1
|
Afacan B, Öztürk VÖ, Emingil G, Köse T, Bostanci N. Alarm anti-protease trappin-2 negatively correlates with proinflammatory cytokines in patients with periodontitis. J Periodontol 2019; 89:58-66. [PMID: 28777039 DOI: 10.1902/jop.2017.170245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Trappin-2 is a potent biologically active serine protease inhibitor with anti-inflammatory properties that has also been characterized as an "alarm anti-protease." Although the importance of trappin-2 in several chronic infections has been demonstrated, its potential involvement in periodontitis remains undefined. This study aims to investigate salivary levels of trappin-2 and interleukin (IL)-1β in periodontally healthy individuals and patients with gingivitis or generalized chronic periodontitis (CP) or aggressive periodontitis (GAgP). METHODS Whole unstimulated saliva samples were collected from 80 systemically healthy and non-smoking individuals before full-mouth periodontal examination. Trappin-2 and IL-1β were analyzed by enzyme-linked immunosorbent assay and reported as nanograms per milligram after calibration for total protein levels. RESULTS Correlation analysis revealed negative association between trappin-2 and IL-1β levels. Trappin-2 also showed strong negative correlation with clinical periodontal parameters, in contrast to IL-1β, which showed positive correlation. Trappin-2 levels were significantly lower in individuals with CP and GAgP, but not gingivitis, compared with healthy individuals. Reduced salivary concentrations of trappin-2 had high sensitivity and specificity to distinguish health from periodontitis. CONCLUSIONS Trappin-2 is abundant in the saliva of individuals with healthy periodontium in line with its role as an "anti-alarm" protease. Decreased salivary trappin-2 and increased IL-1β levels in individuals with periodontitis, compared with healthy individuals, may implicate a potential antiprotease/proinflammatory cytokine imbalance, resulting in impaired host protective capacity.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey
| | - Veli Özgen Öztürk
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Nagihan Bostanci
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm 2015; 2015:293053. [PMID: 26185359 PMCID: PMC4491392 DOI: 10.1155/2015/293053] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Collapse
|
3
|
Rychlik I, Elsheimer-Matulova M, Kyrova K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. Vet Res 2014; 45:119. [PMID: 25475706 PMCID: PMC4256799 DOI: 10.1186/s13567-014-0119-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, Brno, 621 00, Czech Republic.
| | | | | |
Collapse
|
4
|
Tejera P, O'Mahony DS, Owen CA, Wei Y, Wang Z, Gupta K, Su L, Villar J, Wurfel M, Christiani DC. Functional characterization of polymorphisms in the peptidase inhibitor 3 (elafin) gene and validation of their contribution to risk of acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2014; 51:262-72. [PMID: 24617927 DOI: 10.1165/rcmb.2013-0238oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Elafin (peptidase inhibitor 3 [PI3]) and its biologically active precursor, pre-elafin, are neutrophil serine proteinase inhibitors with an important role in preventing excessive tissue injury during inflammatory events. Recently, we reported an association between single-nucleotide polymorphism (SNP) rs2664581 in the PI3 gene, increased risk of acute respiratory distress syndrome (ARDS) and pre-elafin circulating levels. This study aims to validate the legitimacy of this association by using a cohort of patients who met the criteria for systemic inflammatory response syndrome and were at risk of developing ARDS (n = 840). A comprehensive functional study of SNPs in PI3 gene was also performed. Luciferase assays and electrophoretic mobility shift assays were conducted to determine the functional relevance of promoter region variants. The effect of the coding SNP rs2664581 on the neutrophil elastase inhibitory activity and transglutaminase binding properties of pre-elafin was also investigated. The variant allele of rs2664581 (C) was significantly associated with increased ARDS risk, mainly among subjects with sepsis (odds ratio = 1.44; 95% confidence interval = 1.04-1.99; P = 0.0276, adjusted by age, sex, and Acute Physiology and Chronic Health Evaluation III). Pre-elafin recombinant protein carrying the amino acid change associated with rs2664581 (Thr34Pro, mutant protein [MT]) had greater capacity to undergo transglutaminase-mediated cross-linking to immobilized fibronectin than wild-type protein in vitro (P < 0.003). No differences were observed in the neutrophil elastase inhibitory activities of wild-type versus MT proteins. In addition, the risk allele-promoter construct had significantly lower cytokine-induced transcriptional activity. Electrophoretic mobility shift assay results indicated a differential binding of nuclear proteins to the G and A alleles of SNP -338G > A. Our results confirm the association between SNP rs2664581 and enhanced risk of ARDS, further supporting the role of PI3 in ARDS development. SNPs in the PI3 locus may act synergistically by regulating PI3 gene expression and pre-elafin biological functions.
