical care.
Collapse
|
7
|
Kiely M, Ambs S. Immune Inflammation Pathways as Therapeutic Targets to Reduce Lethal Prostate Cancer in African American Men. Cancers (Basel) 2021; 13:2874. [PMID: 34207505 PMCID: PMC8227648 DOI: 10.3390/cancers13122874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/17/2023] Open
Abstract
Despite substantial improvements in cancer survival, not all population groups have benefitted equally from this progress. For prostate cancer, men of African descent in the United States and England continue to have about double the rate of fatal disease compared to other men. Studies suggest that when there is equal access to care, survival disparities are greatly diminished. However, notable differences exist in prostate tumor biology across population groups. Ancestral factors and disparate exposures can lead to altered tumor biology, resulting in a distinct disease etiology by population group. While equal care remains the key target to improve survival, additional efforts should be made to gain comprehensive knowledge of the tumor biology in prostate cancer patients of African descent. Such an approach may identify novel intervention strategies in the era of precision medicine. A growing body of evidence shows that inflammation and the immune response may play a distinct role in prostate cancer disparities. Low-grade chronic inflammation and an inflammatory tumor microenvironment are more prevalent in African American patients and have been associated with adverse outcomes. Thus, differences in activation of immune-inflammatory pathways between African American and European American men with prostate cancer may exist. These differences may influence the response to immune therapy which is consistent with recent observations. This review will discuss mechanisms by which inflammation may contribute to the disparate outcomes experienced by African American men with prostate cancer and how these immunogenic and inflammatory vulnerabilities could be exploited to improve their survival.
Collapse
Affiliation(s)
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Qassim A, Souzeau E, Hollitt G, Hassall MM, Siggs OM, Craig JE. Risk Stratification and Clinical Utility of Polygenic Risk Scores in Ophthalmology. Transl Vis Sci Technol 2021; 10:14. [PMID: 34111261 PMCID: PMC8114010 DOI: 10.1167/tvst.10.6.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
Translational Relevance Common genetic variants can be used to effectively stratify the risk of disease development and progression and may be used to guide screening, triaging, monitoring, or treatment thresholds.
Collapse
Affiliation(s)
- Ayub Qassim
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Georgie Hollitt
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Mark M. Hassall
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Owen M. Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
9
|
Plym A, Penney KL, Kalia S, Kraft P, Conti DV, Haiman C, Mucci LA, Kibel AS. Evaluation of a Multiethnic Polygenic Risk Score Model for Prostate Cancer. J Natl Cancer Inst 2021; 114:771-774. [PMID: 33792693 PMCID: PMC9086757 DOI: 10.1093/jnci/djab058] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/14/2022] Open
Abstract
Polygenic risk scores (PRSs) of common genetic variants have shown promise in prostate cancer risk stratification, but their validity across populations has yet to be confirmed. We evaluated a multiethnic PRS model based on 269 germline genetic risk variants (261 were available for analysis) using an independent population of 13 628 US men. The PRS was strongly associated with prostate cancer but not with any other disease. Comparing men in the top PRS decile with those at average risk (40%-60%), the odds ratio of prostate cancer was 3.89 (95% confidence interval = 3.24 to 4.68) for men of European ancestry and 3.81 (95% confidence interval = 1.48 to 10.19) for men of African ancestry. By age 85 years, the cumulative incidence of prostate cancer for European American men was 7.1% in the bottom decile and 54.1% in the top decile. This suggests that the PRS can be used to identify a substantial proportion of men at high risk for prostate cancer.