Collapse
Affiliation(s)
- Paula Tejera
- 1 Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kumar S, Xu J, Kumar RS, Lakshmikanthan S, Kapur R, Kofron M, Chrzanowska-Wodnicka M, Filippi MD. The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation. ACTA ACUST UNITED AC 2014; 211:1741-58. [PMID: 25092872 PMCID: PMC4144729 DOI: 10.1084/jem.20131706] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mice lacking the small GTPase Rap1b exhibit enhanced neutrophil recruitment to inflamed lungs and susceptibility to endotoxin shock via enhance PI3K-Akt activation. Neutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Juying Xu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Rupali Sani Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | | | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Cancer Research Institute, Indianapolis, IN 46202
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229
| | | | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| |
Collapse
|
6
|
Hunt KK, Wingate H, Yokota T, Liu Y, Mills GB, Zhang F, Fang B, Su CH, Zhang M, Yi M, Keyomarsi K. Elafin, an inhibitor of elastase, is a prognostic indicator in breast cancer. Breast Cancer Res 2013; 15:R3. [PMID: 23320734 PMCID: PMC3672770 DOI: 10.1186/bcr3374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/03/2013] [Indexed: 12/23/2022] Open
Abstract
Introduction Elafin is an elastase-specific inhibitor with increased transcription in normal mammary epithelial cells compared to mammary carcinoma cells. In this report, we test the hypothesis that inhibition of elastase, through induction of elafin, leads to inhibition of human breast cancer cell viability and, therefore, predicts survival in breast cancer patients. Methods Panels of normal and immortalized breast epithelial cells, along with breast carcinoma cells, were used to examine the impact of adenoviral-mediated elafin expression or shRNA-mediated inhibition of elastase on the growth of cells and xenografts in nude mice. To determine the prognostic significance of decreased elafin in patients with invasive breast cancer, previously published gene array datasets were interrogated. Results Elafin expression had no effect on non-tumorigenic cells but resulted in marked inhibition of cell growth in breast cancer cell lines. Control-treated xenografts generated a tumor burden that necessitated sacrifice within one month of initial treatment, whereas xenograft-bearing mice treated with Ad-Elafin were alive at eight months with marked reduction in tumor growth. Elastase inhibition mimicked these results, showing decreased tumor cell growth in vitro and in vivo. Low expression of elafin gene correlated with significantly reduced time to relapse, and when combined with high expression of elastase gene was associated with decreased survival in breast cancer patients. Conclusion Our data suggest that elafin plays a direct role in the suppression of tumors through inhibition of elastase and thus serves as a prognostic indicator for breast cancer patients.
Collapse
|
7
|
Matulova M, Rajova J, Vlasatikova L, Volf J, Stepanova H, Havlickova H, Sisak F, Rychlik I. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis. PLoS One 2012; 7:e48101. [PMID: 23094107 PMCID: PMC3477135 DOI: 10.1371/journal.pone.0048101] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens.
Collapse
Affiliation(s)
| | - Jana Rajova
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Tanga A, Saidi A, Jourdan ML, Dallet-Choisy S, Zani ML, Moreau T. Protection of lung epithelial cells from protease-mediated injury by trappin-2 A62L, an engineered inhibitor of neutrophil serine proteases. Biochem Pharmacol 2012; 83:1663-73. [DOI: 10.1016/j.bcp.2012.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022]
|
9
|
Abstract
WAP (whey acidic protein) is an important whey protein present in milk of mammals. This protein has characteristic domains, rich in cysteine residues, called 4-DSC (four-disulfide core domain). Other proteins, mainly present at mucosal surfaces, have been shown to also possess these characteristic WAP-4-DSC domains. The present review will focus on two WAP-4-DSC containing proteins, namely SLPI (secretory leucocyte protease inhibitor) and trappin-2/elafin. Although first described as antiproteases able to inhibit in particular host neutrophil proteases [NE (neutrophil elastase), cathepsin-G and proteinase-3] and as such, able to limit maladaptive tissue damage during inflammation, it has become apparent that these molecules have a variety of other functions (direct antimicrobial activity, bacterial opsonization, induction of adaptive immune responses, promotion of tissue repair, etc.). After providing information about the 'classical' antiproteasic role of these molecules, we will discuss the evidence pertaining to their pleiotropic functions in inflammation and immunity.
Collapse
|
10
|
Stevens T, Ekholm K, Gränse M, Lindahl M, Kozma V, Jungar C, Ottosson T, Falk-Håkansson H, Churg A, Wright JL, Lal H, Sanfridson A. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J Pharmacol Exp Ther 2011; 339:313-20. [PMID: 21791628 DOI: 10.1124/jpet.111.182139] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
N-{[5-(methanesulfonyl)pyridin-2-yl]methyl}-6-methyl-5-(1-methyl-1H-pyrazol-5-yl)-2-oxo-1-[3-(trifluoromethyl)phenyl]-1,2-dihydropyridine-3-carboxamide (AZD9668) is a novel, oral inhibitor of neutrophil elastase (NE), an enzyme implicated in the signs, symptoms, and disease progression in NE-driven respiratory diseases such as bronchiectasis and chronic obstructive pulmonary disease via its role in the inflammatory process, mucus overproduction, and lung tissue damage. In vitro and in vivo experiments were done to evaluate the binding kinetics, potency, and selectivity of AZD9668, its effects in whole-blood and cell-based assays, and its efficacy in models of lung inflammation and damage. In contrast to earlier NE inhibitors, the interaction between AZD9668 and NE was rapidly reversible. AZD9668 was also highly selective for NE over other neutrophil-derived serine proteases. In cell-based assays, AZD9668 inhibited plasma NE activity in zymosan-stimulated whole blood. In isolated human polymorphonuclear cells, AZD9668 inhibited NE activity on the surface of stimulated cells and in the supernatant of primed, stimulated cells. AZD9668 showed good crossover potency to NE from other species. Oral administration of AZD9668 to mice or rats prevented human NE-induced lung injury, measured by lung hemorrhage, and an increase in matrix protein degradation products in bronchoalveolar lavage (BAL) fluid. In an acute smoke model, AZD9668 reduced the inflammatory response to cigarette smoke as indicated by a reduction in BAL neutrophils and interleukin-1β. Finally, AZD9668 prevented airspace enlargement and small airway wall remodeling in guinea pigs in response to chronic tobacco smoke exposure whether dosed therapeutically or prophylactically. In summary, AZD9668 has the potential to reduce lung inflammation and the associated structural and functional changes in human diseases.
Collapse
|
11
|
Abstract
Antimicrobial peptides (AMPs) are small proteins produced by epithelial surfaces and inflammatory cells, which have broad-spectrum antimicrobial and immunomodulatory activities. They are known to be important in a number of infectious and inflammatory conditions and have been shown to be present in a number of sites throughout the female reproductive tract. Inflammation and infection are associated with a number of complications of pregnancy including preterm labor, and AMPs may play a key role in maintaining and protecting pregnancy. The aim of this review is to describe the expression and function of AMPs in the pregnant female reproductive tract and their relation to preterm labor.
Collapse
Affiliation(s)
- Lorraine Frew
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | |
Collapse
|
12
|
Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 2010; 17:293-307. [PMID: 21046059 DOI: 10.2119/molmed.2010.00138] [Citation(s) in RCA: 997] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/18/2010] [Indexed: 12/27/2022] Open
Abstract
Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.
Collapse
Affiliation(s)
- Jochen Grommes
- Department of Vascular Surgery, University Hospital, RWTH Aachen, Germany.
| | | |
Collapse
|
13
|
Zani ML, Baranger K, Guyot N, Dallet-Choisy S, Moreau T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci 2009; 18:579-94. [PMID: 19241385 DOI: 10.1002/pro.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin-2 are endogeneous low-molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol-based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin-2 variant, trappin-2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin-2 A62L are tight-binding inhibitors of all three NSPs with subnanomolar K(i)s, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane-bound forms of all three NSPs. The trappin-2 A62L and elafin-SLPI chimeras, like wild-type elafin and trappin-2, can be covalently cross-linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti-inflammatory agents.
Collapse
Affiliation(s)
- Marie-Louise Zani
- Inserm U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie Fonctionnelle, University of Tours, France
| | | | | | | | | |
Collapse
|
14
|
Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 2009; 40:519-35. [PMID: 18978300 PMCID: PMC2677434 DOI: 10.1165/rcmb.2008-0348tr] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Indexed: 12/20/2022] Open
Abstract
The primary function of neutrophils in host defense is to contain and eradicate invading microbial pathogens. This is achieved through a series of swift and highly coordinated responses culminating in ingestion (phagocytosis) and killing of invading microbes. While these tasks are usually performed without injury to host tissues, in pathologic circumstances such as sepsis, potent antimicrobial compounds can be released extracellularly, inducing a spectrum of responses in host cells ranging from activation to injury and death. In the lung, such inflammatory damage is believed to contribute to the pathogenesis of diverse lung diseases, including acute lung injury and the acute respiratory distress syndrome, chronic obstructive lung disease, and cystic fibrosis. In these disorders, epithelial cells are targets of leukocyte-derived antimicrobial products, including proteinases and oxidants. Herein, we review the mechanisms involved in the physiologic process of neutrophil transepithelial migration, including the role of specific adhesion molecules on the leukocyte and epithelial cells. We examine the responses of the epithelial cells to the itinerant leukocytes and their cytotoxic products and the consequences of this for lung injury and repair. This paradigm has important clinical implications because of the potential for selective blockade of these pathways to prevent or attenuate lung injury.