Collapse
Affiliation(s)
- Anna Plym
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarah Kalia
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Peter Kraft
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - David V Conti
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Christopher Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Adam S Kibel
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Shiota M, Akamatsu S, Narita S, Terada N, Fujimoto N, Eto M. Genetic Polymorphisms and Pharmacotherapy for Prostate Cancer. JMA J 2021; 4:99-111. [PMID: 33997443 PMCID: PMC8119070 DOI: 10.31662/jmaj.2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The therapeutic landscape of pharmacotherapy for prostate cancer has dramatically evolved, and multiple therapeutic options have become available for prostate cancer patients. Therefore, useful biomarkers to identify suitable candidates for treatment are required to maximize the efficacy of pharmacotherapy. Genetic polymorphisms such as single-nucleotide polymorphisms (SNPs) and tandem repeats have been shown to influence the therapeutic effects of pharmacotherapy for prostate cancer patients. For example, genetic polymorphisms in the genes involved in androgen receptor signaling are reported to be associated with the therapeutic outcome of androgen-deprivation therapy as well as androgen receptor-pathway inhibitors. In addition, SNPs in genes involved in drug metabolism and efflux pumps are associated with therapeutic effects of taxane chemotherapy. Thus, genetic polymorphisms such as SNPs are promising biomarkers to realize personalized medicine. Here, we overview the current findings on the influence of genetic polymorphisms on the outcome of pharmacotherapy for prostate cancer and discuss current issues as well as future visions in this field.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Huynh-Le MP, Fan CC, Karunamuni R, Thompson WK, Martinez ME, Eeles RA, Kote-Jarai Z, Muir K, Schleutker J, Pashayan N, Batra J, Grönberg H, Neal DE, Donovan JL, Hamdy FC, Martin RM, Nielsen SF, Nordestgaard BG, Wiklund F, Tangen CM, Giles GG, Wolk A, Albanes D, Travis RC, Blot WJ, Zheng W, Sanderson M, Stanford JL, Mucci LA, West CML, Kibel AS, Cussenot O, Berndt SI, Koutros S, Sørensen KD, Cybulski C, Grindedal EM, Menegaux F, Khaw KT, Park JY, Ingles SA, Maier C, Hamilton RJ, Thibodeau SN, Rosenstein BS, Lu YJ, Watya S, Vega A, Kogevinas M, Penney KL, Huff C, Teixeira MR, Multigner L, Leach RJ, Cannon-Albright L, Brenner H, John EM, Kaneva R, Logothetis CJ, Neuhausen SL, De Ruyck K, Pandha H, Razack A, Newcomb LF, Fowke JH, Gamulin M, Usmani N, Claessens F, Gago-Dominguez M, Townsend PA, Bush WS, Roobol MJ, Parent MÉ, Hu JJ, Mills IG, Andreassen OA, Dale AM, Seibert TM. Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nat Commun 2021; 12:1236. [PMID: 33623038 PMCID: PMC7902617 DOI: 10.1038/s41467-021-21287-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p < 10-180). Comparing the 80th/20th PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset.
Collapse
Affiliation(s)
- Minh-Phuong Huynh-Le
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Wesley K Thompson
- Division of Biostatistics and Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Maria Elena Martinez
- Moores Cancer Center, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | | | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Oxford Road, Manchester, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Johanna Schleutker
- Institute of Biomedicine, Kiinamyllynkatu 10, FI-20014 University of Turku, Turku, Finland
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Nora Pashayan
- University College London, Department of Applied Health Research, London, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, UK
- Department of Applied Health Research, University College London, London, UK
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Jenny L Donovan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sune F Nielsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Alicja Wolk
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Catharine M L West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Adam S Kibel
- Division of Urologic Surgery, Brigham and Womens Hospital, Boston, MA, USA
| | - Olivier Cussenot
- Sorbonne Universite, GRC n°5, AP-HP, Tenon Hospital, 4 Rue de la Chine, Paris, France
- CeRePP, Tenon Hospital, Paris, France
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Florence Menegaux
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif Cédex, France
- Paris-Sud University, UMRS 1018, Villejuif Cedex, France
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, UK
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sue A Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Surgery (Urology), University of Toronto, Toronto, ON, Canada
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Barry S Rosenstein
- Department of Radiation Oncology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | | | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago De Compostela, Spain
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Chad Huff
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Robin J Leach
- Department of Urology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Christopher J Logothetis
- The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, TX, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Kim De Ruyck
- Ghent University, Faculty of Medicine and Health Sciences, Basic Medical Sciences, Gent, Belgium
| | | | - Azad Razack
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lisa F Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jay H Fowke
- Department of Medicine and Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saúde, SERGAS, Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Paul A Townsend