Collapse
Affiliation(s)
- Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | |
Collapse
|
15
|
Wilkinson TS, Dhaliwal K, Hamilton TW, Lipka AF, Farrell L, Davidson DJ, Duffin R, Morris AC, Haslett C, Govan JRW, Gregory CD, Sallenave JM, Simpson AJ. Trappin-2 promotes early clearance of Pseudomonas aeruginosa through CD14-dependent macrophage activation and neutrophil recruitment. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1338-46. [PMID: 19264904 DOI: 10.2353/ajpath.2009.080746] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microaspiration of Pseudomonas aeruginosa contributes to the pathogenesis of nosocomial pneumonia. Trappin-2 is a host defense peptide that assists with the clearance of P. aeruginosa through undefined mechanisms. A model of macrophage interactions with replicating P. aeruginosa (strain PA01) in serum-free conditions was developed, and the influence of subantimicrobial concentrations of trappin-2 was subsequently studied. PA01 that was pre-incubated with trappin-2 (at concentrations that have no direct antimicrobial effects), but not control PA01, was cleared by alveolar and bone marrow-derived macrophages. However, trappin-2-enhanced clearance of PA01 was completely abrogated by CD14- null macrophages. Fluorescence microscopy demonstrated the presence of trappin-2 on the bacterial cell surface of trappin-2-treated PA01. In a murine model of early lung infection, trappin-2-treated PA01 was cleared more efficiently than control PA01 2 hours of intratracheal instillation. Furthermore, trappin-2-treated PA01 up-regulated the murine chemokine CXCL1/KC after 2 hours with a corresponding increase in neutrophil recruitment 1 hour later. These in vivo trappin-2-treated PA01 effects were absent in CD14-deficient mice. Trappin-2 appears to opsonize P. aeruginosa for more efficient, CD14-dependent clearance by macrophages and contributes to the induction of chemokines that promote neutrophil recruitment. Trappin-2 may therefore play an important role in innate recognition and clearance of pathogens during the very earliest stages of pulmonary infection.
Collapse
Affiliation(s)
- Thomas S Wilkinson
- MRC Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bissonnette EY, Tremblay GM, Turmel V, Pirotte B, Reboud-Ravaux M. Coumarinic derivatives show anti-inflammatory effects on alveolar macrophages, but their anti-elastase activity is essential to reduce lung inflammation in vivo. Int Immunopharmacol 2009; 9:49-54. [PMID: 18840548 DOI: 10.1016/j.intimp.2008.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/28/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Elyse Y Bissonnette
- Centre de recherche de l'Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Québec, QC, Canada.
| | | | | | | | | |
Collapse
|
17
|
Wang Z, Beach D, Su L, Zhai R, Christiani DC. A genome-wide expression analysis in blood identifies pre-elafin as a biomarker in ARDS. Am J Respir Cell Mol Biol 2008; 38:724-32. [PMID: 18203972 DOI: 10.1165/rcmb.2007-0354oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous microarray-based studies of acute respiratory distress syndrome (ARDS) were performed using various models to mimic disease pathogenesis. The complexity of the pathophysiologic response to direct or indirect lung injury in ARDS is difficult to reconstruct in experimental conditions. Thus, direct analysis of ARDS patient blood may provide valuable information. We investigated genome-wide gene expression profiles in paired whole blood samples from patients with ARDS (n = 8) during the acute stage (within 3 d of diagnosis) and recovery stage of ARDS (around ICU discharge). Among 126 differentially expressed genes, peptidase inhibitor 3 (PI3, encoding elafin, a potent neutrophil elastase inhibitor) had the largest fold-change (-3-fold changes, acute stage/recovery stage) in expression, indicating down-regulation during the acute stage of ARDS. We further examined plasma PI3 levels in 40 patients with ARDS and 23 at-risk control subjects from the same cohort. There was a coincidence of the microarray findings of lower PI3 gene expression with the lower plasma PI3 during the acute-stage. The plasma PI3 levels were statistically significant different among pre-diagnosis, day of diagnosis, and post-diagnosis groups (ANOVA, P = 0.001), with a trend of decreasing from pre- to post-diagnosis group. The time course of plasma PI3 decrease is well correlated with the course of early ARDS development (Pearson correlation coefficient: -0.52, P = 0.0006). Considering that PI3 can covalently binding to extracellular matrix in lung, circulating PI3 may provide a useful clinical marker for monitoring the early development of ARDS and may have implications for ARDS treatment.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
18
|
Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2007; 90:284-95. [PMID: 17964057 DOI: 10.1016/j.biochi.2007.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/07/2007] [Indexed: 12/31/2022]
Abstract
Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.
Collapse
Affiliation(s)
- Thierry Moreau
- INSERM U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie fonctionnelle, Université François Rabelais, Tours, France.
| | | | | | | | | | | |
Collapse
|
19
|
Doucet A, Bouchard D, Janelle M, Bellemare A, Gagné S, Tremblay G, Bourbonnais Y. Characterization of human pre-elafin mutants: full antipeptidase activity is essential to preserve lung tissue integrity in experimental emphysema. Biochem J 2007; 405:455-63. [PMID: 17489739 PMCID: PMC2267300 DOI: 10.1042/bj20070020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pre-elafin is a tight-binding inhibitor of neutrophil elastase and myeloblastin; two enzymes thought to contribute to tissue damage in lung emphysema. Previous studies have established that pre-elafin is also an effective anti-inflammatory molecule. However, it is not clear whether both functions are linked to the antipeptidase activity of pre-elafin. As a first step toward elucidating the structure/function relationship of this protein, we describe here the construction and characterization of pre-elafin variants with attenuated antipeptidase potential. In these mutants, the P1' methionine residue of the inhibitory loop is replaced by either a lysine (pre-elafinM25K) or a glycine (pre-elafinM25G) residue. Both mutated variants are stable and display biochemical properties undistinguishable from WT (wild-type) pre-elafin. However, compared with WT pre-elafin, their inhibitory constants are increased by one to four orders of magnitude toward neutrophil elastase, myeloblastin and pancreatic elastase, depending on the variants and enzymes tested. As suggested by molecular modelling, this attenuated inhibitory potential correlates with decreased van der Waals interactions between the variants and the enzymes S1' subsite. In elastase-induced experimental emphysema in mice, only WT pre-elafin protected against tissue destruction, as assessed by the relative airspace enlargement measured using lung histopathological sections. Pre-elafin and both mutants prevented transient neutrophil alveolitis. However, even the modestly affected pre-elafinM25K mutant, as assayed in vitro with small synthetic substrates, was a poor inhibitor of the neutrophil elastase and myeloblastin elastolytic activity measured with insoluble elastin. We therefore conclude that full antipeptidase activity of pre-elafin is essential to protect against lung tissue lesions in this experimental model.
Collapse
Affiliation(s)
- Alain Doucet
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Dominique Bouchard
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Marie France Janelle
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Audrey Bellemare
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Stéphane Gagné
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Guy M. Tremblay
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Yves Bourbonnais
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Barton MC, Akli S, Keyomarsi K. Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 2007; 209:686-94. [PMID: 17001684 DOI: 10.1002/jcp.20818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this review, we focus on pathways intersecting through p53 and cyclin E, highlighting how oncogenic effects of cyclin E deregulation, especially overexpression of shortened or low molecular weight (LMW) forms of cyclin E protein, are amplified by loss of regulatory control through p53 to promote tumor development. Expression of cyclin E protein promotes progression into S-phase, an activity opposed by p53-regulated activation of checkpoint controls or apoptosis. Loss of p53 function is an escape hatch by which tumor cells, initiated by a number of means including cyclin E deregulation, can avoid cell cycle arrest or cell death and progress through further stages of unchecked deregulation and growth. To determine how this escape hatch is opened and, ultimately, how to close it, we must understand the networks of normal signaling and processing in a cell and where they intersect.
Collapse
Affiliation(s)
- Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
21
|
Bouchard D, Morisset D, Bourbonnais Y, Tremblay GM. Proteins with whey-acidic-protein motifs and cancer. Lancet Oncol 2006; 7:167-74. [PMID: 16455481 DOI: 10.1016/s1470-2045(06)70579-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of early diagnosis to reduce the morbidity and mortality from cancer has led to a search for new sensitive and specific tumour markers. Molecular techniques developed over the past few years allow simultaneous screening of thousands of genes, and have been applied to different cancers to identify many genes that are modulated in various cancers. Of these, attention has focused on genes coding for a family of proteins with whey-acidic-protein (WAP) motifs. Most notably, the genes coding for elafin, antileukoproteinase 1 (previously called secretory leucocyte proteinase inhibitor, SLPI), WAP four disulphide core domain protein 1 (previously called prostate stromal protein 20 kDa, PS20), and WAP four disulphide core domain protein 2 (previously called major human epididymis-specific protein E4, HE4), have been identified as candidate molecular markers for several cancers. In this review, we assess data for an association between cancer and human WAP proteins, and discuss their potential role in tumour progression. We also propose a new mechanism by which WAP proteins might have a role in carcinogenesis.
Collapse
Affiliation(s)
- Dominique Bouchard
- Laval Hospital, Laval University Institute of Pneumology and Cardiology, Quebec, Canada
| | | | | | | |
Collapse
|
22
|
Abstract
Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.