- Division of Cancer Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Health Innovation Manchester, University of Manchester, Manchester, UK
| | - William S Bush
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Monique J Roobol
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Jennifer J Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Conran CA, Shi Z, Resurreccion WK, Na R, Helfand BT, Genova E, Zheng SL, Brendler CB, Xu J. Assessing the clinical utility of genetic risk scores for targeted cancer screening. J Transl Med 2021; 19:41. [PMID: 33482857 PMCID: PMC7821544 DOI: 10.1186/s12967-020-02699-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
Abstract
Background Genome-wide association studies have identified thousands of disease-associated single nucleotide polymorphisms (SNPs). A subset of these SNPs may be additively combined to generate genetic risk scores (GRSs) that confer risk for a specific disease. Although the clinical validity of GRSs to predict risk of specific diseases has been well established, there is still a great need to determine their clinical utility by applying GRSs in primary care for cancer risk assessment and targeted intervention. Methods This clinical study involved 281 primary care patients without a personal history of breast, prostate or colorectal cancer who were 40–70 years old. DNA was obtained from a pre-existing biobank at NorthShore University HealthSystem. GRSs for colorectal cancer and breast or prostate cancer were calculated and shared with participants through their primary care provider. Additional data was gathered using questionnaires as well as electronic medical record information. A t-test or Chi-square test was applied for comparison of demographic and key clinical variables among different groups. Results The median age of the 281 participants was 58 years and the majority were female (66.6%). One hundred one (36.9%) participants received 2 low risk scores, 99 (35.2%) received 1 low risk and 1 average risk score, 37 (13.2%) received 1 low risk and 1 high risk score, 23 (8.2%) received 2 average risk scores, 21 (7.5%) received 1 average risk and 1 high risk score, and no one received 2 high risk scores. Before receiving GRSs, younger patients and women reported significantly more worry about risk of developing cancer. After receiving GRSs, those who received at least one high GRS reported significantly more worry about developing cancer. There were no significant differences found between gender, age, or GRS with regards to participants’ reported optimism about their future health neither before nor after receiving GRS results. Conclusions Genetic risk scores that quantify an individual’s risk of developing breast, prostate and colorectal cancers as compared with a race-defined population average risk have potential clinical utility as a tool for risk stratification and to guide cancer screening in a primary care setting.
Collapse
Affiliation(s)
- Carly A Conran
- University of Illinois College of Medicine, Chicago, IL, USA.
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | | | - Rong Na
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Elena Genova
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Siqun Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Charles B Brendler
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
13
|
Elucidation of the Genomic-Epigenomic Interaction Landscape of Aggressive Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6641429. [PMID: 33511206 PMCID: PMC7825361 DOI: 10.1155/2021/6641429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Background Majority of prostate cancer (PCa) deaths are attributed to localized high-grade aggressive tumours which progress rapidly to metastatic disease. A critical unmet need in clinical management of PCa is discovery and characterization of the molecular drivers of aggressive tumours. The development and progression of aggressive PCa involve genetic and epigenetic alterations occurring in the germline, somatic (tumour), and epigenomes. To date, interactions between genes containing germline, somatic, and epigenetic mutations in aggressive PCa have not been characterized. The objective of this investigation was to elucidate the genomic-epigenomic interaction landscape in aggressive PCa to identify potential drivers aggressive PCa and the pathways they control. We hypothesized that aggressive PCa originates from a complex interplay between genomic (both germline and somatic mutations) and epigenomic alterations. We further hypothesized that these complex arrays of interacting genomic and epigenomic factors affect gene expression, molecular networks, and signaling pathways which in turn drive aggressive PCa. Methods We addressed these hypotheses by performing integrative data analysis combining information on germline mutations from genome-wide association studies with somatic and epigenetic mutations from The Cancer Genome Atlas using gene expression as the intermediate phenotype. Results The investigation revealed signatures of genes containing germline, somatic, and epigenetic mutations associated with aggressive PCa. Aberrant DNA methylation had effect on gene expression. In addition, the investigation revealed molecular networks and signalling pathways enriched for germline, somatic, and epigenetic mutations including the STAT3, PTEN, PCa, ATM, AR, and P53 signalling pathways implicated in aggressive PCa. Conclusions The study demonstrated that integrative analysis combining diverse omics data is a powerful approach for the discovery of potential clinically actionable biomarkers, therapeutic targets, and elucidation of oncogenic interactions between genomic and epigenomic alterations in aggressive PCa.