Collapse
Affiliation(s)
- Steven E Williams
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
23
|
Janelle MF, Doucet A, Bouchard D, Bourbonnais Y, Tremblay GM. Increased local levels of granulocyte colony-stimulating factor are associated with the beneficial effect of pre-elafin (SKALP/trappin-2/WAP3) in experimental emphysema. Biol Chem 2006; 387:903-9. [PMID: 16913840 DOI: 10.1515/bc.2006.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Few therapeutic options are offered to treat inflammation and alveolar wall destruction in emphysema. The effect of recombinant human pre-elafin, an elastase inhibitor, was evaluated in porcine pancreatic elastase (PPE)-induced emphysema in C57BL/6 mice. In a first protocol, mice received a single instillation of pre-elafin (17.5 pmol/mouse) at 1 h post-PPE and were sacrificed up to 72 h post-PPE. A single instillation of pre-elafin significantly reduced PPE-induced neutrophil accumulation in lungs, as assessed by bronchoalveolar lavage (BAL), by 51%, 71% and 67% at 24, 48 and 72 h, respectively. In a second protocol, mice also received a single dose of PPE, but pre-elafin three times a week for 2 weeks. After 2 weeks, pre-elafin significantly reduced the PPE-induced increase in BAL macrophage numbers, airspace dimensions and lung hysteresivity by 74%, 62% and 52%, respectively. Since G-CSF was previously shown to reduce emphysematous changes in mice, the BAL levels of this mediator were measured 6 h post-PPE in animals treated as described in the first protocol. Pre-elafin significantly increased G-CSF levels in PPE-exposed mice compared to sham- and PPE only-exposed animals. This suggests that the beneficial effects of pre-elafin could be mediated, at least in part, by its ability to increase G-CSF levels in the lung.
Collapse
Affiliation(s)
- Marie France Janelle
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Sainte-Foy G1V 4G5, Canada
| | | | | | | | | |
Collapse
|
24
|
Nobar SM, Zani ML, Boudier C, Moreau T, Bieth JG. Oxidized elafin and trappin poorly inhibit the elastolytic activity of neutrophil elastase and proteinase 3. FEBS J 2005; 272:5883-93. [PMID: 16279952 DOI: 10.1111/j.1742-4658.2005.04988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophil proteinase-mediated lung tissue destruction is prevented by inhibitors, including elafin and its precursor, trappin. We wanted to establish whether neutrophil-derived oxidants might impair the inhibitory function of these molecules. Myeloperoxidase/H(2)O(2) and N-chlorosuccinimide oxidation of the inhibitors was checked by mass spectrometry and enzymatic methods. Oxidation significantly lowers the affinities of the two inhibitors for neutrophil elastase (NE) and proteinase 3 (Pr3). This decrease in affinity is essentially caused by an increase in the rate of inhibitory complex dissociation. Oxidized elafin and trappin have, however, reasonable affinities for NE (K(i) = 4.0-9.2 x 10(-9) M) and for Pr3 (K(i) = 2.5-5.0 x 10(-8) M). These affinities are theoretically sufficient to allow the oxidized inhibitors to form tight binding complexes with NE and Pr3 in lung secretions where their physiological concentrations are in the micromolar range. Yet, they are unable to efficiently inhibit the elastolytic activity of the two enzymes. At their physiological concentration, fully oxidized elafin and trappin do not inhibit more than 30% of an equimolar concentration of NE or Pr3. We conclude that in vivo oxidation of elafin and trappin strongly impairs their activity. Inhibitor-based therapy of inflammatory lung diseases must be carried out using oxidation-resistant variants of these molecules.
Collapse
Affiliation(s)
- Shila M Nobar
- Laboratoire d'Enzymologie, INSERM U392, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
25
|
Abstract
Breast cancer is the most common cancer in American women and is second only to lung cancer as the leading cause of death among women with solid tumors. Although chemotherapy and hormonal therapy are widely used in the primary treatment of breast cancer, appropriate selection of patients for such treatment remains challenging. Traditional prognostic factors --such as age, lymph node status, tumor size, tumor grade, and hormone receptor status--have been useful in assessing the risk for development of metastatic disease and these have been incorporated into a program that is available online for risk assessment (www.adjuvantonline.com). Molecular markers have not been incorporated into this schema but certainly have the potential for further refining risk assessment. Once the risk of recurrence is established for each patient, this can then be used to determine the potential effectiveness of hormonal therapy, chemotherapy, or the combination of these treatments. While the use of this web-based system has certainly empowered physicians and patients in making adjuvant therapy decisions, it is inadequate for precise stratification of patient cohorts into responders versus non-responders to systemic agents. Identification of accurate prognostic indicators and predictors of response have the potential to profoundly impact treatment selection for individual patients. Further, identification of prognostic factors with underlying biology that can serve as therapeutic targets will be important for identification and treatment of high-risk patients. Here we discuss the role of cyclin E as a prognostic marker and predictive factor in breast cancer management and the potential to use this marker as a target for therapy.