Collapse
|
14
|
Sipeky C, Talala KM, Tammela TLJ, Taari K, Auvinen A, Schleutker J. Prostate cancer risk prediction using a polygenic risk score. Sci Rep 2020; 10:17075. [PMID: 33051487 PMCID: PMC7553910 DOI: 10.1038/s41598-020-74172-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023] Open
Abstract
Hereditary factors have a strong influence on prostate cancer (PC) risk and poorer outcomes, thus stratification by genetic factors addresses a critical need for targeted PC screening and risk-adapted follow-up. In this Finnish population-based retrospective study 2283 clinically diagnosed and 455 screen-detected patients from the Finnish Randomised Study of Screening for Prostate Cancer (FinRSPC), 2400 healthy individuals have been involved. Individual genetic risk through establishment of a polygenic risk score based on 55 PC risk SNPs identified through the Finnish subset of the Collaborative Oncological Gene-Environment Study was assessed. Men with PC had significantly higher median polygenic risk score compared to the controls (6.59 vs. 3.83, P < 0.0001). The polygenic risk score above the control median was a significant predictor of PC (OR 2.13, 95% CI 1.90-2.39). The polygenic risk score predicted the risk of PC with an AUC of 0.618 (95% CI 0.60-0.63). Men in the highest polygenic risk score quartile were 2.8-fold (95% CI 2.4-3.30) more likely to develop PC compared with men in the lowest quartile. In the FinRSPC cohort, a significantly higher percentage of men had a PSA level of ≥ 4 ng/mL in polygenic risk score quartile four compared to quartile one (18.7% vs 8.3%, P < 0.00001). Adding the PRS to a PSA-only model contributed additional information in predicting PC in the FinRSPC model. Results strongly suggest that use of the polygenic risk score would facilitate the identification of men at increased risk for PC.
Collapse
Affiliation(s)
- Csilla Sipeky
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Kirsi M Talala
- Finnish Cancer Registry, Mass Screening Registry, Helsinki, Finland
| | - Teuvo L J Tammela
- Department of Urology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kimmo Taari
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anssi Auvinen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland.
| |
Collapse
|
15
|
Chou YE, Yang PJ, Lin CY, Chen YY, Chiang WL, Lin PX, Huang ZY, Huang M, Ho YC, Yang SF. The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197247. [PMID: 33023053 PMCID: PMC7579148 DOI: 10.3390/ijerph17197247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the major cancers of the genitourinary tract. High-mobility group box 1 (HMGB1) was suggested as a promising therapeutic target for prostate cancer. In this study, we aim to elucidate the associations of HMGB1 single nucleotide polymorphisms (SNPs) with prostate cancer susceptibility and clinicopathological characteristics. The HMGB1 SNPs rs1412125, rs2249825, rs1045411, and rs1360485 in 579 prostate cancer patients and 579 cancer-free controls were analyzed with real-time polymerase chain reactions (real-time PCR). All of the data were evaluated with SAS statistical software. Our results showed that the HMGB1 rs1045411 T allele genotype was significantly associated with advanced pathologic T stage (odds ratio (OR) = 1.433, 95% confidence interval (CI) = 1.021–2.012; p = 0.037) and pathologic N1 stage (OR = 2.091, 95% CI = 1.160–3.767; p = 0.012), and the rs1360485 polymorphic CT + TT genotype was associated with pathologic Gleason grade group (4 + 5) (OR = 1.583, 95% CI = 1.017–2.462; p = 0.041), pathologic T stage (3 + 4) (OR = 1.482, 95% CI = 1.061–2.070; p = 0.021), and pathologic N1 stage (OR = 2.131, 95% CI = 1.178–3.852; p = 0.011) compared with their wild-type carriers. In conclusion, our results revealed that the HMGB1 SNPs were associated with the clinical status of prostate cancer. The HMGB1 SNPs may have the potential to predict prostate cancer disease progression.