Collapse
Affiliation(s)
- Kelly K Hunt
- Department of Surgical Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Guyot N, Zani ML, Berger P, Dallet-Choisy S, Moreau T. Proteolytic susceptibility of the serine protease inhibitor trappin-2 (pre-elafin): evidence for tryptase-mediated generation of elafin. Biol Chem 2005; 386:391-9. [PMID: 15899702 DOI: 10.1515/bc.2005.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of serine, cysteine, metallo- and acid proteases were evaluated for their ability to proteolytically cleave the serine protease inhibitor trappin-2, also known as pre-elafin, and to release elafin from its precursor. None of the metalloproteases or acid proteases examined cleaved trappin-2, while serine and cysteine proteases preferentially cleaved trappin-2 within its non-inhibitory N-terminal moiety. Cathepsin L, cathepsin K, plasmin, trypsin and tryptase were able to release elafin by cleaving the Lys 38 -Ala 39 peptide bond in trappin-2. However, purified tryptase appeared to be efficient at releasing elafin. Incubation of trappin-2 with purified mast cells first challenged with anti-immunoglobulin E or calcium ionophore A23187 resulted in the rapid generation of elafin. This proteolytic release of elafin from trappin-2 was inhibited in the presence of a tryptase inhibitor, suggesting that this mast cell enzyme was involved in the process. Finally, ex vivo incubation of trappin-2 with sputum from cystic fibrosis patients indicated the production of a proteolytic immunoreactive fragment with the same mass as that of native elafin. This cleavage did not occur when preincubating the sputum with polyclonal antibodies directed against tryptase. Taken together, these findings indicate that tryptase could likely be involved in the maturation of trappin-2 into elafin under physiological conditions.
Collapse
Affiliation(s)
- Nicolas Guyot
- INSERM U618 Protéases et Vectorisation Pulmonaires, and IFR 135 Imagerie Fonctionnelle, Université François Rabelais, 10 Boulevard Tonnellé, BP 3223, F-37032 Tours Cedex, France
| | | | | | | | | |
Collapse
|
27
|
Donnelly LE, Rogers DF. Antiproteases and retinoids for treatment of chronic obstructive pulmonary disease. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.9.1345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Zani ML, Nobar SM, Lacour SA, Lemoine S, Boudier C, Bieth JG, Moreau T. Kinetics of the inhibition of neutrophil proteinases by recombinant elafin and pre-elafin (trappin-2) expressed in Pichia pastoris. ACTA ACUST UNITED AC 2004; 271:2370-8. [PMID: 15182352 DOI: 10.1111/j.1432-1033.2004.04156.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Elafin and its precursor, trappin-2 or pre-elafin, are specific endogenous inhibitors of human neutrophil elastase and proteinase 3 but not of cathepsin G. Both inhibitors belong, together with secretory leukocyte protease inhibitor, to the chelonianin family of canonical protease inhibitors of serine proteases. A cDNA coding either elafin or its precursor, trappin-2, was fused in frame with yeast alpha-factor cDNA and expressed in the Pichia pastoris yeast expression system. Full-length elafin or full-length trappin-2 were secreted into the culture medium with high yield, indicating correct processing of the fusion proteins by the yeast KEX2 signal peptidase. Both recombinant inhibitors were purified to homogeneity from concentrated culture medium by one-step cationic exchange chromatography and characterized by N-terminal amino acid sequencing, Western blot and kinetic studies. Both recombinant elafin and trappin-2 were found to be fast-acting inhibitors of pancreatic elastase, neutrophil elastase and proteinase 3 with k(ass) values of 2-4 x 10(6) m(-1).s(-1), while dissociation rate constants k(diss) were found to be in the 10(-4) s(-1) range, indicating low reversibility of the complexes. The equilibrium dissociation constant K(i) for the interaction of both recombinant inhibitors with their target enzymes was either directly measured for pancreatic elastase or calculated from k(ass) and k(diss) values for neutrophil elastase and proteinase 3. K(i) values were found to be in the 10(-10) molar range and virtually identical for both inhibitors. Based on the kinetic parameters determined here, it may be concluded that both recombinant elafin and trappin-2 may act as potent anti-inflammatory molecules and may be of therapeutic potential in the treatment of various inflammatory lung diseases.