Collapse
Affiliation(s)
- Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-E.C.); (P.-J.Y.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-E.C.); (P.-J.Y.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yen-Yu Chen
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Whei-Ling Chiang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; (W.-L.C.); (P.-X.L.); (Z.-Y.H.)
| | - Pei-Xuan Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; (W.-L.C.); (P.-X.L.); (Z.-Y.H.)
| | - Zih-Yun Huang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; (W.-L.C.); (P.-X.L.); (Z.-Y.H.)
| | - Matthew Huang
- White Oaks Secondary School, Oakville, ON L6H 1Z5, Canada;
| | - Yung-Chuan Ho
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan;
- Correspondence: (Y.-C.H.); (S.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (Y.-C.H.); (S.-F.Y.)
| |
Collapse
|
16
|
Xie P, Liu M, Chen F, Wu S, Shao T, Wang W, Xu C, Zhou H. Long Non-coding RNA AGAP2-AS1 Silencing Inhibits PDLIM5 Expression Impeding Prostate Cancer Progression via Up-Regulation of MicroRNA-195-5p. Front Genet 2020; 11:1030. [PMID: 33101368 PMCID: PMC7546420 DOI: 10.3389/fgene.2020.01030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer remains a significant cause of cancer-related deaths in male population. More recently, accumulating evidence continues to implicate long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in various types of cancers, including prostate cancer. The current study aimed to elucidate the role of lncRNA AGAP2-AS1/miR-195-5p/PDZ and LIM domain 5 (PDLIM5) in prostate cancer progression. Initially, microarray expression profiles were applied to screen differentially expressed lncRNAs/miRNAs/genes associated with prostate cancer. Dual-luciferase reporter and RNA pull-down/RIP assays were subsequently performed to explore the interactions among lncRNA AGAP2-AS1, miR-195-5p, and PDLIM5, after which their expression was detected in cancer tissues and cells. Next, gain- and loss-of-function approaches were employed to elucidate the mechanism of lncRNA AGAP2-AS1/miR-195-5p/PDLIM5 in the processes of cell proliferation, migration and invasion as well as tumor growth. LncRNA AGAP2-AS1 was found to be highly expressed in prostate cancer. Silencing of lncRNA AGAP2-AS1 contributed to the suppression of proliferation, migration and invasion of cancer cells in vitro. Besides, lncRNA AGAP2-AS1 could bind to miR-195-5p which targeted PDLIM5 and subsequently downregulated its expression, ultimately impeding the progression of prostate cancer. Additionally, lncRNA AGAP2-AS1 inhibition led to an up-regulated expression of miR-195-5p and down-regulated PDLIM5 expression, resulting in delayed tumor growth in vivo. Taken together, the key findings of our study demonstrated that lncRNA AGAP2-AS1 silencing exerted suppressive effects on the development of prostate cancer via the miR-195-5p-dependent downregulation of PDLIM5. Our findings highlighted the potential of lncRNA AGAP2-AS1 as a promising novel molecular target for prostate cancer therapy.
Collapse
Affiliation(s)
- Pingbo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Fen Chen
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Shaomei Wu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tao Shao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Chenxiang Xu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| |
Collapse
|