Collapse
|
29
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, smoking-related, severe respiratory condition characterised by progressive, irreversible airflow limitation. Current treatment of COPD is symptomatic, with no drugs capable of halting the relentless progression of airflow obstruction. Better understanding of the airway inflammation, oxidative stress and alveolar destruction that characterise COPD has delineated new disease targets, with consequent identification of novel compounds with therapeutic potential. These new drugs include aids to smoking cessation (e.g. bupropion) and improvements to existing therapies, for example long-acting rather than short-acting bronchodilators, as well as combination therapy. New antiproteases include acyl-enzyme and transition state inhibitors of neutrophil elastase (e.g. sivelestat and ONO-6818), matrix metalloprotease inhibitors (e.g. batimastat), cathepsin inhibitors and peptide protease inhibitors (e.g. DX-890 [EPI-HNE-4] and trappin-2). New antioxidants include superoxide dismutase mimetics (e.g. AEOL-10113) and spin trap compounds (e.g. N-tert-butyl-alpha-phenylnitrone). New anti-inflammatory interventions include phosphodiesterase-4 inhibitors (e.g. cilomilast), inhibitors of tumour necrosis factor-alpha (e.g. humanised monoclonal antibodies), adenosine A(2a) receptor agonists (e.g. CGS-21680), adhesion molecule inhibitors (e.g. bimosiamose [TBC1269]), inhibitors of nuclear factor-kappaB (e.g. the naturally occurring compounds hypoestoxide and (-)-epigallocatechin-3-gallate) and activators of histone deacetylase (e.g. theophylline). There are also selective inhibitors of specific extracellular mediators such as chemokines (e.g. CXCR2 and CCR2 antagonists) and leukotriene B(4) (e.g. SB201146), and of intracellular signal transduction molecules such as p38 mitogen activated protein kinase (e.g. RWJ67657) and phosphoinositide 3-kinase. Retinoids may be one of the few potential treatments capable of reversing alveolar destruction in COPD, and a number of compounds are in clinical trial (e.g. all-trans-retinoic acid). Talniflumate (MSI-1995), an inhibitor of human calcium-activated chloride channels, has been developed to treat mucous hypersecretion. In addition, the purinoceptor P2Y(2) receptor agonist diquafosol (INS365) is undergoing clinical trials to increase mucus clearance. The challenge to transferral of these new compounds from preclinical research to disease management is the design of effective clinical trials. The current scarcity of well characterised surrogate markers predicts that long-term studies in large numbers of patients will be needed to monitor changes in disease progression.
Collapse
Affiliation(s)
- Louise E Donnelly
- Thoracic Medicine, National Heart & Lung Institute, Imperial College, London, UK
| | | |
Collapse
|
30
|
Abstract
OBJECTIVE Acute respiratory distress syndrome (ARDS) represents an inflammatory process that is initiated by diverse systemic and/or pulmonary insults, resulting in a clinical syndrome of severe respiratory distress and refractory hypoxemia. Neutrophils and their cytotoxic products, including oxidants and proteases, such as elastase, have been implicated as playing a key role in the pathophysiology of ARDS. This article reviews some of the physiologic actions of proteases, specifically elastase, the evidence for neutrophil elastase involvement in ARDS, and the potential therapeutic use of neutrophil elastase inhibitors in lung injury. DATA SOURCE A review of published literature (original articles and reviews) in English from 1965 to 2002. CONCLUSION Although the data support a key role for neutrophil elastase in the pathogenesis of ARDS, further study is needed to fully define the actions of neutrophil elastase, and how these actions affect host functions, before we can exploit this knowledge for therapeutic benefit.
Collapse
Affiliation(s)
- Theo J Moraes
- Division of Respiratory Medicine, Department of Paediatrics, Hospital for Sick Children, and Institute of Medical Sciences, Faculty of Medicine, the University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Vachon E, Bourbonnais Y, Bingle CD, Rowe SJ, Janelle MF, Tremblay GM. Anti-inflammatory effect of pre-elafin in lipopolysaccharide-induced acute lung inflammation. Biol Chem 2002; 383:1249-56. [PMID: 12437112 DOI: 10.1515/bc.2002.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to evaluate the anti-inflammatory activity of pre-elafin, an elastase-specific inhibitor, in lipopolysaccharide (LPS)-induced acute lung inflammation. C57BL/6 mice were pre-treated intranasally with recombinant human pre-elafin or vehicle only. One hour later, they were instilled intranasally with LPS (2 microg/mouse). Animals were sacrificed 6 hours after LPS instillation and bronchoalveolar lavage (BAL) was performed with three 1-ml aliquots of saline. LPS induced a lung inflammation characterised by a 100-fold increase in BAL neutrophils compared to control animals (265.8 +/- 54.5 x 10(3) and 2.4 +/- 1.3 x 10(3) neutrophils/ml, respectively). Pre-elafin dose-dependently reduced the neutrophil influx in the lung alveolar spaces by up to 84%. No elastase activity was detectable in all BAL fluids tested. Pre-elafin also reduced significantly LPS-induced gelatinase activity, as shown by zymography, and BAL macrophage inflammatory protein-2 (MIP-2) and KC levels, two potent neutrophil attractants and activators. Moreover, pre-elafin also significantly reduced mRNA levels of the three members of the IL-1 ligand family, namely IL-1alpha, IL-1beta and IL-1 receptor antagonist (IL-1Ra), type II IL-1 receptor, and TNFalpha as assessed in whole lung tissue by RNase protection assay. Thus, pre-elafin may be considered as a potent anti-inflammatory mediator.
Collapse
Affiliation(s)
- Eric Vachon
- Centre de Recherche, Hĵpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Quebec City, Canada
| | | | | | | | | | | |
Collapse
|